
On Refining XML Artifacts

Felipe I. Anfurrutia, Oscar Díaz, and Salvador Trujillo

University of the Basque Country - San Sebastián (Spain)
{felipe.anfurrutia,oscar.diaz,struji}@ehu.es

Abstract. Step-wise refinement is a powerful paradigm for developing a com-
plex program from a simple program by adding features incrementally where
each feature is an increment in program functionality. Existing works focus on
object-oriented representations such as Java or C++ artifacts. For this paradigm
to be brought to the Web, refinement should be realised for XML representations.
This paper elaborates on the notion of XML refinement by addressing what and
how XML can be refined. These ideas are realised in the XAK language. A Struts
application serves to illustrate the approach.

1 Introduction

So far, most Web applications are conceived in a one-to-one basis. A recent study indi-
cates a cloning rate (i.e. code repetition throughout the application) of 17-63% within
Web applications of the same organisation [5]. This cloning evidences the existence of
a common, although implicit, theme throughout the applications, and confirms an in-
tuition felt in most organisations: code similarities among applications. These similari-
ties are being handled in various ways such as IFDEFs, configuration files, installation
scripts or cloned software copies à la “copy-paste-modify”. However, these solutions
do not scale and can hinder maintenance as the number of variations increases.

One technique to handle similarities is step-wise refinement [1]. Step-wise refine-
ment is a powerful paradigm for developing a complex program from a simple pro-
gram by incrementally adding details. This approach attempts to depart from current
“clone&own” practise by leveraging reuse of the common parts, and separating variable
and changing parts as program deltas. The final product is obtained through composi-
tion: the common parts are composed with the program deltas that realise the variations
for the product at hand.

Existing works focus on object-oriented representations such as Java or C++ arti-
facts [1]. However, recent studies revealed that the cloning rate of web-specific artifacts
(e.g. mainly XML files) was considerably higher than general artifacts (e.g. Java, C++,
etc) [5]. Indeed, XML artifacts play a preponderant role in current software practises,
specially in the Web setting. This omnipresence of XML vindicates the existence of
modularisation techniques specially tuned for XML. Attempts have been made to bring
object-orientation (OO) and componentisation to the HTML realm [3], [4], [6]. But
in the same way that OO falls short to face the increasing complexity of conventional
software (crosscut handling is a case in point), so does it happen for XML artifacts.

This work addresses the use of refinements as a modularisation technique for XML
artifacts. But, what is meant to refine an XML artifact? Does it mean that we can ar-
bitrarily insert or delete a node anywhere in an XML tree? To this end, a language

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 473–478, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



474 F.I. Anfurrutia, O. Díaz, and S. Trujillo

for defining refinements in XML documents is introduced: XAK (pronounced “sack”).
The language is accompanied by a validator and a composer. The validator checks the
correctness of XML refinements at compile time, whereas the composer builds incre-
mentally a document by composing a base document with a refinement document. XAK
composer is currently available as part of the AHEAD Tool Suite [7].

In this way, an XML artifact can also be conceived incrementally. This accounts for
the following advantages: enhanced reusability of XML artifacts since commonalities
and variabilities can be defined separately; flexibility in the selection of variable content
and their composition; and decoupling validation of XML core artifacts from XML
refinements. First, a brief on the notion of refinement is provided.

2 On the Notion of Refinement

A refinement can be thought of as a function that takes an artifact as an input, and
returns another similar artifact but leveraged to support a given feature (denoted by
Feature1•Base). In other words, a base artifact (e.g. a Java class) can now be incremen-
tally extended (i.e. refined in our parlance) by adding a new module (e.g. a method) that
extends the functionality of the base with a new feature (i.e. Feature1). At first sight,
this resembles regular inheritance, but there is a difference: there are not two classes but
a single class that is being incrementally extended to account for a new feature. Further-
more, the class being extended is not fixed at compile time (like in regular inheritance)
but decided at composition time. In this way, a refinement behaves like a mixin inher-
itance, i.e. a class whose super class is parametrised [2]. Since the super class is not
fixed until composition, distinct refinements on different (and unpredictable) order may
be composed to yield a class. When the artifact is source code, a class refinement can
introduce new data members, methods and constructors to a target class, as well as ex-
tend or override existing methods and constructors of that class. But, what is meant to
refine an XML artifact? The next section introduces a sample case.

3 A Motivating Example Using Struts

Let CurrencyConverter be a web application that facilitates information about convert-
ing distinct currencies1. The application exhibits a J2EE architecture where Apache
Struts is used. Struts follows the MVC pattern where the Controller separates the
control-flow from the Model and the View. Space limitation makes us focus on the
controller. However, similar remarks can be made for the artifacts realising the Model
and the View.

