I/0O Efficient Accepting Cycle Detection*

Jiri Barnat, Lubos Brim, and Pavel Simecek

Department of Computer Science, Faculty of Informatics
Masaryk University Brno, Czech Republic

Abstract. We show how to adapt an existing non-DFS-based accepting
cycle detection algorithm OWCTY [10I15129] to the I/O efficient setting
and compare its I/O efficiency and practical performance to the existing
1/0 efficient LTL model checking approach of Edelkamp and Jabbar [14].
The new algorithm exhibits similar I/O complexity with respect to the
size of the graph while it avoids quadratic increase in the size of the graph.
Therefore, the number of I/O operations performed is significantly lower
and the algorithm exhibits better practical performance.

1 Introduction

Model checking became one of the standard technique for verification of hard-
ware and software systems even though the class of systems that can be fully
verified is fairly limited due to the well known state explosion problem [12]. The
automata-theoretic approach [33] to model checking finite-state systems against
linear-time temporal logic (LTL) reduces to the detection of reachable accepting
cycles in a directed graph. Due to the state explosion problem, the graph tends to
be extremely large and its size poses real limitations to the verification process.
Many more-or-less successful techniques have been introduced [12] to reduce the
size of the graph advancing thus the frontier of still tractable systems. Never-
theless, for real-life industrial systems these techniques are not efficient enough
to fit the data into the main memory. An alternative solution is to increase the
computational resources available to the verification process. The two major ap-
proaches include the usage of clusters of workstations and the usage of external
memory devices (disks).

Regarding external memory devices, the goal is to develop algorithms that
minimize the number of I/O operations an algorithm has to perform to complete
its task. This is because the access to information stored on an external device
is orders of magnitude slower than the access to information stored in the main
memory. Thus the complexity of I/O efficient algorithms is measured in the
number of I/O operations [1].

A lot of effort has been put into research on I/O efficient algorithms working
on explicitly stored graphs [ITI20024125]. For an explicitly stored graph, an 1/0O
efficient algorithm typically has to perform a random access operation every

* This work has been partially supported by the Grant Agency of Czech Republic
grant No. 201/06/1338 and the Academy of Sciences grant No. 1ET408050503.

W. Damm and H. Hermanns (Eds.): CAV 2007, LNCS 4590, pp. 281 2007.
© Springer-Verlag Berlin Heidelberg 2007

282 J. Barnat, L. Brim, and P. Simecek

time it needs to enumerate edges incident with a given vertex. However, in
model checking, the graphs are often given implicitly which means that the
edges incident with a given vertex are computed on demand from the vertex
itself. Thus, an algorithm working on an implicitly given graph may save up
to |V| random access operations, which may have significant impact on the
performance of the algorithm in practice.

A distinguished technique that allows for an I/O efficient implementa-
tion of a graph traversal procedures is the so called delayed duplicate detec-
tion [21J22I26132]. A traversal procedure has to maintain a set of visited vertices
to prevent their re-exploration. Since the graphs are large, the set cannot be
completely kept in the main memory and must be stored on the external mem-
ory device. When a new vertex is generated it is checked against the set to avoid
its re-exploration. The idea of the delayed duplicate detection technique is to
postpone the individual checks and perform them together in a group for the
price of a single scan operation.

Unfortunately, the delayed duplicate detection technique is incompatible with
the depth-first search (DFS) of a graph [I4]. Therefore, most approaches to 1/0
efficient (LTL) model checking suggested so far, have focused on the state space
generation and verification of safety properties only. The first I/O efficient al-
gorithm for state space generation has been implemented in Mury [32]. Later
on, several heuristics for the state space generation were suggested and imple-
mented in various verification tools [T6/I823]. The first attempt to verify more
than safety properties was described in [I9], however, the suggested approach
uses the random search to find a counterexample to a given property. Therefore,
it is incomplete in the sense that it is not able to prove validity of the property.

