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Abstract. For the verification of reactive hybrid systems existing approaches do
not scale well w.r.t. large discrete state spaces, since their excellence mostly ap-
plies to data computations. However, especially control dominated models of in-
dustrial relevance in which computations on continuous data are comprised only
of subsidiary parts of the behavior, these large discrete state spaces are not un-
common. By exploiting typical characteristics of such models, the herein pre-
sented approach addresses step-discrete linear hybrid models with large discrete
state spaces by introducing an iterative abstraction refinement approach based
on learning reasons of spurious counterexamples in an ω-automaton. Due to the
resulting exclusion of comprehensive classes of spurious counterexamples, the
algorithm exhibits relatively few iterations to prove or disprove safety properties.
The implemented algorithm was successfully applied to parts of industrial models
and shows promising results.

Keywords: automata construction, counterexample guidance, iterative abstrac-
tion refinement, model-checking, step-discrete hybrid systems.

1 Introduction

For the analysis of discrete control systems, formal verification has already been suc-
cessfully applied in recent years on industrial-sized controllers. However, the analysis of
hybrid systems still represents a challenge, particularly with regard to controller models
modeled and validated with CASE tools such as Statemate, Scade, Ascet and Simulink,
which are typically open-loop discrete-time models combining a large discrete state
space with a nontrivial number of floating point variables.

Among other approaches, a rich set of different abstraction techniques were devel-
oped for verifying hybrid models, transforming the inherently infinite state system into
a finite-state model. The more sophisticated ones are usually based on iterative refine-
ment techniques eliminating spurious counterexamples by refining the abstracted model
for subsequent iterations, and by thus making the observed counterexample impossible
to occur again in future runs. A prominent representative is, e.g., [CFH+03] where path
fragments in the discrete state space are excluded. Other techniques limit the continuous
dynamics to simple abstractions based on rectangular inclusions or polyhedrons such
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Table 1. Open-loop industrial versus closed-loop academic models

Industrial models discrete
states

continuous variables
total/input/state

regulation
laws

Window lifting system (Ascet,BMW) 226 27/2/5 ∼ 60
Flight controller (Scade,Verilog) 251 423/7/25 ∼ 80
Desante, casts abstracted (Scade,Hispano-Suiza) 21055 358/14/0 8

Academic models
Cruise Control System [SFHK04] 24 6/0/6 ∼ 24
Distributed Robot Control [AHH96] 29 12/0/12 < 1000
Mutual Exclusion example [ADI02] 26 3/0/3 ∼ 16

as in HYTECH [HH94], PHAVER [Fre05], Checkmate [SK00] or d/dt [ADM02]. Their
typical target models are hybrid systems where the continuous computations dominate
while the discrete part of the system is only in charge of distinguishing between differ-
ent modes such that the system can react by, e.g., applying different continuous control
laws. Consequently, the existing approaches reflect these characteristics by focusing on
the continuous items only, not considering the discrete fragment as a problem.

However, as Table 1 shows, industrial hybrid models might comprise considerable
discrete fragments as well. A huge number of discrete states is to be seen alongside of
only few different applied regulation laws. This effect is inevitably connected to the us-
age of discrete timers, validation- and error counters, different clocks and especially the
parallel composition of interacting subcomponents including discrete ones such as state
machines or communication protocols, which every bigger model naturally consists of.
Such industrial models require algorithms capable of large discrete systems as well, an
aspect that has been neglected by most research activities.

The approach presented in the following deals with such models by exploiting the
relatively small number of different regulation laws. This is done by applying an iter-
ative abstraction refinement that eliminates a comprehensive class of counterexamples
represented by the spurious one by generalizing regulation law violations, leading to a
considerable amount of refinement in each step and keeping the overall number of it-
erations needed to confirm or reject a safety property quite small. Since many different
traces are spurious for equal reasons being the same or similar continuous computation
sequences only starting in different discrete states, this is possible by excluding these
continuous computation sequences in general, not only single discrete path fragments.
The abstraction technique is conservative, meaning that no property gets a wrong affir-
mative result. The procedure is a semi-decision one, i.e. it might fail to prove a property
in a bounded number of iteration steps, whereas bounded counterexamples can always
be found.

As shown schematically in Figure 1, the procedure starts with a simple abstraction,
a discrete automaton A0 having the same structure as the hybrid automaton H. In each
iteration, the spurious counterexample is analyzed, and minimal infeasible subsets (con-
flicts) of the computation on continuous items being implied by the counterexamples
projection on the concrete hybrid model are determined. These subsets are sequences
of applied regulation laws consisting of conjunctions of formulas guarding and de-
scribing the continuous state space transformations of transitions. By incrementally
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Fig. 1. Schematic overview on iterative refinement process

constructing a simple structured ω-automaton AC with no fairness constraints that al-
lows all runs except the ones containing any of the infeasible subsets detected so far,
we get an automaton that prohibits all classes of known spurious counterexamples.
With the parallel composition of ACi+1 being constructed based on the known conflicts
in the ith step and A0 being the starting point of the iteration, we get the automaton
Ai+1 = ACi+1 × A0 to be checked in the next iteration. Thus, we directly refine only ACi+1

and create the parallel composition Ai+1 in each step, refining the overall model Ai+1

indirectly.
The presented technique called ω-CEGAR (Counter-example guided abstraction re-

finement) was developed and advanced in the industrial context of the SafeAir project
[GGB+03], which motivated the specialization to the practically important step-discrete
hybrid automata, i.e. classical automata controlling continuous state variables without
time-continuous evolution, thus following the synchrony hypothesis. Such automata
are modeled by industrially applied CASE-tools such as SCADE, STATEMATE, ASCET,
SILDEX, etc., and the herein presented abstraction refinement approach has already
been extended to these as well. The abstraction approach shows promising results in
parts of industrial case studies.

