Functional Web Applications

Torsten Gipp and Jiirgen Ebert

University of Koblenz-Landau
{tgi,ebert}Quni-koblenz.de

Abstract. Web applications are complex software artefacts whose cre-
ation and maintenance is not feasible without abstractions, or models.
Many special-purpose languages are used today as notations for these
models. We show that functional programming languages can be used
as modelling languages, offering substantial benefits. The precision and
expressive power of functional languages helps in developing concise
and maintainable specifications. We demonstrate our approach with the
help of a simple example web site, using Haskell as the implementation
language.

Keywords: Web Application Modelling, Specification, Functional Lan-
guages, Haskell.

1 Introduction

A web application (or web site) is an application that is delivered through the
web. Creating such a web site is a complex task. Aside from the most trivial
web sites that can be simply written down in one go, ‘real’ web sites require the
application of a sound and consistent engineering approach. The end product
must be expandable, reliable, error-free, and, of course, adhere to the given
‘specification’ perfectly. However, the trade-off between the required development
time and the aspired quality is much too often solved by sacrificing the latter.

The Web Engineering discipline suggests using models to build abstract de-
scriptions of a web site and to derive the end product from these models (e.g.,
[16]). This becomes particularly useful if the derivation can be done automati-
cally (e.g., [23]), at least to a significant degree, and if the modelling does not
impose too much overhead. Our idea is to apply modelling as well, but to do it
using a functional language.

Example. As an example application we consider a travel booking system that
offers its services over the web. The system is called the Travel Agency System
(TAS). A customer can search for trips by supplying the origin and destination
city together with the desired timeframe for a trip and the system will respond
with a list of possible alternatives. Picking one of these provides further details
about the selected trip, including the calculated prospective costs, and the cus-
tomer can choose to book this trip, which will trigger the steps necessary for the
financial transaction.

L. Baresi, P. Fraternali, and G.-J. Houben (Eds.): ICWE 2007, LNCS 4607, pp. 194209 2007.
© Springer-Verlag Berlin Heidelberg 2007

Functional Web Applications 195

Every page of such a web site must be modelled, stating its inherent composi-
tional structure and, most importantly, define which type of content, or data, it
shall display. This must be done in a precise and abstract way. Here especially,
functional languages are an almost natural choice because of their conciseness
and power. Section 4] will introduce an abstract data type for page descriptions
that is used as the backbone for the page models. We chose Haskell [25] as our
implementation language, because it is in widespread use and well supported. In
principle, however, the implementation of our approach does not depend on any
particular language.

For this paper, we assume the reader to have some knowledge of functional
programming languages. Due to space limitations, we cannot provide an exten-
sive introduction into functional programming or Haskell. The abstract concepts,
however, should be understandable nonetheless. Using Haskell, page specifica-
tions look like in this example:

tasTripDescription :: Pagelnfo
tasTripDescription = Pagelnfo "TASTripDescription” $
A params —
do tasMainTemplate
(Element "slots” []
[Element "heading” [] [Text "Trip Description’]
, Element "navigation” [] [tasNavigation params]
, Element "body” []
[(tasTripDescriptionForm []) (1)
, (tasPreferencesList params)

]

, Element "footer” [| [Text "Footer”]

]
)

This constructs a page that fills the four slots heading, navigation, body and
footer of a page template. A page template defines the common structural layout
of all pages. The composition of a page is defined by assembling smaller parts,
like the function tasTripDescriptionForm (see mark (1)) that describes a web form.
Section 4] will give the necessary background information in full detail.

Figure [Il shows the hyperlinks between the single pages that constitute the
example web site. The dashed arrows suggest the steps of the buying ‘workflow’
just described. A diagram like this is used as a depiction of the navigation struc-
ture. This structure models another one of six distinguished aspects of the web
site. Section @ the main part of this paper, will give an overview over this and
the other important aspects, and section [£3] in particular, will detail on dia-
grams that represent the navigation structure. But first, the following section
briefly lists the problems that our approach actually solves, and how this is done.
We will reference related work as we go, but a coherent look into the state of
the art is deferred until section Bl The TAS, our example web site, will be used
throughout the remainder of this text to demonstrate our ideas. A preliminary
result using the same example was described in a workshop paper [11].

196

2

T. Gipp and J. Ebert

g Legend:

roles = [Customer] > il
scope = subtree primary secondary
navigation structure

2

authentication-based
navigation

) dymamic
content
static
page
fom
m virtual
page

Customer
Home(id)

TripList TripDetails(id) BilingDetails ~ OrderConfirmation

Fig. 1. Navigation structure

Benefits

Our approach delivers the following benefits:

Declarative description in combination with models allows for executable
specifications.