To the best of our knowledge, the only complete 1/O efficient LTL model
checker was suggested by Edelkamp and Jabbar in [14] where the problematic
DFS-based algorithm was avoided by the reduction of the accepting cycle
detection problem to the reachability problem [7I3T] whose I/O efficient solution
was further improved by using the directed (A*) search and parallelism. The
algorithm works in the on-the-fly manner meaning that only a part of the
state space is constructed, which is needed in order to check the desired
property. The reduction transforms the graph so that the size of the graph
after the transformation is asymptotically quadratic with respect to the original
one. More precisely, the size of the resulting graph is |F| x |G|, where |G|
is the size of the original graph and |F| is the number of accepting vertices.
As the external memory algorithms are meant to be applied to large scale
graphs, the quadratic increase in the size of the graph is significant and,
according to our experience, it often aborts due to the lack of space. This
is especially the case when the model is valid and the entire graph has
to be traversed to prove the absence of an accepting cycle. The approach
is thus mainly useful for finding counterexamples in the case a standard
verification tool fails due to the lack of memory. However, completeness is a
very important aspect of LTL model checking as well. A typical scenario is that if

I/0 Efficient Accepting Cycle Detection 283

the system is invalid and the counterexample found, the system is corrected and
the property verified again. In the end, the graph must be traversed completely
anyway.

Since DFS-based algorithms cannot be used for I/O efficient solution to the
accepting cycle detection, a non-DFS algorithm is required. The situation very
much resembles a similar one encountered in cluster-based approach to LTL
model checking [2]. The main problem of the approach is that the optimal se-
quential algorithm (e.g. Nested DFS [I7]) is inherently sequential and hence dif-
ficult to be parallelized [30]. Consequently, several new parallel algorithms that
do not build on top of the depth-first search have been introduced [34USIJOUT0].

In this paper we show how to adapt a parallel enumerative version of the One
Way Catch them Young Algorithm (OWCTY) [I0[I5129] to the I/O efficient
setting and compare its I/O efficiency and practical performance with the 1/0
efficient LTL model checking algorithm by Edelkamp and Jabbar [14].

2 I/0 Efficient OWCTY Algorithm

As discussed above, an I/0O efficient solution to LTL model checking has to build
upon a non-DFS algorithm. A particularly suitable algorithm for enumerative
LTL model checking was described in [10]. The goal of the algorithm is to com-
pute the set of vertices that are reachable from a vertex on an accepting cycle. If
the set is empty, there is no accepting cycle in the graph, otherwise the presence
of an accepting cycle is ensured [T529)].

The algorithm repeatedly computes approximations of the target set until
a fixpoint is reached. All reachable vertices are inserted into the approxima-
tion set (ApproxSet) within the procedure INITIALIZE-APPROXSET. After that,
vertices violating the condition are gradually removed from the approximation
set using procedures ELIM-NO-ACCEPTING and ELIM-NO-PREDECESSORS. Pro-
cedure ELIM-NO-ACCEPTING removes those vertices from the approximation
set that have no accepting ancestors in the set, i.e. vertices that lie on lead-
ing non-accepting cycles. Procedure ELIM-NO-PREDECESSORS removes vertices
that have no ancestors at all, i.e. leading vertices lying outside a cycle. The
pseudo-code is given as Algorithm [

Algorithm 1. DETECTACCEPTINGCYCLE
Require: Implicit definition of G=(V,E,ACC)

1: INITIALIZE-APPROXSET()

2: oldSize «— oo

3: while (ApprozSet.size # oldSize) N (ApprozSet.size > 0) do
4: oldSize — ApproxSet.size

5 ELIM-NO-ACCEPTING()

6 ELIM-NO-PREDECESSORS()

7: return ApprozSet.size > 0

284 J. Barnat, L. Brim, and P. Simecek

The approximation set induces an approximation graph. The in-degree of a
vertex in the approximation graph corresponds to the number of its immediate
predecessors in the approximation set. To identify vertices without ancestors in
the approximation set, the in-degree is maintained for every vertex of the ap-
proximation graph. Procedure ELIM-NO-PREDECESSORS then works as follows.
All vertices from the set with a zero in-degree are moved to a queue from where
they are dequeued one by one. Dequeued vertices are eliminated from the set,
and the in-degrees of its descendants are updated. If an in-degree drops to zero,
the corresponding vertex is inserted into the queue to be eliminated as well.
The procedure eliminates vertices in a topological order and hence the queue
becomes empty as soon as all vertices preceding a cycle are eliminated.

Procedure ELIM-NO-ACCEPTING works as follows. If a vertex has an accepting
ancestor in the approximation set, it has to be reachable from some accepting
vertex in the set. Therefore, the procedure first removes all non-accepting vertices
from the set and sets the numbers of predecessors of all vertices remaining in
the set to zero. Then a forward search is performed starting from the vertices
remaining in the set. During the search all visited vertices are re-inserted to the
approximation set and the numbers of immediate predecessors of vertices in the
set are re-counted.