The paper is organized as follows: In Section 2 some mathematical definitions are
introduced. Section 3 describes in detail the basic approach of the abstraction refinement
based on ω-automata construction, followed by Section 4 presenting an enhancement
of the approach. After presenting experimental results and discussing related work in
Section 5 the paper is concluded with Section 6.

2 Preliminaries

2.1 Step-Discrete Hybrid Automata

Models developed with the previously mentioned CASE tools follow the synchrony
hypothesis and assume that all computations are instantaneous. Therefore we consider
step-discrete hybrid systems in the following. The definitions in this section originate
from [CFH+03] and were adapted to step-discrete systems accordingly.

Definition 1 (Step-discrete Hybrid Automaton). A step-discrete hybrid automaton is
a tuple H = (Z, z0, X, X0, T, g, j) where
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– Z is a finite set of locations.
– z0 ∈ Z is an initial location.
– X ⊆ Rn is the continuous state space.
– X0 ⊆ X is the set of initial continuous states. The set of initial hybrid states of H is

thus given by the set of states {z0} × X0.
– T ⊆ Z × Z is the set of discrete transitions between locations1.
– g : T → 2X assigns a guard set g((z1, z2)) ⊆ X to (z1, z2) ∈ T.
– j : T → (X → 2X) assigns to each pair (z1, z2) ∈ T a jump function that assigns to

each x ∈ g((z1, z2)) a jump set j((z1, z2))(x) ⊆ X.

We denote the set of all guard sets with G = {g(t)|t ∈ T } and the set of all jump set
functions with J = { j(t)|t ∈ T }. Note that both G and J are finite.

2.2 Semantics

The corresponding semantics is defined with the notion of transition systems:

Definition 2 (Transition System). A transition system is a triple TS = (S , S 0, E) with
a (possibly infinite) state set S , an initial set S 0 and a set of transitions E ⊆ S × S . We
denote the set of all transition systems as T.

Definition 3 (Path). A path π of a transition system TS = (S , S 0, E) is a (possibly
finite) sequence (s0, s1, s2, ...) with s0 ∈ S 0, each si ∈ S and each pair of successive

states (si, si+1) ∈ E. We denote the set of all paths of a transition system TS with
−→
TS :=

⋃
m∈N{(s0, s1, s2, ..., sm)|s0 ∈ S 0, si ∈ S , (si, si+1) ∈ E}.

During the iterative refinement itself only finite paths can occur as false negatives, since
we restrict ourselves to safety properties. Thus infinite paths do not have to be consid-
ered in this paper.

Definition 4 (Semantics). The translational semantics of a step-discrete hybrid au-
tomaton H is a transition system TSH = (S , S 0, E) with:

– S = Z × X being set of all hybrid states (z, x) of H,
– S 0 = {z0} × X0 being the set of initial hybrid states and
– E = (Z × X) × (Z × X) being the set of transitions with ((z1, x1), (z2, x2)) ∈ E, iff
∃(z1, z2) ∈ T : x1 ∈ g((z1, z2)) ∧ x2 ∈ j((z1, z2))(x1).

2.3 Safety Properties

The presented procedure aims at the verification of safety properties, i.e. computes the
reachability of a subset of states that are not considered safe. Let S U ⊆ S denote the
unsafe states within a transition system TS = (S , S 0, E). Then the model-checker has to
compute whether

1 For simplicity reasons, only one transition between two states is allowed. By doubling states,
multiple transitions can easily be projected on such a restricted model.
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– the system is safe w.r.t. S U (TS |= AG¬S U ), formally �π ∈ −→TS : π = (s0, . . . , sm),
s0 ∈ S 0, si ∈ S , sm ∈ S U or

– the system is unsafe w.r.t. S U (TS �|= AG¬S U ), formally ∃π ∈ −→TS : π = (s0, . . . , sm),
s0 ∈ S 0, si ∈ S , sm ∈ S U .

If the model-checker is able to find an answer, it is either a path π showing a simulation
run leading to an unsafe state s ∈ S U , or the confirmation of TS to be safe w.r.t. the
unsafe states S U .

