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Abstract. Computational cognitive models are used to validate psychological 
theories of cognition, to formally describe how complex tasks are performed, 
and to predict human performance on novel tasks. Most cognitive models have 
very limited models of how the body interacts with the environment. The 
present research examines a simple human-machine interaction task and a 
simple object manipulation task. A cognitive model is integrated with a human 
avatar within a virtual environment in order to model both tasks.  
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1   Introduction 

Computational modeling and simulation such as CAD/CAE and FEA have become 
invaluable tools for manufacturing and design. Radical new designs can be virtually 
constructed and mathematical models of materials and physics can be used to 
accurately simulate the performance characteristics of these new designs without 
expending large amounts of time or money for prototyping and testing. Ergonomic 
tools exist that allow simulation of the human component for analysis. However, 
these tools currently require significant input from the user and can often generate 
unlikely results. For each alternative design for a single task, a designer must specify 
the postures (manually or through simulation) for each step of the task. If the task 
could be specified more generally and the digital human model could execute the task 
on multiple designs, analysis of designs could proceed much more quickly.  

Cognitive modeling may provide a mechanism that would allow a generic 
specification of how to perform a task. In addition, cognitive modeling provides an 
analysis of the role of perceptual, cognitive, and motor factors in the usability of 
physical designs. The current research integrates a cognitive architecture with a 
simple, human avatar in a virtual environment and applies it to two basic tasks: 
human-machine interaction and object manipulation.  

1.1   ACT-R Cognitive Architecture 

ACT-R is a computational architecture that implements a formal specification of 
psychological theories of cognition, perception, and action [1]. Within the 
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architecture, individual models of human performance can be constructed to describe 
or to predict human behavior on many different tasks. ACT-R has been successfully 
used to investigate psychological phenomenon, to study human-computer interaction, 
and to develop intelligent tutoring systems.   

The ACT-R cognitive architecture is a modular system with a production system as 
its core. The construction of a model within the architecture involves the specification 
of condition-action rules that represent the modeler’s hypothesis of how the task is 
performed. The execution of the model involves matching the condition-action rules 
against the current state of the architecture’s modules. Matching rules are then 
compared based on a utility function and the matching rule with the highest utility is 
executed updating the other modules. The functions of the other modules include 
goal-tracking, declarative memory, vision, audition, vocalization, and action. The 
architecture can be extended by modifying existing modules or creating entirely new 
modules. 

2   Extending ACT-R for Upper-Body Task Modeling 

In order to apply ACT-R to real-world tasks such as product assembly, vehicle 
maintenance, or human-machine interaction, the standard implementation of the 
cognitive architecture must be extended. The extensions in this research are limited to 
the perception and motor modules. The perception and motor modules contained in 
the standard implementation of ACT-R are largely based on the EPIC architecture 
developed by Meyer and Kieras [4]. 

2.1   Environment 

The standard implementation of ACT-R supports interaction with user interfaces such 
as command line or GUI systems. This interaction is accomplished by generating 
information suitable for ACT-R’s perception modules from the environment and 
translating ACT-R’s action module’s output into messages to the software 
environment. Since our goal is to model real-world tasks, our environment is a 
dynamic, virtual environment created in commercial off-the-shelf software. ACT-R is 
embodied by an animated human avatar within the virtual environment. Every 17 ms, 
the virtual environment analyzes the scene and generates a table of all of the visual 
and auditory features that the human avatar may be able to perceive. These tables are 
submitted to the appropriate modules in ACT-R where they are processed in the same 
way as the standard implementation processes information from user interfaces. 
Messages generated from our motor module are sent to the environment which 
activates stored animations, inverse kinematic simulations, and/or advanced models of 
human posture prediction. 

2.2   Vision 

The ACT-R vision module implements a feature-based theory of visual perception. 
The visual array is made up of features (i.e. color, size, shape, etc.) at particular 
locations in the array. In order to perceive an object in the environment, visual 
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attention must be shifted to a location in the visual array and the features at that 
location must be integrated into a representation of the object at that location.  

Visual attention is shifted to locations in one of two ways: a voluntary shift to a 
known location or an involuntary shift to a significant change in the features of the 
visual array. In ACT-R’s vision module, involuntary shifts are made when the model 
is not currently attending to a visual object and a significant change occurs in the 
visual array (i.e. a new feature appearing). Voluntary shifts generally require two 
steps. In the first step, a model requests a search for a specified set of features be 
performed on the visual array. This very efficient search makes available a location 
that matches the specified features. Then, the model can shift attention to the location 
to encode the location’s features into a visual object. Encoded visual objects are then 
available to the production system for processing. 