We employ a functional programming language to write down specifications
of web sites, suggesting the combination of model-driven approaches with
purely functional ones. Many web sites today are not specified in any way,
or if they are, then the specifications are often not precise enough. A declara-
tive description of a web site, however, written in a functional programming
language, can serve as both: as a precise description and as an executable
specification of the end product. The functional language is the perfect ve-
hicle to produce consistent specifications.

Formalisation of the requirements as early as possible.

We suggest that the formalisation of the requirements be tried as exten-
sively as possible, which results in the specification being sufficiently close
to the requirements. This ensures the consistency of the web site and its
coherence with the specification. With functional languages, requirements
that are given in a declarative way, like “In a trip description, the date of
return must not be earlier than the date of departure.”, can be written down
directly, in this case by giving a boolean function that checks the constraint
on the two date values (see the code in section ET).

Abstractions can be introduced wherever needed, to master complezity.

The emerging complexity of a web site and its model is almost necessarily
handled by using abstractions. Functional languages provide very powerful
ways to introduce new abstractions, which makes them an almost ideal ve-
hicle for these kinds of specifications. Higher-order functions can be used
to implement new control structures, for example, and combinator libraries
(e.g., as in [13]) or domain-specific embedded languages (DSEL) like Peter
Thiemann’s WASH/CGI [29] help tremendously by hiding implementation
details.

Functional Web Applications 197

— The separation of concerns leads to the identification of sixz core aspects.
We provide a backbone structure for the modelling of web sites by the sepa-
ration of content, navigation, pages, queries and updates, presentation, and
dynamics.

— Support for testing and simulating.

Functional programs also lend themselves very well to testing. Thus, it is
possible to construct test cases directly from the requirements documents.
The simulation of a web site visitor is possible as well, as a visit of the
web site is nothing more than a sequence of function calls with concrete
parameters.

3 Functional Web Sites

The core idea of our approach is the consistent use of a functional programming
language to specify a web site. Following a strict separation of concerns, we
partition the task of describing a web site into a set of separate aspects that can
be tackled individually. The identified aspects are

— the content,

— the navigation structure (site map),
— the pages (navigation objects),
queries and updates,

— the presentation, and

— the dynamics.

Section @ will provide details for each of them. Each aspect is captured in a
model, and the combination of these models provides the overall picture of the
entire web site. Since the concerns are tackled separately, each can be treated
according to the particular requirements for the respective aspect. The content,
for example, is modelled using a conceptual model, which gives an abstract view
on the content in form of concepts (or classes). The content itself is stored in a
graph data structure, which in turn adheres to a (type) schema that is defined
by the conceptual model. The navigation structure is captured using a visual
language. The pages are modelled using functions that yield the actual page
upon evaluation, using concrete parameter values. The dynamics, the queries
and updates as well as the presentation are also specified in a functional way.

Thus, the functional language is used extensively. Any specification can benefit
from this fact, because the full power of the functional programming language can
be used at any level. The introduction of new abstractions is possible at any time,
which is very important to master the complexity. As an example, regard the
need for some sort of ‘templating’” when describing the single pages of a web site,
as many pages will share common parts like design elements or a visualisation of
the site map. We simply use a function that fills given fragments of a web page
into a page template that contains everything that does not change from page
to page. Additionally, the template itself is not static. It can contain conditional
expressions that allow variations of the template to be handled smoothly. All this

198 T. Gipp and J. Ebert

calls P

Function

calls

Dynamics calls Page refersTo Navigation
Function Function Model

lcalls
Legend:

Query &
Il
Updat

Function

function class conceptual
(model) model

refersTo

calls refersTo

—_— —
refersTo Content function model
Model call dependency

Fig. 2. Model overview

can be embedded into the functional language without syntactic clutter, due to
the extensibility of the language via higher-order functions or the definition of
new operators. Thus, new abstractions can be defined in the specification itself,
without the need for any other language.

4 Functional Specifications

According to the list of aspects given in the previous section, we will now pro-
vide the respective details. Starting with a bird’s eye view (section [£J]), the
subsequent sections introduce one aspect each.