2.4 Abstraction

We use abstraction to get a purely discrete model to be checked by a finite state model-
checker. In general an abstraction of a transition system TS is a transition system A that
allows at least as much behavior as TS :

Definition 5 (Abstraction). A transition system A = (Ŝ , Ŝ 0, Ê) is an abstraction of a
system TS = (S , S 0, E), denoted A 	 TS , iff there exists a relation α ⊆ S × Ŝ such that:

– Ŝ 0 = {ŝ0|∃s0 ∈ S 0 : (s0, ŝ0) ∈ α} and
– Ê = {(ŝ1, ŝ2)|∃s1, s2 ∈ S : (s1, s2) ∈ E ∧ {(s1, ŝ1), (s2, ŝ2)} ⊆ α}

Lemma 1. For a transition system TS and its abstraction A, formally A 	 TS , the
following condition always holds, if ∀s0 ∈ s0 : ∃ŝ0 ∈ Ŝ 0 : α(s0, ŝ0):

∀π = (s0, s1, . . . , sn) : π ∈ −→TS → ∃π̂ = (ŝ0, ŝ1, . . . , ŝn) ∈ −→A ,∀0≤i≤n(si, ŝi) ∈ α
This entails A |= AG¬Ŝ U =⇒ TS |= AG¬S U , Ŝ U = {ŝ ∈ Ŝ |∃s ∈ S U : (s, ŝ) ∈ α}.
The previous lemma directly follows from the property of α. However, we cannot con-
clude A �|= AG¬Ŝ U =⇒ TS �|= AG¬S U .

3 The ω-Automaton Based Iterative Abstraction Approach

3.1 Path Projection

During the analysis phase we need to retrieve the guard sets and jump set functions that
are to be applied to the continuous state space if a path found in the abstract transition
system is to be concretized. We achieve this by ensuring that any state ŝ ∈ Ŝ of our
abstract transition system A can be projected to a discrete location z ∈ Z of H by a
function α̃−1 : Ŝ → Z which allows to reconstruct the transitions along with their asso-
ciated guard- and jump set functions such that we can project paths of A to sequences
of guard-/jump set function pairs.

Definition 6 (Guard-/Jump-set Sequence). A guard-/jump-set sequence (abbrev. GJ-
sequence) is defined by ((γ0, ζ0), (γ1, ζ1), . . . , (γn, ζn)), γi ∈ G, ζi ∈ J. We denote the set
of all finite guard-/jump-set sequences with C =

⋃
n∈N(G×J)n.
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Definition 7 (Projecting Paths to GJ-sequences). From a path π̂ = (ŝ0, ..., ŝn) of A =
(Ŝ , ŝ0, T̂ ) derived from TSH by an abstraction relation α we compute the underlying

GJ-sequence c ∈ C with θ :
−→
A→C:

c = θ(π̂) = ((γ1, ζ1), ..., (γn, ζn)) with
γi = g(ti), ζi = j(ti), ti = α̃−1((ŝi, ŝi+1)) := (α̃−1(ŝi), α̃−1(ŝi+1))

In the following we refine the iterative abstraction process in Figure 1.

3.2 Initial Abstraction

Definition 8 (Initial Abstraction α0). The initial abstraction A0 = (Ẑ, ẑ0, Ê) of TSH of
H with Ẑ � Z, ẑ0 � z0 and Ê � T is defined by a function α0 : S → Ẑ such that for any
state zk ∈ Z there exists a state ẑk ∈ Ẑ with

α0((zk, x)) = ẑk

The structure of transition system A0 is isomorphic to the structure of H w.r.t. discrete
locations and transitions while any conditions or operations on the continuous state
space are omitted. Trivially by definition of A0, A0 	 TSH.

Now A0 can be analyzed by any standard model checker such as the vis model-
checker [RGA+96] in our case, to check if a given safety property as defined in Section
2.3 is fulfilled. If no bad state in Ŝ U is reachable we can conclude that also in TSH no
bad state in S U is reachable, according to Lemma 1. Otherwise if we get a path π̂, we
proceed with the following analysis phase.

3.3 Analyzing Counterexamples

Given a path π̂ we need to analyze whether it is a valid or a spurious counterexample
and in the latter case we need to refine our transition system.

For this analysis, we first convert π̂ = (ẑ0, ẑ1, . . . , ẑn) into a guard-/jump-set sequence
c = θ(π̂) = ((γ1, ζ1), ..., (γn, ζn)), which describes the step-wise transformations on the
initial continuous state space X0. Following the semantical definition of TSH in Defi-
nition 4, the alternating application of an intersection with guard set γi and a transfor-
mation by jump set ζi on the state space Xi in the ith step leads to a sequence Xseq =

(X0, X1, . . . , Xn) ∈ 2Xn+1
of continuous state spaces with Xi = {x′|∃x ∈ (Xi−1 ∩ γi) ∧ x′ ∈

ζi(x)}. If Xn � ∅ then ∃(x0, x1, . . . , xn), xi ∈ Xi and consequently there exists also a com-

plying trace π ∈ −−→TSH with π = ((α̃−1(ẑ0), x0), (α̃−1(ẑ1), x1), . . . , (α̃−1(ẑn), xn)) represent-
ing a valid counterexample. For subsequent reuse we define the functionL :C×2X→2X

to compute Xn for a GJ-sequence c of length n and an initial continuous state space X̃
according to the previous explanation.

In practice we use the solver lp solve [BEN04] to implementL′ :C×2X→B that com-
putes whether ∃(x0, x1, . . . , xn) ∈ Xn+1, x0 ∈ X0, x1 ∈ X1, . . . , xn ∈ Xn, (X0, X1, . . . , Xn) =
Xseq and the function L̃′ : C×2X → B×Xn+1 to include the discovered solution vector
in the results as well. This is the point where we restrict ourselves to linear Hybrid
Systems. However instead we could use e.g. flow-pipe approximation approaches to
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Algorithm 1. r :C→2C×2C . Computing reduced conflict sets Cini and Cinv from a conflict
c⊥ = ((γ0, ζ0), . . . , (γn, ζn)).

