
J. Jacko (Ed.): Human-Computer Interaction, Part III, HCII 2007, LNCS 4552, pp. 134–143, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Towards Multimodal User Interfaces Composition
Based on UsiXML and MBD Principles

Sophie Lepreux1, Anas Hariri1, José Rouillard2, Dimitri Tabary1,
Jean-Claude Tarby2, and Christophe Kolski1

1 Université de Valenciennes et du Hainaut-Cambrésis, LAMIH – UMR8530,
Le Mont-Houy, F-59313 Valenciennes Cedex 9, France

2 Université de Lille 1, Laboratoire LIFL-Trigone, F-59655 Villeneuve d’Ascq Cedex,
France

{sophie.lepreux,anas.hariri,dimitri.tabary,
christophe.kolski}@univ-valenciennes.fr,

{jose.rouillard,Jean-claude.tarby}@univ-lille1.fr

Abstract. In software design, the reuse issue brings the increasing of web
services, components and others techniques. These techniques allow reusing
code associated to technical aspect (as software component). With the
development of business components which can integrate technical aspect with
HCI, the composition issue has appeared. Our previous work concerned the
GUI composition based on an UIDL as UsiXML. With the generalization of
Multimodal User Interfaces (MUI), MUI composition principles have to be
studied. This paper aims at extend existing basic composition principles in
order to treat multimodal interfaces. The same principle as in the previous
work, based on the tree algebra, can be used in another level (AUI) of the
UsiXML framework to support the Multimodal User Interfaces composing.
This paper presents a case study on the food ordering system based on
multimodal (coupling GUI and MUI). A conclusion and the future works in the
HCI domain are presented.

Keywords: User interfaces design, UsiXML, AUI (Abstract User Interface),
Multimodal User Interfaces, Vocal User Interfaces.

1 Introduction

The reuse is an important issue in software design, and by extension in interactive
software design [2]. Means to support reuse have evolved in the meantime, from
modularity to component-based development via object development. So the reuse
issue brings the increasing of web services, components and others techniques. These
techniques allow reusing code associated to technical aspect (as software component).
The reuse can be applied to several steps of the development cycle with the support of
three types of component: (1) the code components have a small granularity and are
used at the development time; (2) the design components (as proposed by [1]) are
used to reuse the known solutions at the design time; (3) the business components
have a large granularity and are specific to the domain, they are defined at the

 Towards MUI Composition Based on UsiXML and MBD Principles 135

analysis step. They can be associated to a task in the domain. A goal composition
based on tasks was studied by to facilitate the reuse [7]. As these business
components can integrate technical aspects with HCI, the composition issue appears.

The Model Based-Development (MBD) appears as a solution adapted to the reuse,
the User Interface Definition Language (UIDL) named UsiXML (USer Interface
eXtensible Markup Language) respects the MBD principles [8]. This language allows
defining the User interface from four levels defined by the CAMELEON Project.
UsiXML proposes four steps to define the user interface (cf. Figure 1). The Tasks &
Concepts level describes the interactive system specifications in terms of the user
tasks to be carried out and the domain objects of these tasks. An Abstract User
Interface (AUI) abstracts a Concrete User Interface (CUI) into a definition that is
independent of any interaction modality (such as graphical, vocal or tactile). A CUI
abstracts a Final User Interface (FUI) into a description independent of any
programming or markup language in terms of Concrete Interaction Objects, layout,
navigation, and behavior. A FUI refers to an actual UI rendered either by
interpretation (e.g., HTML) or by code compilation (e.g., Java).

Multimodality appears as a new technology adopted in the current inhomogeneous
environments where several types of users work in different states and interact with a
multitude of platforms. Multimodality tries to combine interaction means to enhance
the ability of the user interface adaptation to its context of use, without requiring
costly redesign and reimplementation. Blending multiple access channels provides
new possibilities of interaction to users. The multimodal interface promises to let
users choose the way they would naturally interact with it. Users have the possibility
to switch between interaction means or to multiple available modes of interaction in
parallel.