4.1 Overview

Figure 2 shows the dependencies between the aspects. The aspects are depicted
by rectangles. Rounded rectangles represent a conceptual model, normal rec-
tangles represent a set of functions. The content model (at the bottom of the
diagram) is a conceptual abstraction of the application domain. Relevant terms,
or concepts, like, in our example, customer or trip, are identified and related
to one another. We can therefore abstract from the actual content, and we can
operate on the ‘class’ level rather than on the ‘instance’ level, to use object-
oriented terminology. This level of abstraction is exploited in the definition of
query and update functions. These functions specify the content access by us-
ing the terminology provided by the content model. The same abstraction step
is done for the dynamics functions. They capture the application behaviour or
‘business logic’. Both kinds of functions are used in the definition of the single
web pages through the page functions. They are at the heart of our approach.
There is one function for each (kind of) page. The overall navigation structure of
the web site is modelled separately in the navigation model, and the conversion
of the abstract page descriptions into a concrete output language is specified by
the presentation functions.
We will now give the details, starting with the content aspect.

Functional Web Applications 199

Customer
| V¥ provides
. «abstract»
Trip 0.1 D T”.p. Transportation
emanatesFrom» escription MethodPref
1 ..'?{ordered} <destinationCity
Trip <originCity Route Method
Course Pref Pref
0.1] 0.1

from» Cit «to
1 Yo
1 1

Transportation
1 Route 1 Method

using» | 1

Fig. 3. Content model for the TAS example (attributes omitted)

4.2 Content

As far as the content is concerned, we consider the model (schema) level and the
instance level.

Content Model. On the content model level, we capture the application do-
main by defining a conceptualisation, that is, the model identifies concepts and
their relationships. The creation of the content model is an important step to-
wards the understanding and mental structuring of the application domain. It
captures what the application is all about. For the travel agency system, this
includes trips, cities, customers and their preferences, flight schedules, etc.

It is almost consensus to use UML class diagrams as a notation for those
conceptual models. This way, concepts (represented by classes), their attributes,
and their relationships to other concepts can be visualised conveniently. The
class diagram serves as a means of communication between the project partici-
pants. The model usually evolves over time, until, after a number of iterations,
a sufficiently stable version has emerged.

The content model defines a terminology for talking about the application
domain. The terms are referenced in other models, thus serving as a building
block for the overall set of models. We will define query functions, for example,
that access the content by using the abstractions defined in the content model.

Content Instance. The actual content itself is an instance of the content
model. This means that the type of an individual content object corresponds to
a class, and that its relationships adhere to the structure given by the content
model. The content itself must be stored, retrieved, and changed. To this end,
we employ graphs.

200 T. Gipp and J. Ebert

Graphs are a powerful mathematical structure that make an almost ideal
data repository. We rely on typed and attributed graphs to store the web site’s
content. Nodes and edges of the graph have a type, and each type directly corre-
sponds to a class or a relationship, respectively, in the content model. Instance at-
tributes are attached to nodes. Node and edge types constitute a graph’s schema,
and the schema defines a class of graphs. The graph repository is implemented
with the Functional Graph Library (FGL, [5]).

The job of retrieving and changing graph data is performed by the query and
update functions, which will be dealt with in section A3l

4.3 Navigation Structure

Figure [Il shows the navigation structure, or site map, of our example web site.
It is a visual representation of the hyperlink structure that connects all pages
constituting the ‘web’. In our opinion, a visual language is suited very well for
showing, to a human, what the structure of the web site actually looks like.
Especially during the design phase, moving icons around is easier and more
‘intuitive’ than writing formulas. This language has been successfully applied in
some of our web engineering projects (e.g., [7]). The remainder of this section
briefly introduces the language; cf. [I0] for further details.

The syntax of the navigation structure diagrams is quite simple. The primary
navigation structure, given by the solid arrows, defines a tree of page nodes. This
tree assigns a unique path to every page. It is also easy to communicate to a web
site visitor, who can create a mental image of the site map fairly quickly, which
in turn is a very important ergonomic feature.

In the page functions, which will be explained shortly, the primary navigation
structure is accessible through a simple, regular term structure.

The secondary navigation structure is visualised by dashed arrows. They rep-
resent arbitrary links between pages, without heeding the tree structure.

Types of Pages. There are four different types of pages, visually differentiated
by four different page icons (cf. the legend in fig. [[l). A lightning bolt marks
a page as being dynamic, i.e., as a page whose relevant content is calculated
(and thus potentially varies) at the time of access. In contrast, the content of
static pages does not change at run-time. The classification of a page as being
either static or dynamic is not necessarily unambiguous, because the definition
of ‘relevant content’ is subject to interpretation. The distinction merely serves
communicative purposes during modelling. There are no consequences on the
implementation level. In our example, the home page is dynamic, and the ‘about
us’ page is declared static.

Pages providing a form to let a web site visitor enter some data can be distin-
guished by a corresponding form icon. In our example, the user can enter and
submit a trip description on the TripDescription page.