(i, k,Cini,Cinv) := (0, 0, ∅, ∅)
while Cinv ∪Cini = ∅ do

while i + k ≤ n do
if i = 0 ∧ L′(((γ0, ζ0), . . . , (γi+k, ζi+k)), X0) = f alse then

Cini := Cini ∪ {((γ0, ζ0), . . . , (γi+k, ζi+k))}
if i > 0 ∧ L′(((γ0, ζ0), . . . , (γi+k, ζi+k)), X) = f alse then

Cinv := Cinv ∪ {((γi, ζi), . . . , (γi+k, ζi+k))}
i := i + 1

end
if Cinv ∪Cini = ∅ then k := k + 1, i := 0

end
return (Cini,Cinv) % rini :C→2C returns Cini, rinv :C→2C returns Cinv

address non-linear models as well, without any other impact on the herein presented
approach.

If π̂was a spurious counterexample indicated byL(θ(π̂), X0) = ∅, we extract conflicts
from it as a basis for refining A through AC as shown in Figure 1.

Definition 9 (Conflict). A conflict c⊥ is a GJ-sequence with L(c⊥, X̃) = ∅, X̃ ⊆ X. If
X̃ = X the conflict is termed invariant, if X̃ = X0 the conflict is termed initial.

To get more comprehensive classes of conflicts, the shortest guard-/jump-set sequences
still being initial or invariant conflicts are isolated by a reduction function r :C→2C×2C

defined by Algorithm 1, resulting in a pair of initial and invariant conflict sets.

3.4 Consideration of Refinement Strategy

As mentioned in the introduction, we construct an automaton AC to be combined with
A0 in order to rule out comprehensive classes of all previously detected initial and in-
variant conflicts, C⊥ini and C⊥inv, with

AC |= ¬
⎛
⎜⎜⎜⎜⎜⎜⎝

∨

ci∈C⊥ini
λ(ci)

⎞
⎟⎟⎟⎟⎟⎟⎠ ∧ ¬F

⎛
⎜⎜⎜⎜⎜⎜⎝

∨

cv∈C⊥inv
λ(cv)

⎞
⎟⎟⎟⎟⎟⎟⎠ (1)

with λ generating the LTL-Formula λ(c) = ((γ0, ζ0) ∧ X((γ1, ζ1) ∧ X(... ∧ X(γn, ζn))))
for a conflict c = ((γ0, ζ0), (γ1, ζ1), ..., (γn, ζn)), using (γi, ζi) ∈ G × J as atomic names of
characters of an alphabet Σ = G × J.

Due to the important observation that for industrial models, guard-/jump-set se-
quences associated with a path π̂ and even more so smallest parts of them are replicated
multiple times on other paths as well, this approach is reasonable. For a hybrid system
dominated by discrete transitions, we have a huge state space with only few different
guard-/jump-set pairs constituting the regulation laws replicated all over the transition
system, formally:

{(g(t), j(t))|t ∈ T }| � |Z| � |T | (2)
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Table 1 shows the relationship between the amount of states2 and guard-/jump-set pairs
(regulation laws) for some examples. For the industrial models the number of pairs was
determined empirically by observed occurrences in simulation runs and iterative refine-
ments. This property of control dominated systems in practice is fundamental for the
presented approach in this paper and is exploited extensively by ruling out all replica-
tions of conflicting guard-/jump-set sequences in the abstract model in one sweep.

3.5 Construction of ω-Automaton

To construct an ω-automaton AC satisfying (1) we could apply existing LTL-to-Bchi
translation algorithm such as [SB00]. However, since our formulas have a special struc-
ture, we can apply a dedicated incremental algorithm generating a very small co-1-
accepting ω-automaton. As table 2 shows later, such a dedicated algorithm is much
more efficient and generates significant smaller automata.

We apply the following algorithm for constructing an ω- and a regular automaton
ACω and ACR addressing invariant and initial conflicts each and compose the final ω-
automaton AC of both of them afterwards.

The ω-automaton is a Bchi automaton ACω = (Qω, qω0 , Σ, Tω, Fω) ∈ B, with Qω
being the set of states, qω0 being the initial state, Σ = G × J consisting of all guard-
/jump set function pairs, Tω ⊆ Qω×Σ×Qω being the transition relation and Fω ⊆ Qω
being the set of accepting states. The regularACR = (QR, qR0 , Σ, TR, FR) ∈ R is a similar
tuple, applying the classical acceptance condition for final words.

During construction, the automaton will have non-deterministic auxiliary transitions
required to inherit transitions from other states tracking shorter words with matching
prefixes. To identify such transitions a partial order < on states is introduced based on a
distance-to-default-state metrics. Such information can be efficiently locally computed
and maintained for each state throughout construction. Based on such information we
define the function tgrt : Q×Σ → Q to return the most distant state q reachable by a
transition (p, δ, q) for a given δ.