Extensions. The standard implementation of ACT-R does not specifically handle 
motion as a feature. The vision module was extended to better support dynamic, 
virtual environments with many moving objects.  These extensions impacted three 
aspects of the vision module: search of the visual array, involuntary shifts of attention, 
and encoding of movement information. In order to support motion in visual search, 
motion magnitude and motion direction features can be used to specify a search of the 
visual array. A model can search the visual array for a fast object moving amongst 
slow objects by specifying a search for motion magnitude greater than the speed of 
the slow objects. Alternatively, a model can search for an object moving left amongst 
objects moving right. If a motion feature changes significantly, then visual attention 
may be involuntarily drawn to the location of the change. For example, if an object 
suddenly starts moving, visual attention will involuntarily shift towards it. Motion 
magnitude and motion direction is then encoded and made available to the production 
system as part of the visual object. 

Spatial Information. In addition to motion, spatial information is needed for 
interactions with the virtual environment. The exact nature of human spatial encoding, 
representation, and manipulation is a matter of some debate [6] [7]. In our current 
model of spatial representation, egocentric spatial relationships can be encoded and 
stored in declarative memory based on the visual objects encoded by the vision 
module. An egocentric spatial relationship encodes the observer’s bearing to and 
distance from an object in the visual array. Object-to-object relationships can be 
encoded based on two egocentric spatial relationships. These relationships can encode 
a view-independent, allocentric representation of the environment. The current 
models generate, store, and use both types of representations. Other spatial extensions 
to ACT-R are currently being investigated by researchers [2] [3]. 

2.3   Motor 

The motor module of ACT-R models the initiation and programming of motor 
actions. The module also estimates the time required to execute motor actions. The 
standard ACT-R module contains movement styles primarily suited for human-
computer interactions including keyboard presses and mouse movements. Our 
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extensions to the motor module include the addition of movement styles that drive 
animations for a human avatar within our virtual environment. The movements that 
our current model supports are walking, pushing buttons, reaching for and 
manipulating objects.    

3   Empirical Data 

In order to validate our extensions to the ACT-R vision and action modules and to test 
our integration with the virtual environment, human performance data was collected 
for multiple tasks including a human-machine interaction task and an object 
manipulation task.  

3.1   Participants 

Data was collected for 12 male participants (Mean age = 19.08 years) recruited from 
the Mississippi State University student population.  Participants were screened for 
major health and vision problems. Two participants appeared to have below average 
visual acuity but were allowed to participate in the study.  

Participants were asked to wear a Mobile Eye portable eye tracker manufactured 
by ASL. The Mobile Eye is a lightweight (76 grams) eye tracker that records (30 Hz) 
to a digital tape recorder worn on the waist. Computer software analyzes the recorded 
eye and scene videos for analysis. Three participants were dropped from data analysis 
because of technical difficulties with the eye tracking equipment. The whole-body 
motion of participants was also captured using an Animazoo Gypsy suit. The whole-
body data is not currently relevant to the modeling effort.  

3.2   The Vending Machine Task (Human-Machine Interaction) 

Many tasks of interest to digital human modelers are industrial tasks that require some 
interaction between a human operator and a machine. In order to investigate a simple 
and common interaction between humans and machines, participants were asked to 
purchase a 20 oz. bottled drink from a vending machine. Each participant was given 
10 dimes and directed to the location of the vending machine. At the vending 
machine, participants deposited the coins and selected a drink of their choice. The 
participants point of gaze and motions were recorded during the task. 

As participants approach the vending machine, their focus is primarily on the coin 
slot. Similar to results reported by Pelz and Canosa [5], participants appear to look 
ahead at locations that will be necessary later in the operation of the machine. For 
example, during approach, participants would glance to the receptacle at the bottom 
of the machine where they would ultimately retrieve their drink. Also, while reaching 
from the coin slot to their hand for another dime, participants would often browse the 
button labels presumably to consider their drink selection. Throughout the task, eye 
movements (see Figure 1) primarily focused on the coin slot. Participants also verified 
their deposits by checking the display. 
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Fig. 1. Example eye and right hand movements 

Participants had almost no errors during their interaction with the vending 
machine. One participant dropped a dime while depositing a coin in the coin slot. 
During one participant’s trial, the vending machine did not accept one of the dimes. 
The participant used the coin return and successfully completed the task on the second 
attempt. In the human-machine interaction task, there are two types of errors: human 
errors and machine errors. In this task, human error could be a physical error (i.e. 
dropping a dime), a decision making error (i.e. choosing the wrong drink), or a visual 
encoding error (i.e. not noticing that a drink was available). The human operator also 
has to respond to machine errors including deposit errors (i.e. a coin getting stuck), 
out of stock errors, and unresponsive buttons. 