A small piece of script code on a stacked page icon signifies a virtual page
that is computed by a script. In contrast to the ‘lightning bolt’ pages with
dynamic content, the script-generated pages are entirely calculated by a set of

Functional Web Applications 201

parameters, where one (the first) parameter defines the name of the page. This
is inspired by the skolem functions from Strudel [6]. As an example, consider the
CustomerHome(id) page, which represents a set of personalised pages, one page
for each customer. The virtual pages do not exist under a pre-defined identifier,
like the pages with dynamic content do. They are rather created on-the-fly, every
time the page is called with a concrete identifier. We will use the term instance
to talk about concrete virtual pages. There is one instance for each possible
identifier.

These four basic web page flavours can also be mixed on one page. A virtual,
a static, or a dynamic page can contain a form (or more than one). Since non-
dynamic virtual pages do not make much sense — because this would mean
that every instance looked the same and did not make use of the identifying
parameter — the lightning bolt adornment will not be applied to virtual page
icons, and virtual pages will count as always being dynamic.

Technically, pages of all four page types are defined by a page function of the
same signature. Therefore, the page type chosen in the site map diagram is of
no relevance implementation-wise, it is only important conceptually. Section [£.4]
will deal with the page functions.

Additional Information about Links. The navigation structure diagram
may also contain information on authorisation-dependent navigation. In the ex-
ample, the primary link to CustomerHome(id) is annotated with a role-icon. It
states that a web site visitor must possess the role Customer in order to access
the page. The scope=subtree declaration expands this constraint to the whole
subtree rooted at this page. The alternative value thisPage for scope would pro-
hibit this expansion. The actual mechanism for checking the authorisation of a
given user, a given action and a given object is intentionally left open in our
approach. We can encompass any matrix-based scheme that maps permissions
to roles.

The diagram can also capture the multiplicity of links to or from virtual pages.
This is useful because virtual pages are like classes in that they represent a set
of instances. Thus, we adopted a subset of the UML’s multiplicity symbols to
define how many instances may be connected. In figure[lIl each CustomerHome(id)
instance is connected to exactly one instance of EditPref(id).

The actual checking of the constraints and of the authorisation is contained
in the associated page functions in form of expressions. They also contain the
definition of the links for the secondary navigation structure. Thus, we can em-
ploy the full power of the underlying functional language to provide conditional
links, whose behaviour or mere existence depends on the system state and other
context information.

4.4 Pages

Basic Definitions. Each page that is part of the web site is specified by a
page function. A first example for a page function was given in the introduction.

202 T. Gipp and J. Ebert

Page functions return a value of the abstract type APD, short for abstract page
description. This type allows for defining a page on an abstract level in terms of
hierarchically nested, labelled, and attributed elements (comparable to XML).
Here is the definition of this data type (in Haskell):

data APD
= Text String
| Element Name Attrs APDs
| Link Name Attrs APDs Pagelnfo Params
| Form Name Attrs APDs Pagelnfo Params
| Field Name Attrs FieldType APDs String
| Empty

There are six constructors for the APD type. An APD term can be a simple
text node (Text); an element (Element) with a name, a list of attributes, and a list
of child terms; a link or a form (Link, Form) with a name, a list of attributes, a list
of child terms, information about the destination page, and a list of parameters
that should be passed to this page; a field in a form (Field) with a name, a list
of attributes, the type, a list of child terms, and a default field content; or it can
simply be empty (Empty).

Some auxiliary declarations are used: The name of an element (Name) is
a string. Attributes and parameters (Attrs, Params) are modelled as lists of
key /value-pairs. Elements as well as forms and fields can contain child nodes, so
they use APDs as a container for a list of arbitrary APD terms. A Pagelnfo term
contains information about a single page, comprising an identifier, and a page
function, which is the function that returns the APD for that page. Since func-
tions are first-class objects in a functional language, the term is able to contain
the proper function itself.

A page function basically maps a set of parameters to an APD. The current
system state, including the session information, is passed along as an implicit
parameter with the help of the Haskell StateT monad transformer (cf. [10]).

Links and form destinations are defined in terms of Pagelnfos. This implies
that links are represented by terms in an APD structure, attached with a refer-
ence to the actual page function they link to. This guarantees link consistency.