There are three major data structures used by the algorithm. These are
Candidates, ApprozSet, and Open. Candidates is the set of vertices strictly kept
in memory that is used for the delayed duplicate detection technique. It keeps
vertices that have been processed and are waiting to be checked against the set of
vertices stored on the external device. ApprozSet is the set of vertices belonging
to the current approximation set. It is implemented as a linear list and stored ex-
ternally. Together with Candidates, it is used as the set of vertices already visited
during the forward exploration of the graph in procedure ELIM-NO-ACCEPTING.
For that purpose, both Candidates and ApproxzSet data structures are modified
to keep not only vertices, but also the corresponding numbers of relevant imme-
diate predecessors. The number associated with a particular vertex s is referred
to as the appendiz of the vertex and is set and read with methods setAppendix(s)
and getAppendix(s), respectively. Finally, the data structure Open is a queue
of vertices. It is used to keep open vertices during the breadth-first exploration
of the graph within procedure ELIM-NO-ACCEPTING, and vertices to be elim-
inated (vertices without any predecessors) during the execution of procedure
ELIM-NO-PREDECESSORS. The data structure Open is stored in the external
memory, the vertices are, however, inserted into and taken from it in a strict
FIFO manner. Thus, a possible I/O overhead could be minimized using an ap-
propriate buffering mechanism.

In some of its phases, the algorithm performs a scan through the externally
stored set of vertices (ApprozSet) and decides about every vertex if it should be
removed from the set or not. To preserve the I/O efficiency of such an operation,
a temporary external data structure ApprozSet’ is introduced. In particular,
vertices that should remain in the set are copied to the temporary structure.

I/0 Efficient Accepting Cycle Detection 285

Algorithm 2. MERGE

1: if mode = Elim-No-Accepting then

2 for all s € ApprozSet do

3 if s € Candidates then

4: app «— Candidates.getAppendix(s)

5: app’ «— ApprozSet.getAppendix(s)

6: Candidates < Candidates \ {s}

7 ApproxSet.set Appendix (s, app + app’)
8 for all s € Candidates do

9: Open.pushBack(s)
10: ApprozSet «— ApprozSet U {s}
11: else
12: ApprozSet’ «— ()
13: for all s € ApprozSet do
14: app’ — ApprozSet.get Appendix(s)
15: if s € Candidates then
16: app «— Candidates.get Appendix(s)
17: if (app + app’) = 0 then
18: Open.pushBack(s)
19: else
20: ApprozSet’ — ApprozSet’ U {s}
21: ApproxSet’.setAppendix(s, app + app’)
22: else
23: ApprozSet’ — ApproxSet’ U {s}
24: ApprozSet’.setAppendix(s, app’)
25: ApprozSet «— ApprozSet’

26: Candidates < 0

Once the scan is complete, the content of the original ApproxzSet is discarded
and replaced with the content of the temporary structure ApproxzSet’.

Having described the data structures we are ready to introduce several aux-
iliary subroutines. The most important one is procedure MERGE that is re-
sponsible for merging information about vertices stored in the internal memory
(Candidates) and vertices stored externally (ApprozSet). The procedure can op-
erate in two different modes according to the value of the variable mode. The
two modes correspond to the top most procedures ELIM-NO-ACCEPTING and
ELiM-NO-PREDECESSORS. In the mode Elim-No-Accepting, vertices from set
Candidates are merged with vertices from ApprozSet and the result is stored ex-
ternally to ApprozSet. For already visited vertices the corresponding appendices
are just combined and stored externally. Moreover, newly discovered vertices
are inserted into the queue of vertices to be further processed (Queue). In the
mode Elim-No-Predecessors, no new vertices are discovered, hence only the
appendices are combined. Vertices with zero in-degree are removed from the ex-
ternal memory and in-degree of their immediate descendants is appropriately
decreased. For the details see Algorithm

286 J. Barnat, L. Brim, and P. Simecek

Algorithm 3. STOREORCOMBINE
Require: s, app
1: if s € Candidates then
2: app’ «— Candidates.get Appendix(s)
Candidates.set Appendix(s, app+app’)
else
Candidates — Candidates U {s}
Candidates.set Appendix(s, app)
if MEMORYISFULL() then
MERGE()

Another auxiliary procedure is procedure STOREORCOMBINE whose purpose
is to insert a vertex into the candidate set if the vertex is not yet present in the
set, or update the corresponding appendix of the vertex, otherwise. Once the
main memory becomes full, vertices from the candidate set are processed and
the candidate set is emptied by procedure MERGE.

