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Abstract. Human performance in computer-aided system has engrossed 
inevitably human issues in cognitive functioning. The present endeavor focuses 
on the associated influence of training, automation reliability on the monitoring 
performance and workload in multi-task ambience. MAT battery was utilized 
with engine-system monitoring, two dimensional tracking, and fuel resource 
management tasks were the concerned elements, in which only system engine-
monitoring task was automated in the training as well as in the final test 
sessions.  A 2 x 2 x 2 x 3, mixed factorial design was employed.  Monitoring 
performance, false alarms, reaction time and root mean square error 
performance were recorded as dependent measures. Results revealed that 
automation-induced complacency might be the feature of multi-task condition 
where subjects detected automation failures under high static system reliability. 
Results further showed that mental workload significantly reduced from pre- to 
post-sessions. 
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1   Introduction 

Automation technology is a pervasive phenomenon, which has engrossed inevitably 
human issues of cognitive functioning. Automation envisages the thought of 
electronic replacement of human operator. Evidently, automation altered person’s 
attitude towards the functioning of an automated machine, thereby placing more 
reliance and conviction on such systems [16]. Besides this another notion of 
automation has also been put forth as the execution of functions by a machine 
(preferably a computer) that was previously carried out by a human resource [11]. 
The performance in automation scenario depends on the interaction of people with the 
advanced technology.  Moreover, the relationship between automation and mental 
workload of operator is an imperative consideration in respect to efficiency and safety 
in many modern human machine systems. For example, cockpit automation has made 
it possible to reduce flight times, increase fuel efficiency, navigate more effectively, 
and extend or improve the pilot’s perceptual and cognitive capabilities [20, 21].  It is 
noteworthy that the benefits derived from automation use come after paying certain 
costs also [12], for instance, increased monitoring demands, unbalanced trust, 
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cognitive overload, decision biases, skill degradation etc. Over trust of automation is 
sometimes referred to as complacency, which occurs when people trust the 
automation more than what is warranted and can result in very severe negative 
consequences, if the automation is less than fully reliable [12, 11]. Complacency can 
lead to a decreased monitoring of the system and a decreased likelihood of detecting 
system malfunctions. Moreover, introduction of automation in complex systems is 
embraced as reduction of the workload, and thereby reducing the human error. 
Instead, Woods [23] argued that automation merely changes how work is 
accomplished.  Wiener [22] has even claimed that in some instances, the introduction 
of automation may increase the workload.  

Bearing in mind such elements, researchers [12], put forth that any performance 
consequences for complacency were more likely to exist in a multi-task ambience.  
They examined the effect of levels of automation reliability i.e., constant and variable, 
on automated monitoring performance in various experimental conditions. Poorer 
monitoring efficiency was observed under high constant automation reliability 
compared to the variable. The results suggested that automation-induced complacency 
was more easily detectable in a multi-task environment when operators were engaged 
in performing numerous tasks. Considering the issue Singh et al. [18] presented 
automated task at the centre by spatial superimposition of monitoring task over the 
tracking, which could eliminate monitoring inefficiency (complacency). Results 
indicated that automation-induced complacency was not primarily influenced by the 
location, to be monitored for the automated task.  Later, Singh, Molloy and 
Parasuraman [17], conducted another study and they showed that the centrally located 
monitoring task could not improve monitoring performance in automation mode, 
which suggested the robust nature of automation-induced complacency phenomenon. 

Training is another important issue relevant to automation-induced complacency.  
Automation can place conflicting demand upon pilots, with which they may not be 
well trained to meet (e.g., passive monitoring versus active control) unless they have 
been specifically trained to cope with these demands.  It has been suggested that 
inadequate training may lead to several automation-induced problems in the cockpit.  
For instance the negative effect of automation on monitoring performance may be 
related in part to a lack of ‘automation based’ skills. Recently, Sharma and Singh 
[14], examined the role of increased amount of manual training and automation 
reliability on a flight simulation task. Results indicated that, there was no benefit of 
extended manual training on automated complacency.  