Ezample. The following code for the function tasTripDescriptionForm represents
a form for entering a trip description. The form itself is not a complete page,
but rather just a building block. It is used inside another page function, tas-
TripDescription, that was already shown in the introduction. Figure [shows a
rendered version of the form after a transformation to HTML (cf. section for
information about how this transformation is specified).

tasTripDescriptionForm :: StatefulPageFunc
tasTripDescriptionForm = do
(graph, session) <« get
return $
Form "TripDescriptionForm” [] (1)
[Text "From:”

Functional Web Applications 203

From: (Newvork [%)
Departure:

Return:

Maximum Price:

Maximum Duration:

Sorting Order: | sortByPrice B:

Submit |

Fig. 4. Example page fragment

, Field "originCity" [| (OptionListField $ getOriginCities graph) [| ™ (2)
, Text "To:"
, Field "destCity” [(OptionListField $ getDestCities graph) [| ™
, Text "Departure:”
, Field "dateOfDeparture” [| SimpleField [] ™
—— some similar fields omitted
, Text "Sorting Order:"”
, Field "sortingPreference” []
(OptionListField $ map show possibleTripSortingPreferences)]
, Field "submit” [] SubmitField [] ™
]

tasTripList []

The form is defined using the Form constructor (see mark (1)). The form’s
content is a list of Text and Field elements, which stand for a simple text la-
bel or a corresponding input field, respectively. The example code unveils two
demonstrations of re-use:

1. The possibility for a page function to also define a fragment of a page, rather
than a complete one, seems trivial and minor. In fact, however, this implies
that pages can be assembled from smaller building blocks, which is a very
important feature for encouraging re-use of page fragments.

2. The definition of helper functions like getOriginCities (see mark (2)) helps
cleaning up the specification. Here, this function encapsulates the access of
instance data that is stored in a graph.

Next to the list of form fields we can see the link to tasTripList. This is the
Pagelnfo function that gets called when the form is actually submitted (the action
handler).

The same principle applies to ordinary links between pages defined by the
secondary navigation structure, as following a link is only a special case of sub-
mitting a form. One can regard a link as a form without any fields. Hyperlinks
are defined with the Link constructor, in the same manner as forms.

204 T. Gipp and J. Ebert

Templates. The introduction already mentioned page templates as a useful
abstraction element for pages with recurring content. We use a transformation-
based approach to implement templating: A template function transforms a given
input APD into an output APD in a filter-like manner, provided that the input
conforms to some simple constraints. It must provide a "slots” element that con-
tains a list of named slots. These slots are then merged with the template. It is
the template function’s job to define how the slots are actually rearranged, and
thus it defines the general structure of all pages that use this template.

A template function traverses the given APD term and processes the slots it
knows about. Typically, the slots’ content is copied into a new APD term that
represents the output page. Generally, arbitrary transformations on the input
are possible.

Thus, templates are an example of an abstraction that is introduced in order
to reduce complexity. This easy abstraction is possible due to the functional
language.

4.5 Queries and Updates

We rely on graphs to store the content data. This has many advantages compared
to other data structures or even to storing the data in an external database
system. Since the content model is given in terms of classes and associations, it
is possible to use almost any kind of representation for the underlying content
repository.

One strong point for graphs is the possibility to employ powerful graph query-
ing to retrieve values from it. In our implementation, we defined a simple query-
ing interface to graphs.

Consider, as an example, the following query that retrieves the list of all
available cities:

queryAllCities :: AttributedGraph — [String]
queryAllCities g =
nodesToValues

g
(A Ibl — getValue Ibl "id")

(query g (nodes g) [constrainByType "City”])

Without diving into the implementation details, you can see from the signature
that this function returns a list of strings, given a concrete Graph g. It does so
by first selecting all nodes that are of type City, and then mapping a function
that extracts the value of the id attribute over this list of nodes, resulting in the
desired list of city names.

The function queryAllCities is used in the definition of getOriginCities and
getDestCities.

Updating the graph is done analogously, by defining a function that returns
the changed graph as its result. The calling function then puts this new graph
into the session context, replacing the old one.

Functional Web Applications 205

4.6 Presentation

The presentation model is given by defining one or more mappings (presentation
functions) from an APD to the corresponding presentation level language. In the
case of a web application that is to be rendered by a user agent that under-
stands XHTML, a simple transformation of the regular APD into XHTML was
implemented as a Haskell function. Alternatively, the APD could be converted to
any other XML dialect first, and subsequent transformations may be done with
technologies like XSLT [3]. All conceivable possibilities are open at this point,
and the approach can be easily adapted to a great number of run-time systems.
Note that the actual transformations can be selected at run-time, even on a
page-to-page basis, or according to context information. This opens the path
to adaptive web applications, encompassing customisation, personalisation, and
multi-mediality.

Our implementation uses a straight-forward transformation of an APD into
XHTML (cf. the example in figured]). Links and form actions are coded into sim-
ple URL query strings. As a proof-of-concept, this is sufficient, but we would like
to enhance this by integrating a proper web server (see the outlook in section []).