Starting with the automaton ACω = ({q0}, q0, Σ, {(q0, δ, q0)|δ ∈ Σ}, {q0}) with the de-
fault state q0 accepting any infinite word, Algorithm 2 is used to incrementally add finite
words (δ0, δ1, . . . , δn) such that ACω |= ¬F(δ0 ∧ X(δ1 ∧ X(· · · ∧Xδn))).

After all sequences have been added, auxiliary transitions are removed by a function
strip : B→ B, keeping only the transitions {(p, δ, q) ∈ T |q = tgrt(p, δ)}.

Finally, the automaton is efficiently minimized by Algorithm 3. The size of this ω-
automaton is not monotonically increasing since adding conflicts might enable new
minimization possibilities leading even to reduction. An extension of the algorithm not
being described in detail due to space constraints exploits this observation by probing
potential sequences that would have such a benefit. If confirmed as conflicts, they are
added to the automaton as well, reducing its size while covering more conflicts at the
same time.

2 Since guard-/jump-set pairs are replicated over transitions and not states, statistics on transi-
tions would have been more accurate, but are not accessible for technical reasons. However
since the number of transitions always outnumbers the number of (reachable) states, the latter
is a safe lower bound.
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Algorithm 2. Addω :B×Σ∗→B. Adding (δ0, δ1, . . . , δn) to ACω = (Q, q0, Σ, T, F)

p := q0

for 0 ≤ i ≤ n do
q := tgrt(p, δi)
if p < q ∨ q � F then

p := q
else

Q := Q ∪ {q′} with q′ being a new state
Hp := {h|∃p′ ∈ Q, δ ∈ Σ : {(p′, δ, p), (p′, δ, h)} ⊆ T, p < h}
Lq′ := {l|(p, δi, l) ∈ T, l < q′}
T := T ∪⋃h∈Hp∪{p}{(h, δi, q′)} ∪⋃l∈Lq′ {(q′, δ, r)|∃(l, δ, r) ∈ T }
if i � n then F := F ∪ {q′}
p := q′

end
return (Q, q0, Σ,T,F)

Algorithm 3. Minimization of regular- and ω-automaton (Q, q0, Σ, T, F)

M � {Q\F}
foreach Mk ∈ M do

foreach qi, qj ∈ Mk, qi � qk do
if ∀p ∈ Q, δ ∈ Σ : ∃(qi, δ, p) ∈ T ⇔ ∃(qj, δ, p) ∈ T then

T � T ∪ {(p, δ, qi)|∃(p, δ, qj) ∈ T }
T � T \ ({(p, δ, qj) ∈ T } ∪ {(qj, δ, p) ∈ T })
F � F \ {qj}
Q � Q \ {qj}
M � (M \ {Mk}) ∪ {p|∃δ ∈ Σ : (p, δ, qi) ∈ T }

end
end
return (Q, {q0}, Σ,T, F)

The regular automaton for conflicts of C⊥ini is constructed with a similar algorithm
AddR : R × Σ∗ → R by starting from ACR = ({q0, fin}, q0, Σ, {(q0, δ, fin)|δ ∈ Σ}, {q0, fin}),
using T � (T\{(p, δi, fin)}) ∪ {(p, δi, q)} ∪ {(p, δ, fin)|δ ∈ Σ\{δi} ∧ �(p, δ, r) ∈ T } as
transitions computation, making the auxiliary sets Hp and Lq′ obsolete.

Cross Product. Both automata ACR and ACω are composed in parallel to a cross-product
automaton AC = (Q, q0, Σ, TC , F) with Q = QR × Qω, q0 = (qR0 , qω0), F = FR × Fω and
TC = {((qR1 , qω1), σ, (qR2 , qω2 ))|(qR1, σ, qR2) ∈ TR, (qω1 , σ, qω2 ) ∈ Tω}, which is the basis
for the final composition of A.

Consideration of Partitioning. The partitioning P = {Xq1 , . . . , Xqn } ⊆ 2X of the con-
tinuous state space X can be envisioned as n = |Q| partitions induced by the states Q of
AC . Let Cq be the set of all GJ-sequences leading to state q = (qR, qω) ∈ Q. Then each
partition Xq ∈ P is described by χ : Q→ X with
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Fig. 2. Simplified example of abstraction refinement. Given an unsafe state z2, the counterexam-
ples π̂ = (ẑ0, ẑ1, ẑ2) and π̂ = (ẑ0, ẑ1, ẑ1, ẑ2) are ruled out in Ai+1 starting from (ẑ0, q0). AC is the
conflict Bchi automaton, AC |= ¬F((a ∧ Xc) ∨ (a ∧X(b ∧Xc))), with a = ({x|0 > x}, x �→ 0), b =
({x|0 ≤ x ≤ 2}, x �→ x + 1), c = ({x|x > 2}, x �→ x).

χ(q) =

⎧
⎪⎪⎨
⎪⎪⎩

⋃
c∈Cq
L(c, X0) if qR � fin

⋃
c∈Cq
L(c, X) if qR = fin

Proof: Let HC be the isomorphic mapping of AC to a step-discrete Hybrid automaton.
Then its semantics is a transition system TS HC with states Q × X. It is obvious that any
path in TS HC leading to a state (q, x) ∈ Q × X entails a GJ-sequence c ∈ Cq. Since L
was derived from the translational semantics, by its definition Xq = L(c, X) describes
exactly the set of reachable continuous states Xq such that (q, x), x ∈ Xq.