The control-flow of a sample base application is realised through the struts-config
document depicted in figure 1(b). The description so far accounts for the base con-
troller. The term “base” refers to the stable core which is free for any variations. The is-
sue arises when this base functionality needs to be leveraged with additional capabilities
due to either perfective maintenance or versioning. For instance, consider two additional

1 For a working example see www.oanda.com/convert/classic



On Refining XML Artifacts 475

Fig. 1. (a) Schema-based and (b) instance-based modularisation

features: (1) the DateRate feature, which allows end users to introduce a date in order
to make the currency conversion with the rates at the given date. This implies to refine
the base controller with new form properties, and some additions to the control-flow;
(2) the Customisation feature, which permits end users to personalise the application by
providing default values for both the sourceCurrency and the targetCurrency properties.
This simple feature impacts all the model, the view and the controller.

Despite their simplicity, we are unaware of any mechanism that permits to incor-
porate these features incrementally. That is, start with a simple product (i.e. the base)
and compose deltas to progressively add features to the base. Notice, you can add ifdef
tags to the base code that a pre-compiler can leave or remove depending on the features
to be finally exhibited by the application. But, this is more a kind of configuration or
parametrisation mechanism that requires the designer to foresee all possible extensions
where superfluous extensions are removed at configuration time. By contrast, refine-
ments work the other way around: start with a simple product and apply deltas (i.e.
program refinements) to progressively elaborate the desired product. Refinements are
defined separately from the base in both time and space. In time, because the refine-
ment can be added at any time. And in space, since the refinement is handled separately
from the base artifact. Therefore, product synthesis rests in the ability to implement and
compose refinements.

4 The Unit of Refinement

We aim at synthesising XML documents incrementally through refinements. But, what
is the granularity of this refinement? A first approach could be to consider any XML node
as the unit of refinement. However, this implies handling XML documents as mere data
structures where any element node can be subject to refinement. This is too fine-grained
granularity that defers the principle of modularity whereby high level abstractions (i.e.
the modules) encapsulate their low level realisation (i.e. the instructions). Indeed, the



476 F.I. Anfurrutia, O. Díaz, and S. Trujillo

Open-Closed Principle (OCP) states that modules should be both open (for extension
and adaptation) and closed (to protect the content against certain modifications).

To this end, a distinction is made between elements playing the role of modules (and
hence, being subject to refinement) and elements that describe the realisation of these
modules (and hence, protected against punctual updates). Thus, an XML module is
defined as an element of a document that carries out a specific function and is liable to
be re-used by/combined with other modules.

Besides realising abstractions, modules should be univocally identified. Xpath re-
lies on element location. If the position of the element changes, so does it the Xpath
expression output. Therefore, location-based Xpath expressions can not be used for el-
ement identification when the position of this element is liable to be changed, as it is
the case for refinements. The order of refinements (e.g. Feature1•Feature2•Base vs.
Feature2•Feature1•Base) can make the location of a given element to change. Thus,
XML modules must have and preserve an ID property which permits to address this
module unambiguously.

Similar to code artifacts, the identification of the main abstractions (modules) de-
pends on the domain at hand. In an XML setting, this domain is partially defined by vo-
cabularies. W3C XML Schema is one of the most popular schema languages. A schema
states the element, attribute and atomic type names, in addition to structural constraints
that instances of this schema must obey.

Next, we need a way to indicate the elements playing the role of modules. For
our sample case, we want to stay that only element types <struts-config>, <form-
beans>, <form-bean>, <action-mappings> and <action> can be modules (liable to
be refined). The rest of the element types can not be refined (e.g. <controller> served
only for implementation). This is the purpose of the “xak:modularizable” attribute.
Figure 1(a) shows the Struts schema now annotated with this attribute. The attribute in-
dicates whether an element type is eligible to be a module or not. For a given document
instance, this does not force every occurrence of a modularisable element type to be
refined, but prevents non-modularisable element types from being refined.

However, stating modularity at the schema level can be too general. Frequently, the
notion of module depends on the document at hand. Hence, “schema-based” modular-
isation is complemented with “instance-based" modularisation (using the xak:module
attribute). This approach permits to further restrict what can be refined among the mod-
ularisable elements. For our sample case, only “/converter” is a refinable <action>;
whereas /convertNow and /cheatsheet can not be refined. Figure 1(b) illustrates this
situation for our sample case. This moves the decision of what can be refined to the
instance level.

“Schema-based” and “instance-based” approaches to module definition offers a good
balance between the controlled approach that offers the schema, and the freedom that
programmers’ creativity requires. This is akin to the openness and subsidiary way of
working that characterise the XML world (e.g. schema management in XML Schema).
Schema designers can use a schema approach to define the “refinable” element types,
the schema users can work at the instance level by indicating the “refinable” elements,
and finally, the instance users compose the features to synthesise the final application,
refining some element contents, should it be required.