4.7 Dynamics

The ‘business logic’ or dynamics of a web site is captured in the requirements
documents. Use cases, for example, are employed to describe the behaviour of
the site and which interaction steps are possible.

Using the terminology defined in the content model, many statements con-
cerning the behaviour can be formalised. We suggest to do this with functional
specifications. This way, the dynamics is broken down into well-specified func-
tions that can be glued together in the page function definitions.

As a simple example, consider that, for the TAS, the requirements state that
a trip description must always be well-formed, meaning that “(a) The cities
denoted by originCity and destinationCity are not equal; and (b) dateOfReturn is
later than dateOfDeparture.” (that is, the travel agency is not happy if you order
a trip of length zero, and they don’t offer time travels either). This statement is
captured by a function:

checkWellformedness :: TripDescriptionRecord — Bool
checkWellformedness td =

(originCity td # destinationCity td) (1)
&& (
if (isJust (dateOfReturn td)) —— is the return date provided at all?
then (fromJust (dateOfReturn td) > (dateOfDeparture td)) 2)
else True
)

Line (1) tests statement (a), and line (2) lets the function return True if, and
only if, statement (b) holds as well.
The function is used in the page that shows the trip list (see line (1)):

206 T. Gipp and J. Ebert

tasTripList :: Pagelnfo
tasTripList = Pagelnfo "TASTripList” $
A params —
do (graph, session) « get
navigation < tasNavigation params
tripDescr < return $ validateTripDescription params (graph, session)
if (isJust tripDescr && checkWellformedness (fromJust tripDescr)) (1)
then do
trips < return $ prepareTrips (fromJust tripDescr) (graph, session)
—— remainder omitted

5 Related Work

Relying on models for describing and specifying web sites has quite a long tradi-
tion. Overviews and comparisons of the most prominent approaches are given e.g.
in [18], [§], and [16]. The approaches can be very coarsely classified by their ‘foun-
dations’: Some focus on object-oriented models, others rely on entity-relationship
models, and again others put documents into the center of interest. The most in-
fluential ‘schools’ are the graph-based Strudel approach [6], the TSIMMIS project
[2], the ER-based RMM [I4], Araneus [2I], HDM [9] and OOHDM [26], WebML
[1], and UWE [I7]. The integration of the access to models into a programming
language by using a domain specific language is reported in [24].

Significant effort has been put into developing and describing diverse method-
ologies for web site generation, of which none, to our knowledge, relies as much
on functional specifications as we do. We envision a synergetic potential for the
integration of our findings into existing approaches, or, vice versa, the integra-
tion of selected parts of the aforementioned approaches into ours. This vision
was the reason for our approach being as abstract and as extensible as possible.
The idea of integrating the models by making them functions, which is unique
to our approach, clearly works best when all models are specified as functions.

It is interesting to compare the various notations used in the respective ap-
proaches. Some approaches rely on proprietary notations for some of the diagram
types, especially for the hypertext models. A majority of the current approaches
employs the UML (and its extension mechanisms) for the notation of diagrams.
The main reasons stated for using UML are the availability of tools ([12], p. 2]),
the fact that the UML is well-documented ([I9} p. 2]), and the coherence gained
by using UML for a web application that is connected to other systems that
are already modelled using UML ([4, p. 64]). As of today, one can state that
using UML class diagrams for the notation of entity-relationship views simply is
standard practice.

Our approach is based on functional specifications. We aim at integrating the
advantages of this ‘way of thinking’ into existing web engineering practice. To
the best of our knowledge, only very little effort has been put into this direction.
Producing HTML and XML with a functional language in a type-safe way is,
e.g., investigated in [27], [28]. This is expanded by work directed towards the

Functional Web Applications 207

specification of XHTML-based, interactive web applications (esp. [30], [13]). A
very inspiring solution for Scheme is described in [20].

6 Summary and Conclusion

We described an approach to web site modelling by using functional languages.
It is very important to use models as a basis for the development of web sites.
We practise a separation of concerns and identify six core aspects that have to
be considered for modelling, namely the content, the navigation structure, the
pages, the queries and updates, the presentation, and the dynamics. The con-
tent model and the navigation structure are captured using ‘traditional’ object-
oriented, conceptual models and a simple, graphical language, respectively. The
other four aspects, however, are formalised using a functional language. In our
examples, we used the functional programming language Haskell to write down
these functional specifications.