3.6 Refinement of Ai+1

For equation (1) to be valid not only for AC j but also for A j, we compose A0 = (Ẑ, Ẑ0, Ê)
and AC j in parallel by using a cross-product-similar combination of both: ×̇ : T×B→ T
such that A = A0×̇AC = (Ŝ , Ŝ 0, T̂ ) with

– Ŝ = Ẑ × Q
– Ŝ 0 = Ẑ0 × {q0}
– T̂ = {((ẑ1, q1), (ẑ2, q2))|(ẑ1, ẑ2) ∈ Ê∧(q1, σ, q2) ∈ TC∧∃t ∈ T : t = α̃−1((ẑ1, ẑ2)∧σ =

(g(t), j(t)) ∧ q2 ∈ F}
Algorithm 4 summarizes all previously detailed steps, and Figure 2 shows a very simple
example of the abstraction refinement for one iteration.

With the previous construction approach for a state (z, x) ∈ Z × X = S of the infinite
state space of the trace transition system TSH of H and a state (ẑ, q) ∈ Ẑ × Q = Ŝ of A j

the general abstraction relation α is given by

α = {((z, x), (ẑ, q)) ∈ (Z×X)×(Ẑ×Q)|α̃−1(ẑ) = z ∧ x ∈ χ(q)}
This follows directly from the construction of A j and the partitioning χ. It is obvious
that this relation fulfills Definition 5, thus A j 	 TSH.
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Algorithm 4. ω-CEGAR process, returns true or path π = (s0, . . . , sn) ∈ −−→TSH, sn ∈ S U

ACR � ({q0, fin}, q0, Σ, {(q0, δ, fin)|δ ∈ Σ}, {q0, fin})
ACω � ({q0}, q0, Σ, {(q0, δ, q0)|δ ∈ Σ}, {q0})
A � A0

while A �|= AG¬Ŝ U do % Model-Checker run
π̂ = (ẑ0, ẑ1, . . . , ẑn), ẑn ∈ Ŝ U % Path from Model-Checker
(result, (x0, x1, . . . , xn)) := L̃′(θ(π̂), X0)
if result = f alse then % spurious counterexample

foreach c⊥ ∈ rini(θ(π̂)) do ACR � AddR(ACR , c⊥) end
foreach c⊥ ∈ rinv(θ(π̂)) do ACω � Addω(ACω , c⊥) end
A � (Minimize(strip(ACR )) × Minimize(strip(ACω ))×̇A0)

else return π � ((α̃−1(ẑ0), x0), (α̃−1(ẑ1), x1), . . . , (α̃−1(ẑn), xn)) % valid path
end
return true % TSH |= AG¬S U

H

/y=0∧x=x+1
x>0.0x≤0.0∧x>y

/y=y+1∧x=y

x>0.0∧x>y
/y=y+1∧x=x+1

/y=0∧x=0
x>0.0

x≤0.0
/y=y+1∧x=y

t1

t2

t3

t4t5

γ̃1 = {x|x > 0}
γ̃2 = {x|x ≤ 0}
γ̃3 = {x|x > y}

ζ̃x1 = (x �→0)
ζ̃x2 = (x �→y)
ζ̃x3 = (x �→x+1)

ζ̃y1 = (y �→0)
ζ̃y2 = (y �→y+1)

γ̃1 ⊇ (g(t1) ∪ g(t3) ∪ g(t4))
γ̃2 ⊇ (g(t2) ∪ g(t5))
γ̃2 ⊇ (g(t3) ∪ g(t5))

ζ̃x1 �→ {j(t1)}
ζ̃x2 �→ {j(t2), j(t5)}
ζ̃x3 �→ {j(t3), j(t4)}
ζ̃y1 �→ {j(t1), j(t4)}
ζ̃y2 �→ {j(t2), j(t3), j(t5)} 

Fig. 3. Simple example for syntactic creation of guard supersets and and jump set projections

4 Further Generalization of Conflicts

By using subsets (γ̃, ζ̃) ∈ Σ′ ⊆ 2G×J instead of elements (γ, ζ) ∈ Σ ⊆ G× J, we can gen-
eralize conflicts having common reasons. Different guard sets γ1, . . . , γm are subsumed
by guard supersets γ̃ such that γ̃ ⊇ (γ1 ∪ · · · ∪ γm). Jump sets ζ are generalized by
their projection ζ̃ on fewer or single dimensions. Such ζ̃ comprise all ζ1, . . . , ζk having
the same projection. As the example in figure 3 shows, reasonable guard supersets and
jump set projections can even be computed syntactically.

With a function r extended accordingly to further generalize the conflicts with the
introduction of (γ̃, ζ̃) characters as described above, this generalization leads to dramat-
ically reduced iteration numbers, since many similar conflicts are now comprised by
one single sequence of sets of guard-/jump sets.