Algorithm 4. OPENISNOTEMPTY
1: if Open.isEmpty() then

2: MERGE()

3: return —Open.isEmpty()

The last auxiliary function is a function for checking the emptiness of the
queue of vertices to be processed (Open). If the queue is empty, procedure
OPENISNOTEMPTY calls procedure MERGE to perform the delayed duplicate
detection. The procedure returns False, if Open is empty and merging has not
brought any new vertices to be processed.

Algorithm and Algorithm give pseudo-codes of the two main
procedures. Note that algorithm DETECTACCEPTINGCYCLE uses functions
GETINITIALVERTEX, GETSUCCESSORS, and ISACCEPTING to traverse the graph
and to check whether a vertex is accepting or not. These functions are part of
the implicit definition of the graph. Procedure ELIM-NO-ACCEPTING has actu-
ally two goals. First, to eliminate those vertices from the approximation set that
are unreachable from accepting vertices in the set, and second, to properly count
the in-degrees in the approximation graph. Procedure ELIM-NO-PREDECESSORS
employs the in-degrees to recursively remove vertices without predecessors from
the approximation set.

An important observation is that it is not necessary to initialize the approxi-
mation set with the set of all vertices. Since the first procedure in the very first
iteration of the while loop performs forward exploration of the graph starting
from accepting vertices in the set, it is enough to initialize the set with ”leading”
accepting vertices only, i.e. those accepting vertices that have no accepting
ancestors. Such vertices can be identified with a simple forward traversal that is

I/0 Efficient Accepting Cycle Detection

Algorithm 5. ELIM-NO-ACCEPTING
: mode — Elim-No-Accepting
: ApprozSet” «—
: for all s € ApprozSet do
if ISACCEPTING(s) then
Open.pushBack(s)
ApprozSet’ — ApprozSet’ U {s}
ApprozSet’.setAppendix(s, 0)
ApproxSet < ApproxSet’
while OPENISNOTEMPTY() do
s «— Open.popFront()
11: for all ¢ € GETSUCCESSORS(s) do
STOREORCOMBINE(t, 1)

P> W

._.
o ©

._.
v

Algorithm 6. ELIM-NO-PREDECESSORS
: mode < Elim-No-Predecessors
: ApprozSet” «— ()
: for all s € ApprozSet do
if ApprozSet.getAppendix(s) = 0 then
Open.pushBack(s)
else
ApproxSet’ «— ApprozSet’ U {s}
ApproxSet — ApproxSet’
while OPENISNOTEMPTY() do
s «— Open.popFront()
for all ¢ € GETSUCCESSORS(s) do
STOREORCOMBINE(¢, —1)

PG

_ ==
N = OO

Algorithm 7. INITIALIZE-APPROXSET
mode < Elim-No-Accepting
Candidates < ()
s «— GETINITIALVERTEX()
ApprozSet — {s}
if ~ISACCEPTING(s) then
Open.pushBack(s)
while OPENISNOTEMPTY() do
s «<— Open.popFront()
for all ¢ € GETSUCCESSORS(s) do
if ISACCEPTING(t) then
ApproxSet «— ApprozSet U {t}
else
STOREORCOMBINE(t, 0)

—
WY o®

287

288 J. Barnat, L. Brim, and P. Simecek

allowed to explore descendants of non-accepting vertices only. See the pseudo-
code given as Algorithm [7

3 Complexity Analysis

A widely accepted model for the analysis of the complexity of I/O algorithms is
the model of Aggarwal and Vitter [I], where the complexity of an I/O algorithm
is measured in terms of the numbers of external I/O operations only. This is mo-
tivated by the fact that a single I/O operation is by approximately six orders of
magnitude slower than a computation step performed in the main memory [34].
Therefore, an algorithm that does not perform the optimal amount of work but
has a lower I/O complexity, may be faster in practice compared to an algorithm
that performs the optimal amount of work, but has a higher I/O complexity.
The complexity of an I/O algorithm in the model of Aggarwal and Vitter is
further parametrized by M, B, and D, where M denotes the number of items
that fits into the internal memory, B denotes the number of items that can be
transferred in a single I/O operation, and D denotes the number of blocks that
can be transferred in parallel, i.e. the number of independent parallel disks avail-
able. The abbreviations sort(n) and scan(n) stand for 6(N/(DB)logy (N/B))
and 0(N/(DB)), respectively. In this section we give the I/O complexity of our
algorithm and compare it with the complexity of the algorithm from [I4].