The functional programming language can unleash its full power for the bene-
fit of concise, easily maintainable, and re-usable specifications. Furthermore, the
specifications are also executable, which is an advantage over the potential ‘gap’
between an abstract model, given in one language, and a manually crafted im-
plementation written in another. The inherent features of a functional language
allows for powerful and new abstractions wherever they are needed, which is
almost a necessity to master the complexities of real-world applications. Relying
on a wide-spread implementation language like Haskell facilitates the specifica-
tion even further, because a great array of data structures and function libraries
are already available.

Our future work will be directed towards the extension and streamlining of
our approach. The specifications could benefit from improving the usage of type
information for the content that is stored in the graph. Currently, we rely on
simple, string-based labels for the types, while a real type-system, possibly built
using the specification language, would be desirable. The same idea applies to
the typing of the output documents; here the integration of a domain-specific
embedded languages (DSEL) like WASH/HTML (for XHTML documents) might
be tried, possibly sacrificing some of our approach’s generality.

We would also like to integrate our current implementation with either HSP
[22] or WASH/CGI [30], two very powerful web server solutions written in
Haskell. Both approaches offer substantial benefits, as they correctly deal with
the bookkeeping of states and sessions, and also with the user jumping back-
wards in the browser history, or cloning the browser window. This integration
should also provide an opportunity to test the scalability of our approach.

The template functions we use are an example for an ad-hoc extension that
becomes possible because the functional programming language allows to do it.
The notion of templates and slots could be sharpened by using a separate data
structure for templates.

An end-user who wants to specify a complete web site needs better tool sup-
port than a text editor to write Haskell programs with. Libraries with commonly

208 T. Gipp and J. Ebert

needed auxiliary functions is not enough. A wvisual language for specifying the
pages, for example, could be used by a graphical tool to generate the functional
specifications. The visual language might be less powerful than the functional
one, but it might suffice for the majority of the cases. An interesting compromise
between user-friendliness and expressive power is sketched in [I5], proposing a
more user-friendly way of working with functions in a spread-sheet software.
We would also like to investigate the integration of existing graphical modelling
languages, so to avoid inventing yet another new visual language.

References

1. Ceri, S.: Web Modeling Language (WebML): a modeling language for designing
Web sites. Computer Networks (Amsterdam, Netherlands: 1999), 33(1-6), pp. 137—
157 (2000)

2. Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y.,
Ullman, J.D., Widom, J.: The TSIMMIS project: Integration of heterogeneous
information sources. In: 16th Meeting of the Information Processing Society of
Japan, pp. 7-18, Tokyo, Japan (1994)

3. Clark, J.: XSL Transformations (XSLT') Version 1.0. W3C Recommendation (1999)
http://www.w3.org/TR/xslt

4. Conallen, J.: Modeling Web application architectures with UML. Communications
of the ACM 42(10), 63-70 (1999)

5. Erwig, M.: Inductive graphs and functional graph algorithms. Journal of Functional
Programming 11(5), 467-492 (2001)

6. Fernandez, M., Florescu, D., Levy, A.Y., Suciu, D.: Declarative specification of
Web sites with Strudel. VLDB Journal 9(1), 38-55 (2000)

7. Fleer, J.: Entwurf und Implementierung eines erweiterbaren Web-Portals. Studi-
enarbeit, University of Koblenz-Landau, Koblenz (2005)

8. Fraternali, P.: Tools and approaches for developing data-intensive Web applica-
tions: a survey. ACM Computing Surveys 31(3), 227-263 (1999)

9. Garzotto, F., Paolini, P., Schwabe, D.: HDM — a model-based approach to hypertext
application design. ACM Transactions on Information Systems 11(1), 1-26 (1993)

10. Gipp, T.: Functional Web Site Specification. Logos Verlag Berlin, Berlin (2006)

11. Gipp, T., Ebert, J.: Web engineering does profit from a functional approach. In:
Koch, N., Vallecillo, A., Rossi, G. (eds.) Workshop on Model-driven Web Engi-
neering (MDWE 2005). Proceedings, pp. 40-49. University of Wollongong (July
2005)

12. Gorshkova, E., Novikov, B.: Exploiting UML extensibility in the design of web
information systems. In: Proc. Fifth International Baltic Conference on Databases
and Information Systems, pp. 49-64, Tallinn, Estonia (June 2002)

13. Hanus, M.: Type-oriented construction of web user interfaces. In: PPDP’06. Proc.
of the 8th International ACM SIGPLAN Conference on Principle and Practice of
Declarative Programming, pp. 27-38. ACM Press, NewYork (2006)

14. Isakowitz, T., Stohr, E.A., Balasubramanian, P.. RMM: A methodology for struc-
tured hypermedia design. Communications of the ACM 38(8), 34-44 (1995)