3.3   The Block Modeling Task (Object Manipulation) 

Many real-world tasks also involve the assembly and/or disassembly of parts. 
Participants were shown three models constructed from 9 of 14 children’s blocks. 
Figure 2 shows the three models (M1, M2, and M3) and lists the 14 blocks available 
for constructing the models. Participants were asked to construct a copy of the 
example models by selecting the correct blocks from the 14 available blocks and 
placing them in the correct positions.  

All participants performed the task quickly and successfully with few errors. 
Initially, participants assess the overall shape of the example model. Following this 
first assessment of the model, participants appear to employ one of two strategies. In 
the single-block strategy, participants select a single piece from the example model, 
search for a matching piece amongst the available blocks, and then orient and place 
the block in the appropriate position relative to the already placed blocks.  

In the pattern strategy, participants appeared to identify patterns of blocks that 
make up the example model. The participants would then find all of the blocks 
making up the pattern and construct the pattern without referencing the example until 
the pattern was completed. For example, in M1, the top three blocks of the model (2 
small blocks and the large triangle) could be encoded together and constructed at the 
beginning of the construction attempt. Once the pattern is completed, it might be set 
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Fig. 2. Three models (M1 in the top left, M2 in the top right, and M3 in the bottom left) 
constructed from children’s blocks. Each model consists of 9 blocks drawn from a total of 14 
blocks (listed in the bottom right). 

aside until other construction was completed or placed immediately. When placed, 
participants were observed moving the pattern as a whole (i.e. lifting the three pieces 
at once) and disassembling and reassembling the pattern in parts.  

Typical errors included orientation errors (i.e. in M3 attempting to place the 
wedges facing in rather than facing out) or size errors (i.e. in M1 or M2 attempting to 
use the small triangle rather than the large triangle).  

4   Modeling the Empirical Data 

Based on the results of the study of human participants, a model of task performance 
was constructed for the two tasks within the ACT-R architecture using our extensions.  

4.1   The Vending Machine Task (Human-Machine Interaction) 

The vending machine task requires participants to perform a common interaction with 
a machine. In order to model this interaction, a virtual environment must be 
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constructed with the appropriate objects and a cognitive model must be developed 
within the selected architecture. 

The Environment. The virtual environment was developed within Virtools, 
commercial off-the-shelf software designed for rapid prototyping of dynamic, 3D 
environments. Models of the objects relevant to the task were initially created in 
CATIA then imported into the Virtools environment. The Virtools environment 
communicates with the ACT-R cognitive architecture via a TCP/IP network 
connection.  

Due to the level of interaction, the environment model of the vending machine 
requires considerable detail. Each of the components that a participant may interact 
with was modeled as a distinct object making up the whole of the machine. Each of 
the modeled objects is tagged with the symbolic information that can be visually 
encoded. For example, the coin slot, selector, and vending machine body are tagged 
with their VALUE slot equal to “SLOT”, “BUTTON”, and “MACHINE.” The labels 
next to the selectors are tagged with their VALUE slot equal to the drink name 
represented by the label (i.e. “Water,” “Lemonade,” etc.).  

The Model. Once the environment is modeled and imported into the virtual 
environment, a cognitive model for the specific task can be created. It should be 
possible to create a single model that would perform both of the current tasks and 
many other tasks but, for the current research, separate models have been created for 
simplicity. 

Based on the human performance data, four basic tasks were identified: deposit 
coins, determine a desired drink, select the desired drink, and retrieve the drink. The 
first two tasks are somewhat independent and are often interleaved during actual 
human performance. Selecting the desired drink cannot be done until the coins have 
all been deposited and the desired drink has been identified. Likewise, the drink 
cannot be retrieved from the drink bin until a selection is made. 

4.2   The Model Assembly Task (Object Manipulation) 

The object manipulation task requires participants to encode the shape, size, 
orientation, and spatial relationship of the blocks that make up the model. Participants 
must then use the stored information to construct a matching model from available 
parts. In order to model this task, the virtual environment must contain all of the parts 
that make up the block models. 