On Refining XML Artifacts 477

Fig. 2. (a) A XAK refinement for the Customisation feature and (b) the resulting document from
the composition customization•base

5 The Ways of Refinement

Product synthesis starts with a base product and apply deltas (i.e. refinements) to pro-
gressively incorporate new features to this product. Thus, there are two kinds of
artifacts: base documents (i.e. values) and refinement documents (i.e. functions).

Base document. Any traditional XML document can be a base document. The only
difference is that now a distinction is made between XML elements, liable to be refined
(i.e. modules), and those that can not be refined (i.e. the implementation). To this end,
the XAK namespace provides three attributes (see figure 1b), namely: @xak:artifact,
which specifies the name of the document that is being incrementally defined;
@xak:feature, which indicates the name of the feature being supported2; and
@xak:module, which identifies those elements that play the role of modules. Notice
that the designer is not forced to turn into modules all elements of a modularisable type.

Refinement documents. A refinement is an increment in program’s functionality. This
is specified through the following XAK elements: <xak:refines> and <xak:keep-
content>. The former is the root element of the refinement document. Its content de-
scribes a set of module refinements (i.e. elements annotated with the xak:module at-
tribute) over a given base document (i.e. the xak:artifact attribute). Moreover, the
<xak:keep-content> attribute indicates the place where the content of the refined mod-
ule will be placed once it is synthesised.

As an example, consider our sample case. The customisation feature enhances the
base by providing default values for both the sourceCurrency and the targetCurrency
properties. Adding this feature impacts on all the aspects: the model, the view and
the controller. Thus, three refinement documents are needed, all with @xak:feature =
“customisation”. Let’s focus on the controller, i.e. “struts-config.xml”. This artifact is

2 For base documents, this attribute keeps the value “base”.



478 F.I. Anfurrutia, O. Díaz, and S. Trujillo

gradually defined as features are being composed. The base is shown in figure 1b where
mForms, mActions and mButtons are set as modules. Customisation implies: (1) adding
the customizeForm form-bean into the mForms module; (2) extending the mButton dis-
patcher action to show the customise.jsp page of the feature, and (3) defining a new ac-
tion. At synthesis time, customisation • base will deliver the enhanced strust-config.xml
file shown in figure 2b.

A refinement realises just an increment, i.e. a delta. Hence, it is most unlikely that the
refinement obeys the schema of the type of document being refined. For instance, our
previous refinement (see figure 2a) is not a valid struts-config document since it holds
and <action> element outside an <action-mappings> element. Moreover, the elements
and attributes of the XAK namespaces are intermingled with the elements of the given
schema vocabulary.

Therefore, the validity of a refinement can not be checked directly against neither
the schema of the document being refined (e.g. struts-config.xsd) nor the XAK schema.
However, the element names, types and some structural constraints still hold. For in-
stance, the elements and attributes used in the refinement should be permitted by the
content model of the module being refined. This implies to define which are the laws of
refinement and develop a tool for checking it.

6 Conclusions

Step-wise refinements permits to conceive artifacts incrementally, hence, distinguish-
ing between stable, base artifacts and refinement artifacts that realise the variations.
This work addresses refinement of XML artifacts. The peculiarities brought by markup
languages as opposed to object-oriented ones have been exposed where the notion of
refinement offers an alternative way to modularise source code for languages where no
other modularisation technique is available.

References

1. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE Transactions
on Software Engineering 30(6), 355–371 (2004)

2. Bracha, G., Cook, W.: Mixin-based inheritance. SIGPLAN 25(10), 303–311 (1990)
3. Gellersen, H.-W., Wicke, R., Gaedke, M.: WebComposition: an object-oriented support sys-

tem for the Web engineering lifecycle. Computer Networks and ISDN Systems 29(8-13),
1429–1437 (1997)

4. Klapsing, R., Neumann, G., Conen, W.: Semantics in Web Engineering: Applying the Re-
source Description Framework. IEEE Multimedia 8(2), 62–68 (2001)

5. Rajapakse, D.C., Jarzabek, S.: An investigation of cloning in web applications. In: Lowe,
D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, Springer, Heidelberg (2005)

6. Schranz, M.W., Weidl, J., Goschka, K.M., Zechgmeister, S.: Engineering complex World
Wide Web services with JESSICA and UML. In: Proc. of the 33rd Annual Hawaii Int. Conf.
on System Sciences (HICSS’00), Maui, HI, USA (2000)

7. Trujillo, S., Batory, D., Díaz, O.: Feature Refactoring a Multi-Representation Program into
a Product Line. In: Proc. of the 5th Int. Conf. on Generative Programming and Component
Engineering (GPCE’06) (2006)


	Introduction 
	On the Notion of Refinement 
	A Motivating Example Using Struts 
	The Unit of Refinement 
	The Ways of Refinement 
	Conclusions 