Environment T

Final user
Interface T

Concrete user
Interface T

Task and
Domain T

Abstract user
Interface T

T=Target context of use

Concrete user
Interface S

Final user
Interface S

Task and
Domain S

Abstract user
Interface S

S=Source context of use

Reification

Abstraction

Reflexion

Translation

http://www.plasticity.org

UsiXML
unsupported

model

UsiXML
supported

model

User S Platform S Environment S Platform TUser T Environment TEnvironment T

Final user
Interface T

Concrete user
Interface T

Task and
Domain T

Abstract user
Interface T

T=Target context of use

Concrete user
Interface S

Final user
Interface S

Task and
Domain S

Abstract user
Interface S

S=Source context of use

ReificationReification

AbstractionAbstraction

ReflexionReflexion

TranslationTranslation

http://www.plasticity.org

UsiXML
unsupported

model

UsiXML
supported

model

User S Platform SPlatform S Environment SEnvironment S Platform TPlatform TUser T

Fig. 1. The four abstraction levels used in the CAMELEON1 framework

1 http://giove.isti.cnr.it/cameleon.html

136 S. Lepreux et al.

Since a few years, the W3C is working on this aspect and is publishing
recommendations concerning a vocal interaction language based on XML, called
VoiceXML, which allows describing and managing vocal interactions on the Internet
network. VoiceXML is a programming language, designed for human-computer audio
dialogs that feature synthesized speech, digitized audio, recognition of spoken and
DTMF (Dual Tone Multi-Frequency) key input, recording of spoken input, telephony,
and mixed initiative conversations. Its major goal is to bring the advantages of web-
based development and content delivery to interactive voice response applications
[9, 10, 11].

The second section presents (1) the basic principles of our previous work on the
Visual GUI composing based on UsiXML2, and (2) the new rules to compose user
interfaces and in particular multimodal user interfaces. In order to validate the
proposed rules, a case study on a food ordering system will be the object of the third
section. Finally the paper will conclude with the future works.

2 From GUI Composing to MUI Composing

2.1 Operators at the CUI Level for the GUI Composing

During a previous work, we have proposed composition rules to support GUI
composition: each GUI is defined at concrete level of UI definition [4,5]. Since the UI is
represented in UsiXML terms and since it is a XML-compliant language (cf. Figure 2),
operations could be defined thanks to tree algebra.

In this work, the used notation is based on the data model defined by Jagadish and
colleagues [3]. In this model, a data tree is a rooted, ordered tree, such that each node
carries data (its label) in the form of a set of attribute-value pairs. Each node has a
special, single valued attribute called tag whose value indicates the type of element. A
node may have a content attribute representing its atomic value. Each node has a
virtual attribute called pedigree drawn from an ordered domain. The pedigree carries
the history of “where it came from”. Pedigree plays a central role in grouping, sorting
and elimination of repetitive elements.

They define a pattern tree as a pair P=(T, F), where T=(V,E) is a node-labelled and
edge-labelled tree such that:

• Each node in V has a distinct integer as its label ($i);
• Each edge is either labeled pc (for parent-child) or ad (for ancestor-descendant);
• F is a formula, i.e. a Boolean combination of predicates applicable to nodes.

This pattern is used to define a database and to define the predicate used in the
operations. This notation is adapted to documents specific to interface. Indeed, in the
HCI case, the most important is the structure and not the content. For example, it is
more important to know that the window has a box as sub-element than that the
window has a height equal to 300. So the attributes are stored with the tag. A node is
a tag with these attributes and their content. The pattern tree keeps coherent with the
variant definition. Another point specific to the database is that the data are in several

2 http://www.usixml.org

 Towards MUI Composition Based on UsiXML and MBD Principles 137

<cuiModel id="FicheClient-cui_3" name="FicheClient-cui">

<window id="window_component_0" name="window_component_0"

width="300" height="200">

<box id="box_1" name="box_1" type="vertical">

<outputText id="output_text_component_2"

name="output_text_component_2« …

<box id="box_2" name="box_1" type=« horizontal">

<outputText id="output_text_component_3"

name="output_text_component_3« … \>

<inputText id="input_text_component_5"

name="input_text_component_5" isVisible="true"

isEnabled="true" textColor="#000000" maxLength="50"

numberOfColumns="15" isEditable="true"/>

<\box>

<box id="box_3" name="box_1" type=« horizontal">

<outputText id="output_text_component_4"

name="output_text_component_4« …

<inputText id="input_text_component_6"

name="input_text_component_6" isVisible="true« … />

<\box>

<box id="box_4" name="box_1" type=« horizontal">

<button id="button_component_7"

name="button_component_7"/>

<button id="button_component_8" …/>

<\box>

</box>

</window>

</cuiModel>

Window (id=window, name=window, width="300" height="200")

