
L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 242 – 247, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Improving Communication in Requirements Engineering
Activities for Web Applications

Pedro Valderas and Vicente Pelechano

Department of Information System and Computation.
Technical University of Valencia, Spain

Cami de Vera s/n 46022
{pvalderas, pele}@dsic.upv.es

Abstract. We present a requirements engineering environment which provides
techniques and tools to improve communication in Requirements Engineering
activities. First, a technique based on requirements ontologies is proposed to al-
low customers to describe their needs. This technique is supported by a tool.
This tool provides analysts with structured descriptions of the customers’ needs
that facilitate analysts to understand the problem to be solved. Next, both a
model-to-text transformation and a model-to-model transformation are intro-
duced to automatically obtain a textual requirements specification and a task-
based requirements model respectively. The textual specification facilitates cus-
tomers to validate requirements. The task-based requirements model facilitates
programmers to interpret the requirements specification.

1 Introduction

We present a Requirements Engineering (RE) environment for Web applications that
provides techniques and tools to improve the process of communication among cus-
tomers, analysts and programmers. First, this environment introduces a tool which
makes customers a set of questions throughout a guided process. This tool analyzes
the information provided by customers in order to obtain a structured description of
their needs. To do this, the tool uses a set of requirements ontologies. The obtained
description of the customers’ needs is clearly defined by means of concepts of the
requirements ontologies which facilitates analysts to understand it. Furthermore, the
proposed RE environment introduces two transformations: (1) A model-to-text trans-
formation which transforms the ontology-based description of the customers’ needs
into a requirements specification defined in natural language. This aspect facilitates
customers the validation of requirements. (2) A model-to-model transformation which
transforms the ontology-based description of the customers’ needs into a requirements
model based on the concept of task. This aspect facilitates programmers to interpret
the requirements specification.

The rest of the paper is organized as follows: Section 2 introduces both the concept
of requirements ontology and the tool which uses them. Section 3 introduces the
model-to-text transformation. Section 4 introduces the model-to-model transforma-
tion. Finally, conclusions are comment on in Section 5.

 Improving Communication in Requirements Engineering Activities 243

2 Facilitating Customers to Describe Their Needs

We introduce next a strategy which facilitates customers to describe their needs. It is
based on two elements: (1) Requirements ontologies and (2) a tool which asks cus-
tomers for their needs by using these ontologies. We present next both elements.

2.1 Requirements Ontologies

A Requirements Ontology specifies the concepts and the relationships between con-
cepts that represent a Web application of a specific type (E-commerce applications,
web portals, directories, etc). Figure 1 shows a partial view of the requirements
ontology for E-commerce applications. This ontology defines concepts such as On-
Line Purchase, Shopping Cart, or Products (concepts that characterize E-commerce
applications).

To define ontologies of this kind, we use the approach presented in [1]. According
to this approach, two kinds of concepts can be defined, namely lexical concepts (en-
closed in dashed rectangles) and nonlexical concepts (enclosed in solid rectangles). A
concept is lexical if its instances are indistinguishable from their representation. Date
(see Figure 1) is an example of lexical concept because its instances (e.g.
“21/05/2005” and “04/09/2004”) represent themselves. A concept is nonlexical if its
instances are object identifiers, which represent real-world objects. User (see Figure
1) is an example of nonlexical concept because its instances are identifiers such as
“ID1”, which represents a particular person in the real world who is a user. The main
concept in a type ontology is marked with “->•”. We designate the concept On-line
Purchase in Figure 1 as the main concept because it represents the main purpose of an
E-commerce application.

Figure 1 also shows a set of relationships among concepts, represented by connect-
ing lines, such as Product has Property. The arrow connection represents a one-to-
one relationship or a many-to-one relationship (the arrow indicates a cardinality of
one), and the non-arrow connection represents a many-to-many relationship. For
instance, Auction offers Item is a many-to-one relationship (i.e. in each auction only
an item can be offered but an item can be offered in several auctions) and Product has
Property is a many-to-many relationship (i.e. a product can have several properties,
and a property can be defined for several products). A small circle near the source or
the target of a connection represents an optional relationship. For instance, it is not
obligatory for a category to belong to another category. A triangle in Figure 1 defines
a generalization/specialization with a generalization connected to the apex of the
triangle and a specialization connected to its base. For instance, Direct Purchase is a
specialization of On-Line Purchase.