With the previously described construction of AC , this automaton is no longer de-
terministic, since each (γ, ζ) might map to several of the sets described above. We
determinate it with a transformation intuitively considering AC as a directed graph
with attributed edges with a new operational semantics where each node q j ∈ Q =
{q0, q1, . . . , qn} represents a boolean variable b j ∈ B being computed by a function
b∗ : {0, . . . , n} × Σ × Bn → B with
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b∗( j, δ, (b0, b1, . . . , bn)) =

⎧
⎪⎪⎨
⎪⎪⎩

1 iff j = 0
∨

qi∈Q:(qi ,δ′ ,qj)∈T,[qj]= j,δ∈δ′ ,qi<qj
b[qi] iff j > 0

using a function [] : Q → N with [qi] = i. Thus we use the structure of AC =

(Q, q0, Σ, T, F) to create a deterministic automaton A∗C such that A∗C = (Q∗, q∗0, Σ, T
∗, F∗)

with Q∗ = {(1, b1, b2, . . . , bn)|bi ∈ B}, q∗0 = (1, 0, ..., 0), the transitions T ∗ � {((b0, . . . ,
bn), δ, (b′0, . . . , b

′
n)) ∈ Q∗ × Σ × Q∗|b′ j = b∗( j, δ, (b0, . . . , bn))} and the accepting states

F∗ � {(1, b1, . . . , bk, . . . , bn) ∈ Q∗|∀k ∈ N, p ∈ Q \ F : [p] = k =⇒ bk = 0}.

Table 2. Comparison of ω-automaton construction and general LTL-to-Bchi automata construc-
tion implementation Wring 1.1.0 based on [SB00]

ω-construction Wring 1.1.0
LTL formula states time[s] states time[s]

¬F(a∧X(b∧X(b∧Xc))) 8 0.1 20 0.6
¬F(a∧X(b∧Xc) ∨ b∧X(e∧X( f∧Xd))) 32 0.1 180 100.2
¬F(a∧X(b∧Xc) ∨ b∧X(e∧X( f∧Xd)) ∨ x∧Xc) 64 0.1 288 551
¬F(a∧X(b∧Xc) ∨ b∧X(e∧X( f∧Xd)) ∨ c∧X( f∧X(g∧Xh))) 256 0.1 2160 161871

This is the automaton referred to in Table 2 being compared to other LTL-to-Bchi
translations, which also have non-mutual exclusive atomic propositions. A∗C is certainly
no longer minimal and of considerable size. However, we will see that this conflict
generalization dramatically reduces the required iterations.

5 Experimental Results and Related Work

The ω-CEGAR approach was successfully applied to industrial examples ranging up
to a hundred state bits and dozens of continuous variables. Table 3 gives an overview
for two example models. The car window lifting system is a model from BMW which
is modeled in ASCET. Depending on HMI interface and sensors it controls the engine
lifting the car window, also maintaining its current position. The reachability of cer-
tain window positions was computed. The Flight Controller example is modeled with
SCADE and controls the altitude depending on pilot command and sensor readings. The
model contains three-dimensional vectors for positions and velocities, including plau-
sibility computation. Here, various reachability analyses refering to expected reactions
to pilot commands in a Normal Operations Mode (NO) were made. For two of these,
Figure 4 (a) and (b) shows typical evolutions of quantities during the iteration process.

Figure 4 (c) shows the process for the same proof as (a), but without using sequences
of sets of GJ-pairs as introduced in the previous section. The difference clearly reveals
the benefit of such a conflict generalization.

Considering the size of the discrete state space |Z| in the examples, we have remark-
ably few iterations until getting valid traces. Especially the case where the safety prop-
erty was fulfilled and the bad state was not reachable as, e.g., in Proof 3 of the Flight
Controller system deserves some attention. Here, after only 7 iterations and 13 gener-
alized conflicts, the approach was able to prove the non-reachability. Considering the
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Table 3. Experimental results using conflict generalization. Numbers refer to cone-reduced mod-
els. Table shows number of discrete locations, number of continuous dimensions (inputs+state-
based), size of Σ/ Σ′, number of conflicts, iterations, final path length, size of Q representing state
bits of A∗C and total runtime including integration overhead.

Model / Proof |Z| dimensions |Σ |/|Σ′ini|/|Σ′inv| —Cini|/|Cinv| iter |π| |Q| time

Flight Controller System
1 AG(NO =⇒ p), p := (Δvx=0) 235 5+18 41/2/43 1/24 21 13 33 16 min
2 AG(NO∧p =⇒ Xp) 235 5+18 67/2/60 1/36 29 514 78 75 min
3 Proof 2 on corrected model 231 5+18 26/2/22 1/13 7 �π 12 4 min

Car Window Lifting System
4 EF(pos1 ≤ poswindow ≤ pos2) 226 2+3 92/12/63 14/79 59 10 41 52 min
5 EF(poswindow > pos3) 226 2+3 59/11/42 13/35 32 �π 18 19 min

diameter of 513 of that model meaning that internally, the model checker had to an-
alyze that many steps of the model until the fix-point was reached, the result is quite
remarkable and demonstrates the power of the approach when it comes to certification
issues.