We use the following notation. BFS tree is a tree given by the graph traversal
from the initial set of vertices in the breadth-first order. Its height hpprg is called
BFS height, its levels are called BFS levels. SCC graph is a directed acyclic graph,
whose vertices are maximal strongly connected components of the graph and the
edges are given according to the reachability relation between the components.
Let lscc denote the length of the longest path in the SCC graph. The 1/0
complexity of the algorithm is given in Theorem [Il The proof of the complexity
can be found in the full version of the paper [6].

Theorem 1. The I/O complezity of algorithm DETECTACCEPTINGCYCLE is
O(lscc + (hprs + [Pmas| + [E|/M) - scan(]V])),

where Pmaz 1S the longest path in the graph going through trivial strongly con-
nected components (without self-loops).

For the purpose of comparison we denote our new algorithm as DAC and the
algorithm of Edelkamp and Jabbar [14] as EJ. Theorem 1 of [I4] claims that
EJ is able to detect accepting cycles with I/O complexity O(sort(|F||E|) + 1 -
scan(|F||V])), where |F| is the number of accepting states and [is the length of
the shortest counterexample.

The complexity of EJ is not easy to compare with our results, because the two
algorithms use different ways to maintain the set of candidates. The candidate
set can be either stored externally (£.J) or internally (DAC'). In the case that the
candidate set is stored externally, it is possible to perform the merge operation
on a BFS level independently of the size of the main memory. Therefore, this

I/0 Efficient Accepting Cycle Detection 289

approach is suitable for those cases where memory is small or the graph is by
orders of magnitude larger. The disadvantage of the approach is that it needs sort
operations and it cannot be combined with heuristics, such as bit-state hashing
and a lossy hash table [16]. Fortunately, both EJ and DAC are modular enough
to be able to work in both modes. Table [I] gives I/O complexities of all four
variants, where EJ’ denotes algorithm FEJ modified so that the candidate set
is kept in the internal memory, and DAC’ denotes algorithm DAC modified so
that the candidate set is stored externally.

Table 1. I/O complexity of algorithms for both modes of storage of the candidate set

Candidate set in the main memory:
EJ O((+|F||E|/M) - scan(|F||V]))
DAC O(lscc - (hsrs + |Pmaz| + |E|/M) - scan(|V]))

Candidate set in the external memory:

EJ O(L- scan(|F||V]) + sort(|F||E]))
DAC’ O(lscc - ((hrs + |[Pmas|) - scan(|V]) + sort(|E])))

In the worst case the values of lscc, [Pmaz|, and hprs are equal to |V|. Thus
the worst case I/O complexity of DAC is better than that of EJ” and the worst
case I/O complexity of DAC” is equal to that of EJ, provided that [= |V| and
F| =1V,

Note that for graphs of verified systems the numbers lscc, [Pmaz|, and hprs
are typically smaller by several orders of magnitude than the number of ver-
tices. lsce (giving the upper bound to the number of iterations of the loop of
Algorithm [I)) usually ranges from 1 to 20 [I5]. hprs is not proportional to the
size of the state space and oscillates around several hundreds [27], so the |pmaz|
according to our own measurements. However, the number of accepting vertices
(F) is quite often in the same order of magnitude as the number of vertices.
Therefore, FJ” and EJ suffer from the graph blow-up and perform much more
I/0 operations compared to DAC and DAC", respectively. On the other hand,
EJ’ and EJ work on-the-fly and can thus outperform DAC and DAC” on the
graphs with small number of accepting vertices and short counterexamples. Nev-
ertheless, short counterexamples are also easy to find using on-the-fly internal
memory model checkers which outperform both external memory approaches.

Regarding space complexity, DAC' is more space efficient than E.J. Since EJ’
needs to remember all visited pairs of vertices, where a pair consists of one
accepting and one arbitrary vertex, the space complexity of the algorithm is
O(|F||V]), i.e. asymptotically quadratic in the size of the graph. On the other
hand, the space complexity of DAC is O(|V|), as it only maintains the approxi-
mation set, queue and the candidate set whose sizes are always bounded by the
number of vertices. The same holds for the pair FJ and DAC".

290 J. Barnat, L. Brim, and P. Simecek

4 Experimental Evaluation

In order to obtain experimental evidence about how our algorithm behaves in
practice, we implemented both algorithms and compared them mutually as well
as with the model checker SPIN with all the default reduction techniques (in-
cluding partial order) turned on.