Finally, we have extended this notation by introducing abstract concepts. An ab-
stract concept is a concept that depends on the domain of the Web application and
need to be instantiated. These concepts are marked with a vertical line on the right
side (see Figure 1, concepts Product, Property and Category). For instance, Product
is an abstract concept because we know that every E-commerce application must
allow users to purchase products; however, we do not know what kind of products
they are (they can be CDs, Books, software, etc.). This information depends on the
E-commerce application domain and must be instantiated by customers. To do this, a
tool has been developed. It is introduced in the next section.

244 P. Valderas and V. Pelechano

Fig. 1. Requirements Ontology for E-commerce applications

2.2 A Web Application Requirements Elicitation Tool

In this section, we introduce a requirements elicitation tool that supports customers in
the description of their needs by means of requirements ontologies. To do this, the
tool perform three main steps:

First, the tool allows customers to describe the Web application that they need by
using natural language. This description is used by the tool to know the general re-
quirements of the web application and then to select the proper requirements ontol-
ogy. To do this, we use a technique based on data frames [2]. The data frame ap-
proach allows us to describe information about a concept by means of its contextual
keywords or phrases, which may indicate the presence of an instance of the concept.
We define data frame contextual information for each Web application type that is
represented by a requirements ontology. The tool uses this contextual information to
recognize the web application type and then select the proper ontology.

Next, the tool must obtain the information that cannot be systematically extracted
from a requirements ontology in order to obtain the description of the customers’
needs. This information is related to domain-dependent features such as for instance
the kinds of products that must be on sale in an E-commerce application (e.g. CDs,
DVDs, Books, etc.) (Abstract concepts, see Figure 1). This information must be intro-
duced by customers. To do this, the tool provides them with an appropriate interface.
For instance, Figure 2 shows the HTML interface that allows customers to determine
which products must be on sale in the running example.

Finally, the information introduced by customers, together with the general fea-
tures of the application domain (defined in the requirements ontology), allow the tool
to obtain a description of the Web application that customers need. This description is
defined as a view over the selected requirements ontology where abstract concepts

 Improving Communication in Requirements Engineering Activities 245

Fig. 2. HTML interface

(e.g. Product) are replaced by their instantiations (e.g. CD) and relationships among
abstract concepts are replaced by relationships among instantiations (e.g. Product has
Property has been replaced by CD has Title). These descriptions are stored in OWL.

3 Obtaining Textual Requirements Specifications

In this section, we introduce a model-to-text transformation that allows analysts to
transform the Web application description based on ontology concepts into a textual
requirements specification. Furthermore, each textually specified requirement is com-
plemented with a list of real examples where customers can see an implementation of
it. This list of real examples facilitates customers both to understand the requirements
and to check that it is really what they need.

1 <xsl:template match=”owl:Class” name=”FindShoppingCart”>

2 <xsl:variable name=”concept” select=”@rdf:ID” />
3 <xsl:if test=”$concept=’Shopping_Cart’”>

4 Requirement Number {$num_requirements}:
5 <u>Name:</u> Shopping Cart.

6 <u>Description:</u> The E-Commerce Application must allow
users to add products to a Shopping Cart. A shopping cart
is a ‘persistent’ store for products that can be accessed
from the whole Web application. The option of ’add to
shopping cart’ is attached to each product in order to al-
low users to add it. Furthermore, other operations are as-
sociated to manage the cart such as eliminating a product,
changing quantities, making an order, etc.

7 <xsl:call-template name=”ShoppingCartRealExamples” />

8 </xsl:if>

9 </xsl:template>

Fig. 3. Example of a XSL Transformation

246 P. Valderas and V. Pelechano

To achieve this, we have implemented a set of XSL Transformations which take as
source the ontology-based description of the customer needs and then create the cor-
responding textual requirements specification. The XSL Transformations are created
in order to match with the concepts and relationships between concepts that appear in
the description of the customer’s needs. Figure 3 shows the XSL Transformation that
generates a textual requirement specification from the concept “Shopping Cart”. In
order to better understand it we must know that concepts are represented in OWL by
means of the label owl:Class and the name of each concept is defined by the
attribute rdf:ID.

The textual requirements specification that is obtained by means of the transforma-
tion in Figure 3 can be consider to be a very simple specification that is little useful
throughout the rest of development process. This is true. However, this simplicity has
been explicitly chosen in order to facilitate customers to understand them. More for-
mal requirements specifications which can be taken as reference point throughout the
development process are obtained in the next section.