Related Work. Among the various approaches on abstraction refinement to model-
check hybrid models, most commonalities with the herein presented approach seem
to be shared by two of them. First, there is the INFINITE-STATE-CEGAR algorithm
[CFH+03] which also uses a fully automated iterative refinement technique. For any
spurious counterexample identified as such by a polyhedral over-approximation of suc-
cessor states, the corresponding path fragment of length n in the abstract model is ruled
out by replicating up to n−1 states and modifying concerned transitions accordingly
such that any other trace not containing the spurious path fragment is still observable.
However, this does not prevent false negatives in other areas of the model where the
same GJ-sequence is linked to different locations. According to the previously made
observation in equation (2), this omission might lead to a huge number of iterations
with false negatives caused by reasons already detected. The advantage of a slowly
growing abstract model size is easily turned down by the huge number of iterations
required for the herein targeted model class.

By including source- and target states in the alphabet characters, Σ = {(z1, z2, g(t),
j(t))|t = (z1, z2) ∈ T }, we modify our algorithm to exclude exactly the same path frag-
ments that would be ruled out in [CFH+03], making a direct comparison w.r.t. abstrac-
tion refinement iterations possible. Figure 4 (d) shows the different evolution of a still
uncompleted iteration process. Being compared to (a), it confirms the above statements
w.r.t. the given example.

Second, an analysis via predicate abstraction approach described in [ADI02] con-
structs an automaton with 2k states which is composed in parallel with the abstract
model to rule out spurious counterexamples. Based on a set of k predicates, it is com-
puted in advance which transitions in the added automaton are possible. The fixed size
of the automaton results from the reservation of one boolean variable per predicate,
encoding its truth-value. Refinement is realized by manually adding additional predi-
cates, making the approach only half-automatic with no counterexample guidance. The
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Fig. 4. Evolutions of iterative refinement, x-coordinate shows iteration steps

approach exploits the model characteristics of equation (2), but besides the required
manual intervention, the predicates are only state-expressions with no temporal op-
erators, making it impossible to directly rule out spurious counterexamples based on
multi-step conflicts. Disregarding problems of manual intervention and automaton con-
struction, an extension with LTL-formula predicates would make that approach more
similar to the herein presented one. However, recent research activities described in
[ADI03] automate the process of finding new predicates by looking for predicates for
separation of polyhedra, thus following a different strategy.

6 Conclusion

In this paper an iterative abstraction refinement approach called ω-CEGAR for veri-
fying step-discrete hybrid models exploiting the characteristics of control dominated
models being observed in industrial practice was presented. The small number of ap-
plied regulation laws leading to vast cases of recurrence of continuous state space com-
putations throughout different discrete transition sequences is exploited by forbidding
impossible continuous computation sequences globally if only a single representative
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is detected. The construction of an ω-automaton being composed in parallel with the
coarsely abstracted original model realizes this in an efficient way. Many iterations of
model-checker and path validation runs being the most costly operations can be saved.
The application of the ω-CEGAR approach on parts of industrial models already shows
its efficacy on the targeted class of models, especially in comparison to the INFINITE-
STATE-CEGAR approach.

Acknowledgements

The author likes to thank Werner Damm, Martin Frnzle, Hardi Hungar, Hartmut Wittke,
Christian Herde and Tino Teige for many valuable discussions and feedback on previous
versions of this paper.

References

[ADI02] Alur, R., Dang, T., Ivančić, F.: Reachability analysis of hybrid systems via pred-
icate abstraction. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS,
vol. 2289, pp. 35–48. Springer, Heidelberg (2002)

[ADI03] Alur, R., Dang, T., Ivancic, F.: Counter-example guided predicate abstraction of
hybrid systems. In: 9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (April 2003)

[ADM02] Asarin, E., Dang, T., Maler, O.: Eugene Asarin, Thao Dang, and Oded Maler.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370.
Springer, Heidelberg (2002)

[AHH96] Alur, R., Henzinger, T.A., Ho, P.: Automatic symbolic verification of embedded
systems. In: Real-Time, I.E.E.E. (ed.) IEEE Real-Time Systems Symposium, pp.
2–11 (1996)

[BEN04] Berkelaar, K., Eikland, M., Notebaert, P.: Open source (mixed-integer) linear pro-
gramming system. In: Eindhoven University of Technology (May 2004)

[CFH+03] Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O.,
Theobald, M.: Abstraction and counterexample-guided refinement in model check-
ing of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)

[Fre05] Frehse, G.: PHAVer: Algorithmic Verification of Hybrid Systems past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

[GGB+03] Gaudre, T., Guillermo, H., Baufreton, P., Goshen, D., Cruz, J., Dupont, F.,
Leviathan, R., Segelken, M., Winkelmann, K., Halbwachs, N.: A methodology and
a tool set designed to develop aeronautics, automotive and safety critical embedded
control-systems. In: Convergence 2003 (2003)

[HH94] Henzinger, T.A., Ho, P.-H.: Hytech: The cornell hybrid technology tool. In: Hybrid
Systems, pp. 265–293 (1994)

[RGA+96] Brayton, R.K., Hachtel, G.D., Sangiovanni-Vincentelli, A., Somenzi, F., Aziz, A.,
Cheng, S.-T., Edwards, S., Khatri, S., Kukimoto, Y., Pardo, A., Qadeer, S., Ranjan,
R.K., Sarwary, S., Shiple, T.R., Swamy, G., Villa, T.: VIS: a system for verification
and synthesis. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102,
Springer, Heidelberg (1996)



448 M. Segelken

[SB00] Somenzi, F., Bloem, R.: Efficient Büchi Automata from LTL Formulae. In: Emer-
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