Algorithm DetectAcceptingCycle (DAC) has been implemented upon DiVinE
Library [5], providing the state space generator, and STXXL Library [13], provid-
ing the necessary I/O primitives. Algorithm EJ was implemented as a procedure
that performs the graph transformation as suggested in [I4] and then employs
I/0 efficient breadth-first search to check for the counterexample. Note that our
implementation of [I4] does not have the A* heuristics and so it can be less
efficient in the search for the counterexample. The procedure is referred to as
Liveness as Safety with BFS (LaS-BFS).

We have measured run times and a memory consumption of SPIN, LaS-BFS
and DAC on a collection of systems and their LTL properties taken from the
BEEM project [28]. The models were selected so that the state spaces generated
by SPIN and DiVinE were exactly of the same size. The experimental results
are listed in Table 2l Note that just before the unsuccessful termination of LaS-
BFS due to exhausting the disk space the size of BFS levels exhibited growing

Table 2. Run times and memory consumption on a single workstation with 2 GB of
RAM and 60 GB of available hard disk space. The time is given in hh:mm:ss format.

SPIN LaS-BFS DAC
States Time RAM Time Disk Time Disk

Phils(16,1),P3 61,230,206 Out of memory Out of disk space 02:01:11 5.5 GB
MCS(5),P4 119,663,657 Out of memory Out of disk space 03:32:41 8 GB
Szymanski(5),P4 419,183,762 Out of memory Out of disk space 44:49:36 32 GB
Elevator2(16),P4 76,824,540 Out of memory Out of disk space 11:37:57 9.2 GB
Leader Fil.(7),P2 431,401,020 00:01:35 1369 MB Out of disk space 32:03:52 42 GB
Valid properties on large models.

SPIN LaS-BFS DAC
States Time RAM Time Disk Time Disk
Lamport(3),P4 56,377 00:00:01 18 MB 00:55:34 799 MB 00:00:19 6,1 MB
Anderson(4),P2 58,205 00:00:01 20 MB 00:11:11 153 MB 00:00:18 6,1 MB

Peterson(4),P4 2,239,039 00:00:08 85 MB Out of disk space 00:04:44 159 MB
Valid properties on small models.

SPIN LaS-BFS DAC
States Time RAM Time Disk Time Disk
Bakery(5,5),P3 506,246,410 00:00:01 16 MB 01:34:13 5,4 GB 69:27:58 38 GB
Szymanski(4),P2 4,555,287 00:00:01 18 MB 00:59:00 203 MB 00:19:55 205 MB
Elevator2(7),P5 43,776 00:00:01 17 MB 00:01:15 121 MB 00:00:18 6,1 MB
Invalid properties.

I/0 Efficient Accepting Cycle Detection 291

tendency. This suggests that the computation would last substantially longer if
sufficient disk space was available. For the same input graphs, algorithm DAC
manage to perform the verification using a few GBs of space only.

Measurements on large systems with valid formulas demonstrate that DAC' is
able to successfully prove the correctness of systems, on which SPIN and LaS-
BFS fail. However, there are systems and valid formulas, which take a long time
to verify by our algorithm, but can be verified quickly using SPIN (e.g. model
Leader Filters). This is due to the partial order reduction technique, which is
extraordinarily efficient in this case. Results on small systems show the state
space blow-up in case of LaS-BFS. E.g. on the model Lamport, 6,1 MB of disk
space is enough for DAC to store the entire state space while LaS-BFS needs
799 MB. As for systems with invalid formulas, the new algorithm is slow, since it
does not work on-the-fly. Nevertheless, it is able to finish if the state space fits in
the external memory. Moreover, it is faster than LaS-BFS on systems with long
counterexamples as the space space blow-up takes effect when LaS-BFS has to
traverse a substantial part of the state space (e.g. model Elevator2).

In summary, the new algorithm is especially useful for verification of large
systems with valid formulas where SPIN fails due to the limited size of the main
memory and LaS-BFS runs out of the available external memory because of a
large amount of accepting states. On systems with invalid formulas, algorithm
DAC finishes if the state space fits in the external memory, but it may take quite
a long time as it does not work on-the-fly.

5 Conclusions and Future Work

In this paper we presented a new I/O efficient algorithm for accepting cy-
cle detection on implicitly given graphs. The algorithm exhibits linear space
complexity while preserving practically reasonable I/O complexity. Another in-
direct contribution of the paper is that it introduces an I/O efficient proce-
dure to compute the topological sort on implicitly given graphs (procedure
ELIM-NO-PREDECESSORS).