Box (type=« vertical »)

Button
(DefaultContent = Save)

Button
(DefaultContent=Close)

Output (Default value =« customer form »)

Box (type = horizontal)Box (type = horizontal)

Output
(…)

Input
(…)

Box (type = horizontal)

Output
(…)

Input
(…)

Window (id=window, name=window, width="300" height="200")

Box (type=« vertical »)

Button
(DefaultContent = Save)

Button
(DefaultContent=Close)

Output (Default value =« customer form »)

Box (type = horizontal)Box (type = horizontal)

Output
(…)

Input
(…)

Box (type = horizontal)

Output
(…)

Input
(…)

Fig. 2. User interface and its representation in UsiXML and as Tree

Fig. 3. Example of the Selection operator using to select the outputs of the input UI

data trees so the operators use a collection of data trees in input and output. In the
HCI case, the input is one (for the unary operators) or two (for the binary operators)
XML documents so one or two data trees. The proposed operators to manipulate the
CUI model are Similarity, Equivalence, Subset, Set, Selection (cf. Figure 3),
Complementary, Difference (Right or Left), Normal Union, Unique Union,
Intersection, and Projection. These operations are logically defined on the XML tree
and directly performed.

2.2 Adaptation of the Operators at the AUI Level for the Multimodal User
Interfaces Composing

If the need is to compose user interface in Difference modality then we need to use
the upper level as AUI. The same principle as in the previous work based on tree

138 S. Lepreux et al.

algebra can be used in the other level of the UsiXML framework. The rules are
proposed at the AUI level in order to allow the composition at level which is
independent of the modality. A set of operators as Fusion, Intersection, and others are
adapted to AUI model. An algorithm of Normal Union adapted to AUI model is
proposed below:

Normal Union: The Union operation takes a pair of trees
T1 and T2 as input and produces an output tree as
follows.

Firstly, the root of the output tree T3 is created:

If (T1.$1.tag = T2.$1.tag = abstractContainer) then
T3.$1.tag = abstractContainer

The node in which integrate the second tree is chosen.

If (subtree ti = subtree tj, ti ∈ T1, tj ∈ T2) then

 If (relation (ti-1, ti) = relation (tj-1, tj)=
order independency) then add (ti-1, order independency,
ti, order independency, tj-1,) in T3.

 If (relation (ti-1, ti) = relation (tj-1, tj)=
enabling) then add (abstractContainer AC1 in which
added (ti-1, R1’, tj-1), enabling, ti)…

3 A Case Study on a Food Ordering System on Internet

The case study developed in this section illustrates the Union operator presented in
the previous part. Two applications are available. The first one is a multimodal
application which aims at ordering pizza. The multimodal part which is available is
“Choose a pizza”. The CUI model and its FUI corresponding (XHTML+VoiceXML)
are presented in the figure 4 (c, d), while the “Give delivering address” part is not
available and can not content vocal modality (this point is discussed in conclusion).
The second application is graphical which allows to ordering Chinese food; likewise
CUI model and its FUI (in Java) corresponding to the “Choose Meal” task are
realized with GrafiXML editor and presented in figure 4 (c, d, e). The AUI (Abstract
User Interface) models of each application are developed (Figure 4a and 5a) with the
IdealXML editor [6].

The goal is first to obtain a multimodal application allowing to order Chinese food
or pizza, and second to reuse the “give delivering address” task from the Chinese food
application.

In order to apply the tree algebra operators, the definition needs to be adapted.
While the operators applied to the CUI model need to know the structure of the user
interface, the operators applied to the AUI model must in addition taking account the
relationships. In our example, the tree representations of the two AUI (figure 4a and
5a) are presented in the figure 4b and 5b. In this representation, the relationships are
generalized in R1 and R2 in order to treat different possibilities.