The rationale behind introducing automation in complex system is the reduction of 
workload and hence thereby reducing the human error propensity. Despite the logical 
and intuitive rationale that operators will choose automation under heavy workload, 
studies both of pilots and non-pilots performing laboratory [13], and aviation like 
tasks [3], revealed little, if any, tendency to choose automation more often at higher 
levels of task demand. It is possible that the influence of workload on automation use 
may emerge only when the workload is experienced for a sustained period of time. 
Another possibility is that more complex attributes of workload in real environments 
such as workload management and trade-offs need to be modeled in the laboratory in 
order to more fully comprehend the impact of workload on the use of automation. 
Thus, automated system can both reduce and increase mental workload.  For instance, 
pragmatically it has been observed that glass cockpits in commercial aircraft have 
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relieved workload in areas such as reduced display clutter, and enhanced automated 
flight procedures [7]. However, the same cockpit systems can amplify workload by 
presenting operators with more options in their task and causing mode uncertainty [6].  
Hence, these studies revealed that the automation might/or might not affect workload.  

1.1   Present Study 

The underlying principle behind the present endeavor focuses on the associated 
influence of extended automated training, automation reliability on the monitoring 
performance and workload in multi-task ambience. Some studies have suggested that 
automation ought to be designed with the objective to reduce operator’s mental 
workload, while some other studies have indicated that automation does not 
necessarily reduce workload.  In view of these contentious issues about the role of 
training, reliability and workload on the detection of automation failures, an effort has 
been made to examine the effects of extended automated training and system 
reliability on the relationship between monitoring automation failure and mental 
workload. Primarily, it was hypothesized that, increased automation training would 
reduce automation-induced complacency; secondly, automation induced complacency 
would be higher in constant system reliability condition than in variable system 
reliability along with increase over time periods in constant system reliability 
condition than in variable system reliability condition and, finally, automation would 
reduce mental workload. 

2   Methods and Procedure 

Participants: Eighty non-pilots with normal (20/20) or corrected to normal visual 
acuity, aged 19 to 25 years, volunteered in this study. Subjects were randomly 
assigned in each of the four experimental conditions. Each subject received 10-min 
manual practice on flight simulation task, besides 3-min demo.  

2.1   Flight Simulation Task 

A revised version of multi-attribute task battery (MATB), [2] was used in the present 
study.  Multi-attribute task battery is a flight simulation package, comprising engine-
system monitoring, two dimensional compensatory tracking, fuel resource 
management, communications, and scheduling tasks.  The modified version of MATB 
allows each component task to be performed either manually or under automation 
mode. In the present study, only engine-system monitoring task was automated in the 
training as well as in the final test sessions.  These three tasks were presented in 
separate windows on a 14” SVGA color monitor of a PC-486 computer. 

2.2   NASA-Task Load Index Scale 

NASA Task Load Index (NASA-TLX), [4] was administered before and after the 
final test session individually for the assessment of mental workload. The reliable 
index of overall was .83. In TLX, workload is defined as the ‘cost incurred by human 
operators to achieve a specific level of performance.’ 
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2.3   Design 

A 2 (Training) x 2 (Automation reliability) x 2 (Sessions) x 3 (Blocks) mixed factorial 
design was employed with repeated measures on the last two factors.  Training (30-
min and 60-min) and automation reliability (constant and variable) were treated as 
between subject factors with sessions (two 30-min) and blocks (six blocks, each of 
10-min.) as within-subjects factors.  Automation reliability was defined as the 
percentage of correct detection of malfunctions by the automation routine in each 10-
min block in the engine-system monitoring task.  The rate of automation reliability 
was constant (87.5%) from block to block in constant system reliability and in the 
variable system reliability automation varied from high (87.5%) to low (56.25%) and 
low to high from block to block alternately. Each subject was administered six 10-min 
blocks in two successive 30-min sessions. 