4 Obtaining Task-Based Requirements Models

In this section, we introduce a model-to-model transformation that allows analysts to
transform the Web application description based on concepts of a requirements
ontology into a task-based requirements model. This model is presented in [3].

The transformation has been defined by using a graph transformation technique
[4]. Graph transformations are graph rewriting rules made of basically a Left Hand
Side (LHS) and a Right Hand Side (RHS). They are applied in the following way:
when the LHS matches into a host graph G (which in this case represents the source
model) then the LHS is replaced by the RHS.

Figure 4 shows two representative examples of transformation rules. Rule 1 trans-
forms the main concept of a type ontology (which indicates the main purpose of a
Web application type, see Section 2.1) into the root of a hierarchical task description.
Rule 2 match with the concept “Checkout Identification” which indicate the type of
identification that the E-commerce application must support (see Figure 1). According
to this concept users must identify themselves when checkout. Then, this concept is
derived into a task-based representation which indicates that users must first login and
then handle payment in order to checkout.

We have chosen a graph transformation technique because several widely validated
tools can be found. In particular, we have chosen the AGG (Attributed Graph Gram-
mar System) tool [5]. The AGG tool can be considered to be a genuine programming
environment based on graph transformations. It provides 1) a programming language
enabling the specification of graph grammars and 2) a customizable interpreter ena-
bling graph transformations. AGG was chosen because it allows the graphical expres-
sion of directed, typed and attributed graphs (for expressing specifications and rules).
It has a powerful library containing notably algorithms for graph transformation,
critical pair analysis, consistency checking and application of positive and negative
conditions.

 Improving Communication in Requirements Engineering Activities 247

Task

Name: ‘Direct Purchase’
Root: ‘yes’ 1: Concept

Name: ‘Direct Purchase’
Main: ‘yes’

: =

Task

Name: ‘Collect Products’
Root: ‘no’

Task

Name: ‘Checkout’
Root: ‘no’

subtask subtask

[]>>

LHS RHS

Rule 1

Task

Name: ‘Checkout’
Root: ‘no’

2: Concept

Name: ‘Checkout Identification’
Main: ‘no’

: =

Task

Name: ‘Login’
Root: ‘no’

Task

Name: ‘Handle Payment’
Root: ‘no’

subtask subtask

[]>>

LHS RHS

Rule 2

Fig. 4. Examples of transformation rules

5 Conclusions

In this paper we have presented a RE environment in order to improve the communi-
cation activity during the RE process.

We have introduced a technique based on Requirements Ontologies in order to
facilitate customer to describe their needs. This technique is supported by a re-
quirements elicitation tool which provides customers with an intuitive interface
which allows them to generate a structured description of their needs. This helps
analysts to understand which Web application customers need. Furthermore, two
transformations have been presented: (1) A model-to-text transformation which
transforms ontology-based descriptions of the customers’ needs into textual re-
quirements specifications. This facilitates customers to validate the requirements
specification. (2) A model-to-model transformation which transforms ontology-
based descriptions of the customers’ needs into task-based requirements models.
This provides precise requirement specifications to facilitate programmers interpret
them.

References

1. AL-Muhammed, M., Embley, D.W., Liddle, S.: Conceptual Model Based Semantic Web Services.
In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS,
vol. 3716, Springer, Heidelberg (2005)

2. Embley, D.W.: Programming with Data Frames for every Items. In: Proceedings of AFIPS Confer-
ence, Anheim, California, pp. 301–305 (1980)

3. Valderas, P., Fons, J., Pelechano, V.: Developing E-Commerce Application From Task-Based
Descriptions. In: Bauknecht, K., Pröll, B., Werthner, H. (eds.) EC-Web 2005. LNCS, vol. 3590, pp.
65–75. Springer, Heidelberg (2005)

4. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation.
World Scientific, Singapore (1997)

5. The Attributed Graph Grammar System (AGG) v1.5: http://tfs.cs.tu-berlin.de/agg/

	Introduction
	Facilitating Customers to Describe Their Needs
	Requirements Ontologies
	A Web Application Requirements Elicitation Tool

	Obtaining Textual Requirements Specifications
	Obtaining Task-Based Requirements Models
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