 Towards MUI Composition Based on UsiXML and MBD Principles 139

<outputText id="Ask_for_pizza_quantity"
name="Ask_for_pizza_quantity" defaultContent="Quantity:"/>

 <inputText id="pizzaQuantity" name="quantity"
defaultContent="1"
voice_prompt="How many pizzas would you like?"
voice_event_help="Say a number between one and twenty."
voice_event_nomatch="Sorry I did not understand you."
voice_event_noinput="You have to pronounce a quantity of
pizza."/>

 <voice_quantity:grammar>
 <![CDATA[
 #JSGF V1.0;
 grammar pizza_quantity;
 public <quantity> = 1 | 2 | 3 | 4 | 5 | 6 | 7 |

8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20
;

]]>
 </voice_quantity:grammar>
 </inputText>
<outputText id="Ask_for_pizza_size" name="Ask_for_pizza_size"

defaultContent="Size:"/>
<group voice_prompt="What size would you like?">

 <radioButton id="radiobuttonSize1"
name="radiobuttonSize" defaultContent="small" />

 <radioButton id="radiobuttonSize2"
name="radiobuttonSize" defaultContent="medium"/>

 <radioButton id="radiobuttonSize3"
name="radiobuttonSize" defaultContent="large"/>

 <voice_quantity:grammar>
 <![CDATA[
 #JSGF V1.0;
 grammar pizza_size;
 public <size> = small | medium | large ;
]]>
 </voice_quantity:grammar>
</group>

a)

c) d)

AUI Model

AbstractContainer AUI0

AbstractContainer AUI021

AIC AIC AIC

AIC = AbstractIndividualComponent

AbstractContainer AUI01

AIC AIC AIC AIC
b)

Order a pizza

AUI01: Choose a pizza

Choose
size

Choose
toppings

Choose
vegetable

Choose
meat

AUI02: Give delivering
address

Give
name

Give
phone

Give
address

Choose
quantity

Fig. 4. (a) AUI model of Chinese food ordering application, provided by IdealXML, (b) AUI
model in tree representation (c) CUI model extract and (d) FUI associated to the pizza ordering
application (Multimodal application but the vocal part is not visible)

If R1 and R2 relationships are “order independency” then the union operator
provides a new tree with the three AUIContainers : “Choose a pizza”, “Choose Meal”
and “ Give delivering address” with the relationship “order independency “ between
these three tasks. The “give delivering address” container (AUI3) was detected as
repetitive element in the AUI models and as a result only one of them is reported in
the resulting tree.

140 S. Lepreux et al.

<cuiModel id="ChineseFood-cui_12" name="ChineseFood-cui">
 <window id="window_component_0" name="window_component_0"
 defaultContent="Chinese Food Order" width="263" height="491">
 <gridBagBox id="grid_bag_box_1" name="grid_bag_box_1"
 gridHeight="24" gridWidth="13">
 <outputText id="output_text_component_2"
 name="output_text_component_2"
 defaultContent="APPETIZER :"/>
 <checkBox id="checkbox_component_3"
 name="checkbox_component_3"
 defaultContent="Small Fried Shrimp"/>
 <checkBox id="checkbox_component_4"
 name="checkbox_component_4"
 defaultContent="Nicky's Egg Roll"/>
 <checkBox id="checkbox_component_5"
 name="checkbox_component_5"
 defaultContent="Fried Popcorn Shrimp"/>
 <outputText id="output_text_component_6"
 name="output_text_component_6"
 defaultContent="STARTER :" isVisible="true"/>
 <radioButton id="radiobutton_component_7"
 name="radiobutton_component_7"
 defaultContent="Seaweed Soup" isVisible="true"/>
 <radioButton id="radiobutton_component_9"
 name="radiobutton_component_9"
 defaultContent="Hot and Sour Soup"/>

…
 <button id="button_component_22"
 name="button_component_22"
 defaultContent="Cancel" isVisible="true"/>
 <button id="button_component_23"
 name="button_component_23"
 defaultContent="Order" isVisible="true"/>
 </gridBagBox>
 </window>
 </cuiModel>

c)

d) e)

Order Chinese food

AUI03: Choose meal

Choose
appetizer

Choose
starter

Choose
soup

Choose
rice

AUI02: Give delivering address

Give
name

Give
phone

Give
address

a) b)