2.4   Procedure 

Out of eighty non-pilots, 40 were given short- automation training and remaining 40 
were given long training.  Furthermore, out of 40 non-pilots in each training group, 20 
were randomly assigned the constant system reliability and the remaining 20 subjects 
were assigned the variable system reliability. 

In the automated test session, the subjects were informed that only engine-system 
monitoring task would be automated and they were instructed to pay attention to only 
on tracking and fuel management tasks.  Subjects were also told that automation 
routine was less than 100% reliable and in case of automation failure they had to 
detect the malfunctions, if any, and to reset the system-monitoring task immediately, 
by pressing a designated function key within 10 seconds.  The correct detection (hits 
rate), incorrect detection (false alarms) of malfunctions, monitoring reaction time 
(RT) and root mean square (RMS) error were recorded as dependent measures.  

3   Results  

Means and standard deviations for correct detection of automation failure on all 
components of MATB were calculated for six 10-min automated blocks. Mean values 
of the correct detection of monitoring task performance showed that the subjects 
detected slightly more malfunctions in the long-training-variable reliability condition 
(M = 59.15; SD = 33.98) than in its counterparts i.e. short-training-variable reliability 
condition (M = 58.98; SD = 33.98). Similarly, subjects detected high number of 
malfunctions in the long-training-constant reliability condition (M = 42.50; SD = 
37.32) than in the short-training-constant reliability condition (M = 39.24; SD = 
34.27). 

The mean correct detection performance further demonstrated that the subjects 
detected slightly more malfunctions in the long training (M = 50.83, SD = 37.29) as 
compared to the short-training condition (M = 49.12, SD = 35.82), irrespective of 
system reliability.  Furthermore, subjects’ detection accuracy was higher in the 
variable system reliability condition (M = 59.07, SD = 34.03) than in the constant 
reliability condition (M = 40.87, SD = 35.66), irrespective of training. These mean 
performances further revealed that the mean correct detection performance decreased 
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from 3% to 15% after 30-min in the three experimental conditions except in the long-
training-variable reliability condition.  It is also evident from the mean performance 
that decrement in performance across blocks appeared from 23% to 40% in the 
constant reliability, whereas 4% to 5% deterioration emerged at some point of time 
among six blocks (see Fig. 1). 
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Fig. 1. Correct detection performance (hit rates) under four experimental groups during 
automated test sessions 

Monitoring performance data were then computed for a 2 x 2 x 2 x 3 analysis of 
variance. The ANOVA showed that the main effect of training was not significant,  
F (1, 76) = .13; ns, thereby suggesting that the amount of automation training given 
prior to the subjects under constant or variable automation reliability conditions has 
no impact on monitoring inefficiency (automation-induced complacency). Thus, the 
present finding does not support the first hypothesis that the high amount of 
automation training would reduce automation-induced complacency (see Fig. 2). 
Results further revealed that the main effect of system reliability was found highly 
significant F (1, 76) = 14.88; p < .01. This result also indicated that the subjects had 
high reliance on automation while automation reliability was constant from block to 
block resulting in poor accuracy (more complacent). Contrarily, in variable reliability 
condition the reliance of subjects was varying from high to low and low to high, so 
subjects allocated more attention in detection of automation failures, resulting in 
better monitoring performance (less complacent). This finding supported second 
hypothesis, which maintained that the automation-induced complacency would be 
higher in the constant system reliability than it would be in the variable reliability. 
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Fig. 2. Correct detection performance as a 
function of automation (system) reliability 
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Fig. 3. Correct detection performance as a 
function of automation reliability across 10-
min block  
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The interaction of system reliability and sessions, F (1, 76) = 9.39; p < .01, was also 
found to be significant suggesting that types of system reliability i.e., constant and 
variable reliability impaired monitoring performance across sessions resulting in 
automation-induced complacency after a session of 30-min.  The system reliability by 
session and by block interaction effect was also significant, F (2, 152) = 3.13; p < .05 
(see Fig. 3).  The main effect of block was further found highly significant which 
propounded that automation-induced complacency appeared across time periods. This 
finding explained that automation-induced complacency increased across sessions and 
blocks, which supported the third hypothesis stating that automation-induced 
complacency would increase across time periods in constant reliability condition. The 
obtained findings on false alarms performance indicated that automation had no 
impact on performance however, the effect of system reliability suggested that the 
subjects committed more false alarms in the variable system reliability than in the 
constant reliability. 