Our experimental evaluation confirmed that the new algorithm is able to fully
solve instances of the LTL model checking problem that cannot be solved either
with the standard LTL model checker SPIN or using so far the best I/O efficient
approach of Edelkamp and Jabbar [I4]. The approach of [I4] fails especially if
the verified formula is valid, which is because after the transformation, the graph
becomes too large to be kept even in the external memory.

On the other hand, unlike SPIN and the approach of [I4] our algorithm does
not work on-the-fly. The on-the-fly algorithms are particularly successful if the
property is violated and the counterexample can be found early during the state
space exploration.

As our algorithm is based on the algorithm which can be easily paral-
lelized [10], it is straightforward to develop a parallel version of the algorithm that
can further speed up verification of large systems. It also seems promising to de-
sign I/0O efficient variants of other BFS-based verification algorithms [34USIOUT0)].

292

J. Barnat, L. Brim, and P. Simecek

Some of them work on-the-fly and hence could outperform both the new algo-
rithm and the algorithm of Edelkamp and Jabbar.

An open problem for which we still do not know a practically good solution,
is the inefficiency of the delayed duplicate detection technique as used in proce-
dure ELIM-NO-PREDECESSORS. Since procedure MERGE is called every time a
BFS level is explored, merging a small level into a large set can slow down the
exploration speed of a few vertices per minute. The question is, if this can be
avoided.

References

10.

11.

12.

13.

14.

Aggarwal, A., Vitter, J.S.: The Input/Output Complexity of Sorting and Related
Problems. Communications of the ACM 31(9), 1116-1127 (1988)

Barnat, J.: Distributed Memory LTL Model Checking. PhD thesis, Faculty of
Informatics, Masaryk University Brno (2004)

Barnat, J., Brim, L., Chaloupka, J.: Parallel Breadth-First Search LTL Model-
Checking. In: Automated Software Engineering (ASE’03), pp. 106-115. IEEE
Computer Society Press, Los Alamitos (2003)

Barnat, J., Brim, L., Stfibrna, J.: Distributed LTL Model-Checking in SPIN.
In: Dwyer, M.B. (ed.) Model Checking Software. LNCS, vol. 2057, pp. 200-216.
Springer, Heidelberg (2001)

Barnat, J., Brim, L., Cern4, I., Simec¢ek, P.: DiVinE — The Distributed Verification
Environment. In: PDMC’05, pp. 89-94 (2005)

Barnat, J., Brim, L., Simegek, P.: LTL Model Checking with I/O-Efficient Accept-
ing Cycle Detection. Technical Report FIMU-RS-2007-01, Faculty of Informatics,
Masaryk University (2007)

Biere, A., Artho, C., Schuppan, V.: Liveness Checking as Safety Checking. Electr.
Notes Theor. Comput. Sci. 66(2) (2002)

Brim, L., Cernd, I., Moravec, P., Simsa, J.: Accepting Predecessors are Better
than Back Edges in Distributed LTL Model-Checking. In: Hu, A.J.,; Martin, A.K.
(eds.) FMCAD 2004. LNCS, vol. 3312, pp. 352-366. Springer, Heidelberg (2004)
Brim, L., Cern4, I., Krcsl, P., Peldnek, R.: Distributed LTL Model Checking Based
on Negative Cycle Detection. In: Hariharan, R., Mukund, M., Vinay, V. (eds.)
FST TCS 2001: Foundations of Software Technology and Theoretical Computer
Science. LNCS, vol. 2245, pp. 96-107. Springer, Heidelberg (2001)

Cern4, I., Peldnek, R.: Distributed Explicit Fair Cycle Detection. In: Ball, T.,
Rajamani, S.K. (eds.) SPIN’03. LNCS, vol. 2648, pp. 49-73. Springer, Heidelberg
(2003)

Chiang, Y., Goodrich, M., Grove, E., Tamassia, R., Vengroff, D., Vitter, J.:
External-Memory Graph Algorithms. In: SODA’95, pp. 139-149. Society for In-
dustrial and Applied Mathematics (1995)

Clarke Jr, E., Grumberg, O., Peled, D.: Model Checking. MIT press, Cambridge
(1999)

Dementiev, R., Kettner, L., Sanders, P.: STXXL: Standard Template Library for
XXL Data Sets. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669,
pp. 640-651. Springer, Heidelberg (2005)

Edelkamp, S., Jabbar, S.: Large-Scale Directed Model Checking LTL. In: SPIN’06,
pp. 1-18 (2006)