AUI Model

AbstractContainer AUI0

AbstractContainer AUI03 AbstractContainer AUI02R2

AIC AIC AIC AIC AIC AIC AIC

AIC = AbstractIndividualComponentOrder Chinese food

AUI03: Choose meal

Choose
appetizer

Choose
starter

Choose
soup

Choose
rice

AUI02: Give delivering address

Give
name

Give
phone

Give
address

a) b)

AUI Model

AbstractContainer AUI0

AbstractContainer AUI03 AbstractContainer AUI02R2

AIC AIC AIC AIC AIC AIC AIC

AIC = AbstractIndividualComponent

AUI Model

AbstractContainer AUI0

AbstractContainer AUI03 AbstractContainer AUI02R2

AIC AIC AIC AIC AIC AIC AIC

AIC = AbstractIndividualComponent

Fig. 5. (a) AUI model of pizza ordering application, provided by IdealXML, (b) AUI model in
tree representation (c) CUI model extract and (d) FUI associated to the “Choose meal” sub task
and (e) FUI associated to the “Give delivering address” sub task of the Chinese food ordering
application (Graphical application); the (c, d, e) elements are provided by GrafiXML3

3 GrafiXML is an editor associated to UsiXML available at http://www.usixml.org

 Towards MUI Composition Based on UsiXML and MBD Principles 141

AUI Model

AbstractContainer AUI0

AbstractContainer AUI03 AbstractContainer AUI02R2’

AIC AIC AIC AIC AIC AIC AIC

AIC =
AbstractIndividualComponent

AbstractContainer AUI0’

AbstractContainer AUI01 R1’

AIC AIC AIC AICAIC

a)

b)

AUI0: Order food

AUI0’: Choose food

AUI03: Choose meal

AUI02: Give
delivering
address

AUI01: Choose a pizza

Give
name

Give
phone

Give
address

[Choose
Appetizer]

[Choose
Starter]

choose
soup

Choose
rice

Choose
Quantity

Choose
Size

Choose
toppings

[Choose
Vegetable]

[Choose
Meat]

Fig. 6. (a) AUI model result and (b) its tree representation of Union operator

 Pizza/Chinese Food Order Pizza/Chinese Food Order

Chinese Food

Cancel Next

Quantity:

Size:
Small 12" Large 22"Medium 16"

Toppings :

Extra Cheese

Vegetable Toppings :

Olives Mushrooms
Onions Peppers

Meat Toppings:

Pepperoni
Chicken

Meatball Sausage
Ham Bacon

Pizza

 Delivering address Delivering address

Back Submit

Firstname

Surname

Road

Postal Code

Phone

Town

2nd phone

Mobile 2nd mobile
Fax number

Email

Note

URL

Fig. 7. Resulting FUIs generated from the AUI. In the first window, the first tab is a
multimodal reuse from the first application while the second tab is the result from the second
application (graphical can be reuse or multimodal must be generated). The second window,
corresponding to the common task “Give delivering address”, is graphical.

If R1 and R2 are « enabling » relationships, the union operator detects the common
part as AUI02 “Give delivering address”. As the previous relation is enabling then a
new abstractContainer is created (AUI0’ and named by the designer). The relation
R1’ is also chosen by the designer (here order independency) and R2’ is enabling

142 S. Lepreux et al.

relationship. The result in this case is presented in figure 6. The figure 6a shows the
AUI model resulting while the figure 6b shows the tree representation associated to
the result.

In order to entirely reuse the existing application, the CUI model is always linked
to the AUI model. Thus when the composition (the using of operator) is realized, the
CUI parts stay available. The reification in the CUI model can be immediately
operated. The result is also generated and is shown in the figure 7. Two windows
correspond to the two containers: 1 - AU0’: Choose a food and 2 - AUI02: Give
delivering address. The tags allow to give the choice to the user between the food to
choose: Pizza or Chinese food. The first window is Multimodal because generated in
part from a multimodal CUI, whereas the second window is graphical because it is
generated from the CUI specific to the graphical modality.