The ANOVA findings on reaction time performance showed that the main effect of 
training was significant, which suggested the benefit of the long training over short 
training. The system reliability and session interaction also reached at significance 
level, F (1, 76) = 4.65; p < .05, which indicated that system reliability affected the speed 
of response in detecting correct automation failures in the flight simulation task across 
sessions. 

The RMSE performance on tracking task suggested no benefit of training and 
system reliability. However, tracking performance showed an improvement across 
two sessions, F (1, 76) = 12.69; p< .01. The ANOVA results on fuel performance 
indicated that the main effect of training was significant, F (1, 76) = 3.88; p< .05. This 
finding suggested that the increased amount of training improved fuel performance. 
The results also indicated the benefits of either types of training over six 10-min 
blocks, F (2, 152) = 5.71; p< .01.  However, the main effect of system reliability was not 
significant, F (1, 76) = .003; ns.  This finding indicated no effect of system reliability on 
fuel resource management performance.  The interaction effect of training and system 
reliability was also not significant, F (1, 76) = .58; ns.  This finding further showed that 
the length of training and system reliability could not enhance fuel performance. 

3.1   Perceived Mental Workload 

The NASA-TLX includes the process evaluating of relative importance of the six 
subscales by each subject to calculate a weighted mean.  Miyake and Kumashiro [10], 
reported a high correlation (r = 0.971) between the weighted mean computed in the 
NASA-TLX and the simple arithmetic mean ratings of the scale.  Their results 
suggested that the mean rating can be considered an appropriate subjective workload 
measure [1].  Similarly, Hendy, Hamilton and Landry [5], also suggested that 
weighting the ratings could not add to the sensitivity of the NASA-TLX.  Thus, in the 
present study this evaluation process was omitted.  A simple arithmetic mean was 
computed across subscales of the NASA-TLX and it was treated as a subjective 
mental workload score. 

The NASA-task load index was administered to all the subjects at two times i.e. at 
pre- main task session and post-main task session.  Each subject received two mental 
workload rating scores on six subscales of mental workload i.e. mental demand, 
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physical demand, temporal demand, effort, frustration and performance. The ANOVA 
results revealed that the main effects of mental demand (F 1, 76 = 16.59; p < .001), 
temporal demand (F 1, 76 = 9.33; p < .01), effort (F 1, 76 = 10.62; p < .01), frustration (F 
1, 76 = 16.59; p < .001), performance (F 1, 76 = 73.29; p < .001), and overall mental 
work load (F 1, 76 = 5.79; p <.01) were significant except physical demand. These 
results suggested that mental demand (pre- M = 79.36; post M = 72.79), temporal 
demand (pre- M = 67.93; post M = 61.35), effort (pre- M = 74.08; post M = 66.91), 
frustration (pre- M = 32.00; post M = 21.76), and overall mental workload (pre- M = 
60.99; post M = 58.75) were rated higher at pre-test than they were at their 
counterparts i.e. post test session, irrespective of the experimental conditions.  
However, subjects experienced almost equal physical demand at pre- and post-
sessions (pre- M = 52.36; post M = 53.57).  Moreover, rating of own performance 
workload (pre- M = 60.19; post M = 76.01) increased during test sessions.  The 
performance workload is associated with the level of satisfaction the subjects felt 
about his/her performance in accomplishing the goal of the task.  These findings 
supported the fourth hypothesis, which suggested that automation would reduce 
mental workload. To examine further the relationship between subscales of the 
NASA-TLX at pre- and post-test sessions, Pearson’s product moment correlations 
were computed. The majority of correlations amongst the various measures of 
workload were highly significant with r-values ranging between 0.27 and 0.80. In 
sum, it is evident from the results that subjects experienced high mental workload on 
majority of the sub-scales of the NASA-TLX at the initial level i.e., pre-test, which 
got reduced across time periods while performing two 30-min flight simulation tasks 
(see Fig. 4). 
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Fig. 4. Pre-and Post workload scores in NASA-TLX subscale 