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

I/0 Efficient Accepting Cycle Detection 293

Fisler, K., Fraer, R., Kamhi, G., Vardi, M.Y., Yang, Z.: Is There a Best Symbolic
Cycle-Detection Algorithm? In: Margaria, T., Yi, W. (eds.) ETAPS 2001 and
TACAS 2001. LNCS, vol. 2031, pp. 420-434. Springer, Heidelberg (2001)
Hammer, M., Weber, M.: To Store Or Not To Store Reloaded: Reclaiming Memory
On Demand. Tn: FMICS 2006 and PDMC 2006. LNCS, vol. 4346, pp. 51-66.
Springer, Heidelberg (2006)

Holzmann, G.J., Peled, D., Yannakakis, M.: On Nested Depth First Search. In:
The SPIN Verification System, pp. 23-32. American Mathematical Society (1996)
Jabbar, S., Edelkamp, S.: I/O Efficient Directed Model Checking. In: Cousot, R.
(ed.) VMCALI 2005. LNCS, vol. 3385, pp. 313-329. Springer, Heidelberg (2005)
Jones, M., Mercer, E.: Explicit State Model Checking with Hopper. In: Graf, S.,
Mounier, L. (eds.) SPIN’04. LNCS, vol. 2989, pp. 146-150. Springer, Heidelberg
2004

%(atri()el, I., Meyer, U.: Elementary Graph Algorithms in External Memory. In:
Algorithms for Memory Hierarchies, pp. 62-84 (2002)

Korf, R.: Best-First Frontier Search with Delayed Duplicate Detection. In:
AAAT04, pp. 650-657. AAAI Press / The MIT Press, Cambridge, MA (2004)
Korf, R., Schultze, P.: Large-Scale Parallel Breadth-First Search. In: AAAT’05,
pp. 1380-1385. AAAI Press / The MIT Press, Cambridge, MA (2005)
Kristensen, L., Mailund, T.: Efficient Path Finding with the Sweep-Line Method
Using External Storage. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS,
vol. 2885, pp. 319-337. Springer, Heidelberg (2003)

Kumar, V., Schwabe, E.: Improved Algorithms and Data Structures for Solving
Graph Problems in External Memory. In: 8th IEEE Symposium on Parallel and
Distributed Processing (SPDP’96), IEEE Computer Society Press, Los Alamitos
1996

l(\/lehllzorn, K., Meyer, U.: External-Memory Breadth-First Search with Sublinear
1/O. In: Méhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 723~
735. Springer, Heidelberg (2002)

Munagala, K., Ranade, A.: I/O-Complexity of Graph Algorithms. In: SODA’99,
pp- 687-694, Philadelphia, PA, USA, Society for Industrial and Applied Mathe-
matics (1999)

Peldnek, R.: Typical Structural Properties of State Spaces. In: Graf, S., Mounier,
L. (eds.) SPIN’04. LNCS, vol. 2989, pp. 5-22. Springer, Heidelberg (2004)
Pelédnek, R.: BEEM: BEnchmarks for Explicit Model checkers (February 2007)
http://anna.fi.muni.cz/models/index.html

Ravi, K., Bloem, R., Somenzi, F.: A Comparative Study of Symbolic Algorithms
for the Computation of Fair Cycles. In: Johnson, S.D., Hunt Jr., W.A. (eds.)
FMCAD 2000. LNCS, vol. 1954, pp. 143-160. Springer, Heidelberg (2000)

Reif, J.H.: Depth-First Search is Inherrently Sequential. Information Processing
Letters 20(5), 229-234 (1985)

Schuppan, V., Biere, A.: Efficient Reduction of Finite State Model Checking to
Reachability Analysis. International Journal on Software Tools for Technology
Transfer (STTT) 5(2-3), 185-204 (2004)

Stern, U., Dill, D.L.: Using Magnetic Disk Instead of Main Memory in the Murphi
Verifier. In: CAV’98, pp. 172-183 (1998)

Vardi, M., Wolper, P.: An Automata-Theoretic Approach to Automatic Program
Verification. In: Logic in Computer Science (LICS’86), pp. 332-344. IEEE Com-
puter Society Press, Los Alamitos (1986)

Vitter, J.: External Memory Algorithms and Data Structures: Dealing with Mas-
sive Data. ACM Comput. Surv. 33(2), 209-271 (2001)

http://anna.fi.muni.cz/models/index.html

	Introduction
	I/O Efficient OWCTY Algorithm
	Complexity Analysis
	Experimental Evaluation
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