15. Jomes, S.P., Blackwell, A., Burnett, M.: A user-centred approach to functions in
Excel. SIGPLAN Not. 38(9), 165-176 (2003)

16. Kappel, G., Proll, B., Reich, S., Retschitzegger, W(eds.): Web Engineering: Sys-
tematische Entwicklung von Web-Anwendungen. dpunkt.verlag, Heidelberg (2004)

http://www.w3.org/TR/xslt

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Functional Web Applications 209

Knapp, A., Koch, N., Zhang, G., Hassler, H.-M.: Modeling business processes in
web applications with ArgoUWE. In: Baar, T., Strohmeier, A., Moreira, A., Mellor,
S.J. (eds.) UML 2004 - The Unified Modeling Language. Model Languages and
Applications. LNCS, vol. 3273, pp. 69-83. Springer, Heidelberg (2004)

Koch, N.: A comparative study of methods for hypermedia development. Technical
Report 9905, Ludwig Maximilians-Universitét Miinchen (November 1999)

Koch, N.; Kraus, A., Hennicker, R.: The authoring process of the UML-based
Web engineering approach (june 2001) (on-line) http://www.dsic.upv.es/ west/
iwwostOl/files/contributions/NoraKoch/Uwe .pdf

Krishnamurthi, S., Hopkins, P.W., McCarthy, J., Graunke, P.T., Pettyjohn, G.,
Felleisen, M.: Implementation and use of the plt scheme web server. Higher-Order
and Symbolic Computation (2007)

Mecca, G., Merialdo, P., Atzeni, P.: Araneus in the era of XML. IEEE Data Engi-
neering Bulletin 22(3), 19-26 (1999)

Meijer, E., van Velzen, D.: Haskell server pages - functional programming and the
battle for the middle tier. Electronic Notes in Theoretical Computer Science, 41(1)
(2001)

Melia, S., Kraus, A., Koch, N.: Mda transformations applied to web application
development. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp.
465-471. Springer, Heidelberg (2005)

Nunes, D.A., Schwabe, D.: Rapid prototyping of web applications combining do-
main specific languages and model driven design. In: ICWE ’06. Proceedings of
the 6th international conference on Web engineering, New York, NY, USA, pp.
153-160. ACM Press, NewYork (2006)

Peterson, J., Chitil, O.: The Haskell Home Page. (December 2004)
http://www.haskell.org/

Schwabe, D., Rossi, G.: The object-oriented hypermedia design model. Communi-
cations of the ACM 38(8), 45-46 (1995)

Thiemann, P.: Modeling HTML in Haskell. In: Pontelli, E., Santos Costa, V. (eds.)
PADL 2000. LNCS, vol. 1753, p. 263. Springer, Heidelberg (2000)

Thiemann, P.: A typed representation for HTML and XML documents in Haskell.
Journal of Functional Programming 12(4 and 5), 435-468 (2002)

Thiemann, P.: An Embedded Domain-Specific Language for Type-Safe Server-Side
Web-Scripting. ACM Transactions on Internet Technology 5(1), 1-46 (2005)
Thiemann, P.. Web Authoring System Haskell (WASH) (February 2007)
http://www.informatik.uni-freiburg.de/ thiemann/haskell/WASH/

protect protect protect edef T1{T1}let enc@update
elax protect edef aer{aer}protect edef m{m}protect edef n{n}protect xdef T1/aer/m/n/9 {T1/aer/m/n/9 }T1/aer/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef aer{aett}protect xdef T1/aer/m/n/9 {T1/aer/m/n/9 }T1/aer/m/n/9 size@update enc@update http://www.dsic.upv.es/~west/iwwost01/files/contributions/NoraKoch/Uwe.pdf
protect protect protect edef T1{T1}let enc@update
elax protect edef aer{aer}protect edef m{m}protect edef n{n}protect xdef T1/aett/m/n/9 {T1/aer/m/n/9 }T1/aett/m/n/9 size@update enc@update ignorespaces
elax protect
elax protect edef aer{aett}protect xdef T1/aett/m/n/9 {T1/aer/m/n/9 }T1/aett/m/n/9 size@update enc@update http://www.dsic.upv.es/~west/iwwost01/files/contributions/NoraKoch/Uwe.pdf
http://www.haskell.org/
http://www.informatik.uni-freiburg.de/~thiemann/haskell/WASH/

	Introduction
	Benefits
	Functional Web Sites
	Functional Specifications
	Overview
	Content
	Navigation Structure
	Pages
	Queries and Updates
	Presentation
	Dynamics

	Related Work
	Summary and Conclusion