4   Discussion 

Automation plays a critical role in situations when a small number of operators must 
control and supervise a very complex set of remote processes. Automation here is not 
optional; it is a necessity [15]. Complex machines tend to distance operators from the 
details of an operation. Over time, if the machines are reliable, operators will come to 
rely upon them, and may become less concerned with the details of the process. 
Though this has the desirable effect of moderating human operator workload, it also 
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has the undesirable effect of making the operator feel less involved in the task being 
performed. That’s where complacency comes into play within the domain of 
cognitive downfalls. The workload overload consequences might affect the human 
performance from increases in task resource demand or stressful situations. These 
also may have some unforeseen errors like more selectivity of input, more important 
sources of information given more weight, decrease in accuracy, decreasing use of 
strategies that involve heavy mental computation and locking into a single strategy. 
Most critical being the operators continuing awareness of the objective importance of 
all tasks that may compete for attention, for instant those of lesser importance will be 
shed first. Therefore the antidote may include to redesign the task by assigning some 
loaded tasks to automated mode and include a display design such that, information 
for the most tasks are available, interpretable and salient.  

Several reports have discussed the dangers of automation-induced complacency. 
The general experience in aviation has been that advanced automated devices often do 
reduce workload, but usually at flight phases where workload is already low, such as 
cruise whereas some automation actually increases workload at critical phases, for 
instance at the time of take off and landing. Thus automation merely shifts the pattern 
of workload between work phases. However, little empirical research has been 
produced to substantiate its harmful effects on performance as well as some other 
cognitive factors that could be the root cause for automation-induced complacency.   
The present endeavor looks into revalidation of earlier findings of automation-
induced complacency [12, 19], and also an examined the intriguing relationship 
among extended training reliability and mental workload. The current experimental 
results suggest that automation-induced complacency might be the feature of multi-
task condition where subjects detected automation failures under high static system 
reliability condition as compared to variable system reliability condition. 
Imperatively, this effect of automation-induced complacency further enhances after 
half an hour of task period.  

Considering further, the present experimental conditions also looked into the 
discrete relationship between subjective mental workload and automation-induced 
complacency.  The obtained pre and post mental workload revealed that mental 
demand, temporal demand, effort, frustration and overall workload significantly 
reduced from pre to post sessions. The performance-rating workload of subjects, 
further significantly enhanced over time, whereas physical demand was stable during 
test sessions. The compilation of results suggested that high system reliability would 
reduce workload, thereby resulting in automation-induced complacency. And hence 
this finding corroborated the findings of Metzger and Parasuraman [9], who recently 
reported that reliable automation reduces mental workload. 

5   Conclusion 

Automation is rapidly being incorporated in modern flight decks thereby accounting 
for augmented system reliability and decreasing operational errors. However, despite 
it’s potential for improving overall system (or aircrafts) performance, automation is 
not always considered good. It has been always associated with unique and 
unanticipated problems. Automation has enhanced the importance of the need to 
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comprehend and control the factors that influence human monitoring behavior. Errors 
are least likely to show their effect or influence the results, when workload is 
moderate and does not alter suddenly or unpredictably [8].  Thus, this study argues for 
the goal to emphasize consequences of automation. Maintaining appropriate levels of 
workload during automated operating conditions is one of the key issues in the design 
of nuclear power plants and other process control environments. Therefore, over and 
under load continue to be a critical cognitive and human factors issue. Additional 
studies with different monitoring tasks, ingenious methods for adaptive control and 
under different scenarios of multiple task performance need to be demeanor to test 
effectiveness of sophisticated approaches. 
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