4 Conclusion

From previous work on GUI composing, we tried to apply the same principle of using
tree algebra operators to compose multimodal user interfaces. This adaptation is
realized at the AUI level to be independent to the modality. The example of the Union
of two existing interfaces (one GUI and one MUI) was used to apply the union
operator. The issue outlines that the previous work can not be used exactly in the
same way so a new adaptation is necessary and proposed. The proposal is validated
on the example of the case study. In the context of the case study, some limitations
were identified during the automatic generation of multimodal applications
development. First, VoiceXML applications are described by context-free grammars.
Then, recognized vocabulary is limited. If vocal grammars are easy to prepare for
input fields for which we already know all the possible values, it is more difficult
even impossible to establish a grammar for open fields. For example, it is not possible
to prepare an exhaustive grammar for the field “Name input”, because, of course, all
the possible responses could not be prepared for this field. Second, it is not possible to
obtain synergic multimodal applications, because, we are limited by the X+V
language [12]. Indeed, with X+V, the user can choose to use a vocal or a graphical
interaction, but it is not yet possible to pronounce a word and click on a object
simultaneously, in order to combine the sense of those interactions.

Our research perspectives concern the reuse of the CUI adapted to different
modalities; for instance let us suppose two applications with similar tasks: if the first
one is defined with a graphical CUI and the other one with a vocal + graphical CUI,
how the first application (its CUI) could be transformed into a multimodal version?

Acknowledgement. The present research work has been supported by the “Ministère
de l'Education Nationale, de la Recherche et de la Technologie», the «Région Nord
Pas-de-Calais» and the FEDER (Fonds Européen de Développement Régional) during
the projects MIAOU and EUCUE. The authors gratefully acknowledge the support of
these institutions. The authors thank also Jean Vanderdonckt for his contribution
concerning UsiXML.

 Towards MUI Composition Based on UsiXML and MBD Principles 143

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of reusable
Object-Oriented Software. Addison Wesley, Massachusetts (1994)

2. Grundy, J.C., Hosking, J.G.: Developing Adaptable User Interfaces for Component-based
Systems. Interacting with Computers 14(3), 175–194 (2001)

3. Jagadish, H.V., Lakshmanan, L.V.S., Srivastava, D., Thompson, K.: TAX: A Tree Algebra
for XML. LNCS, vol. 2397, pp. 149–164. Springer, Heidelberg (2001)

4. Lepreux, S., Vanderdonkt, J., Michotte, B.: Visual Design of User Interfaces by
(De)composition. In: Doherty, G., Blandford, A. (eds.) DSVIS 2006. LNCS, vol. 4323,
Springer, Heidelberg (2007)

5. Lepreux, S., Vanderdonckt, J.: Toward a support of the user interfaces design using
composition rules. In: Proc. of the 6th International Conference on Computer-Aided
Design of User Interfaces, CADUI’2006, Bucharest, Romania, June 5-8, 2006, pp.
231–244. Kluwer Academic Publishers, Boston (2006)

6. Montero, F., Víctor López Jaquero, V.: IDEALXML: An Interaction Design Tool and a
Task-based Approach to User Interface Design. In: Proc. of the 6th International
Conference on Computer-Aided Design of User Interfaces, CADUI’2006, Bucharest,
Romania, June 5-8, 2006, pp. 245–252. Kluwer Academic Publishers, Boston (2006)

7. Nielsen, J.: Goal Composition: Extending Task Analysis to Predict Things People May
Want to Do (1994) available at http://www.useit.com/papers/goalcomposition.html

8. Vanderdonckt, J.: A MDA-Compliant Environment for Developing User Interfaces of
Information Systems. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520, pp. 16–31. Springer, Heidelberg (2005)

9. VoiceXML 1.0., W3C Recommendation, http://www.w3.org/TR/voicexml10
10. VoiceXML 2.0., W3C Recommendation, http://www.w3.org/TR/voicexml20
11. VoiceXML 2.1, Working Draft, http://www.w3.org/TR/voicexml21/
12. X+V, XHTML + Voice Profile, http://www.voicexml.org/specs/multimodal/x+v/12

	Introduction
	From GUI Composing to MUI Composing
	Operators at the CUI Level for the GUI Composing
	Adaptation of the Operators at the AUI Level for the Multimodal UserInterfaces Composing

	A Case Study on a Food Ordering System on Internet
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