The Environment. The object manipulation task required 15 virtual object 
prototypes: the 14 blocks used in the models and the workbench. All of the object 
prototypes were constructed using CATIA and imported into the Virtools 
environment. Two instances of the 14 blocks were created in the environment: the 
blocks available to the digital human (source pile) and the blocks used in the example 
model.  

As in the vending machine environment, each object was tagged with symbolic 
information that could be encoded visually. In this environment, there are two classes 
of objects. The workbench is encoded using the basic visual-object tag and only basic 
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information is available to the model. This includes location, size (in the visual array), 
distance, color, motion, etc. The blocks all share a block tag derived from the visual-
object tag with additional parameters including: shape, size, and orientation.  

When the model attends to one of the blocks, the block’s shape, size, and 
orientation are encoded. For some parts of the model assembly, the model must 
encode the stability of the block. The model accomplishes this by monitoring the 
motion values of the basic visual-object tag. If a support block or a top block is 
moving, the model can perceive the possible instability and attempt to adjust the 
blocks. This is important for ensuring that bottom blocks successfully support top 
blocks. The model also encodes spatial relationships between the blocks. This 
encoding is critical for determining the correct position to place blocks. 

The Model. The model for object manipulation is more complicated than the model 
for human-machine interaction. The object manipulation task includes encoding of 
block information and spatial relationships between blocks as well as additional 
movement styles to orient and place the blocks. However, participants tend to perform 
the block task in a clear, serial fashion without the interleaving of two sub-tasks as 
seen in the vending machine task.  

Based on human performance data, 6 components of the task were identified: 
model assessment, target selection, search for a block, orientation of a block, 
placement of a block, and target re-assessment. The model begins the task by finding 
the example and examining its makeup.  

Participants appeared to use one of two strategies for constructing a copy of the 
example. Some participants worked from the bottom up and selected a single target 
block. Other participants appeared to identify patterns, then select blocks to build the 
pattern. Once a pattern was built, participants moved on to the next piece or pattern. 
In the initial assessment, the actor may identify pattern components or single 
components. After the assessment, the actor selects one of the identified components 
as the target. If a pattern is available, the actor may select the pattern even if it is not 
the base. If a pattern is constructed, the construction of the pattern is completed before 
moving to another part of the example model. For example, if the 2-blocks-1-triangle 
pattern at the top of M1 is selected, the actor will construct the pattern without 
referring back to the example model. Once the pattern is completed, it is treated as a 
single object to be added to the rest of the actor’s construction. If no pattern was 
identified, the model will select a single base object.  

The visual features (i.e. shape, size, etc.) of the target block are encoded to guide 
the actor’s search of the source pile. The actor shifts attention to the source pile and 
searches for a block matching its internal representation of the target block. As 
attention shifts to possible matches in the source pile, the features of the currently 
attended block are compared to the stored features of the target block. Once a target 
block was found, participants would sometimes refer back to the target block. 
Multiple interpretations of this reference are possible. Participants could be verifying 
their selection. They could have failed to encode orientation or position when the 
target was selected. This target re-assessment can occur after almost every step in the 
construction process when the actor needs more information. In the pattern strategy, 
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participants may perform this re-assessment less as they may build an entire pattern 
before looking back to the main model.  

Placing a block requires orienting the model correctly (and potentially re-assessing 
the target) and placing the model correctly (and potentially re-assessing the target). 
During placement, features such as motion are visually monitored to ensure the 
stability of the construction.  

The model continues in this pattern until the example model has been successfully 
copied. 

5   Discussion 

The current research applies an initial integration of cognitive modeling and digital 
human modeling to two basic tasks. While the tasks currently being modeled are 
relatively simple, the fundamental cognitive processes may be applied to more 
complex tasks. For example, the perception and motor components of the operation of 
complex machinery are not significantly different from those used to accomplish the 
vending machine task. The operator encodes the features of the machine including 
display information and operators (buttons/levers/etc.). The operator performs a task 
based on if-then rules stored in procedural memory. The operator executes motions to 
act on the machinery. In the assembly task, the cognitive and perceptual components 
are similar. The motor capabilities in assembly tasks are particularly important and 
the use of a more effective digital human model than a simple animated avatar is 
required.  

By extending ACT-R’s sensory and action systems and integrating the architecture 
with a virtual environment, the possibilities for cognitive modeling may be greatly 
expanded. Future extensions may be made to include advanced computational models 
of human posture and motion. Once validated, these integrated digital human models 
will be powerful tools allowing designers to investigate both the cognitive and the 
ergonomic aspects of workspaces and products at the earliest stages of design. 
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