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Abstract. This paper deals with model based regularization of veloc-
ity encoded cardiac magnetic resonance images (MRI). We extend upon
an existing spatiotemporal model of cardiac kinematics by considering
data certainty and regularity of the model in order to improve its perfor-
mance. The method was evaluated using a computer simulated phantom
and using in vivo gridtag MRI as gold standard. We show, both quanti-
tatively and qualitatively, that our modified model performs better than
the original one.

1 Introduction

Cardiovascular disease is the main cause of death in the western world with left
ventricular infarction as the predominant contributor to this phenomenon. The
use of non-invasive and non-ionizing imaging techniques, such as echocardiogra-
phy and MRI have aided in the diagnosis through the ability to directly visualize
cardiac structure and function.

Quantitative assessment of regional myocardial function is a challenging but
important task as subjective assessment of regional wall motion may suffer
from poor inter-observer agreement [I]. Several approaches have been devel-
oped for the quantitation of regional myocardial function using MRI. Satu-
ration grid-tagging allows direct evaluation of myocardial deformation of the
heart [2],[3], [],[5] but is limited by relatively low spatial resolution and tag
fading late in diastole [6],[7]. Further, specialized software for identification of
tag lines is needed [§].

Another approach utilizes the velocity information present in phase con-
trast sequences providing velocity fields with high spatial and temporal reso-
lution [9]. This velocity data may be used to directly calculate myocardial strain
rate [10],[T1],[12],[I3] or can be integrated with respect to time, giving the motion
of the myocardium. From this basal kinematic descriptor, a number of interest-
ing mechanical properties, such as Lagrangian strain, may be derived, which
may provide understanding of cardiac mechanics and diagnosis of disease.

The measured velocity field is subject to noise, imaging artifacts and degrada-
tion by sampling in time and space. The "forward—backward’ integration [14],[15]
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ensures a periodic motion but does not model any spatial coherence of the my-
ocardium. Other approaches have used a deformable mesh guided by a Kalman
filter, or combined with Fourier analysis to obtain both periodic motion and
spatial smoothness [16], [17], [18],[19].

The purpose of this work is to develop a model based regularization strategy
for velocity data measured using phase contrast MRI in order to be able to
measure cardiac deformation and strain in a quantitative way. Zhu proposed
the use of a cyclic spatiotemporal finite element model [I9]. The elements in
the model were constructed by piecewise linear functions and harmonics with
varying frequency to ensure a periodic motion. The parameters in the model were
determined by an iterative scheme consisting of updating the mesh configuration
and projection of the sampled velocity onto the elements.

We extended upon this spatiotemporal model in a number of ways. Zhu et
al used a moving mesh to define the spatial elements. These elements needed
to be redefined and the stiffness matrix was reconstructed in every iteration.
We instead described the deformation in Lagrangian coordinates which results
in a fixed mesh and also a fixed stiffness matrix. Secondly, the use of piecewise
continuous elements may be inappropriate as the velocity field in a solid in
motion must be not only be continuous but also differentiable [20]. We therefore
investigated other elements. Further, the projection of measured velocities onto a
model does not necessarily imply smoothness if no constraints are imposed on the
parameters. The measured velocity field may be locally corrupted by e.g. partial
volume averaging. We therefore estimated the certainty of a given measurement
and included this information when determining the model parameters.

2 Methods

2.1 Image Acquisition

Velocity data was acquired in both in-plane directions in long-axis slices in hu-
man subjects for a total of 20 acquisitions. A 1.5 T Gyroscan Intera Scanner
(Philips Medical Systems) was used for the acquisitions. Acquisition time var-
ied between 30-90 s. Spatial and temporal resolution was 1.5 mm x 1.5 mm X
10 mm, with 32 time frames covering the whole cardiac cycle. Typical imaging
parameters were repetition time (TR) = 24 ms, echo time (TE) = 5.3 ms, vey.
= 0.20 m/s, flip angle = 20°, matrix size = 256 x 192 pixels and field of view
(FOV) = 400 mm x 300 mm. Saturation bands (30 mm thickness, 30 mm gap
to image plane) superior and inferior to the imaging slice were applied to reduce
signal from blood [2I]. Retrospective gating was used when reconstructing the
images. The boundary of the left ventricle was manually delineated in the first
frame of each image sequence.

For validation purposes, saturation tagged images were acquired as a single
breathhold sequence in the same imaging plane. Typical imaging parameters
were: TR = 3.8 ms, TE = 1.8 ms, flip angle = 15°, saturation tag gap = 7 mm,
matrix size = 256 x 192 pixels, FOV 400 mm x 300 mm, resulting in a temporal
resolution of 64 ms.
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2.2 Spatiotemporal Model

Let x be the coordinate vector in R?, and time ¢ = [0,7]. We assume that we
have acquired an image sequence I(x,t) : R? x (0,T) — [0, 1] and a velocity field
v(x,t) : R? x (0,T) — R2. The measured image sequence and the velocity field
will only be given at discrete points in spacetime but can be treated as functions
defined on all of R? by interpolation. We let £2 be the set of points, henceforth
called particles, that occupies the left ventricle at time ¢ = 0 and let x denote
the Lagrangian coordinate vector. The set {2 is given by manual delineation of
the left ventricle in the images.

We are interested in the motion ¢(x,t) : 2 — R? for all particles. It is given
by the particle trace equation

do(x,1)

o =000, 1)

The right hand side v(x, ) is given by measurements by velocity encoded MRI,
and is subject to noise and artifacts. Therefore we do not attempt to solve () for
individual particles. Following an approach similar to the one of Zhu et al [19],
we construct a spatiotemporal model of the deformation of the left ventricle.
We construct a vector G(x) of length N with spatial basis elements g;(x) to be
defined shortly, and a vector H(t) of length K with temporal basis elements of
the form hy(t) = exp 2mjk/T. The spatiotemporal model is constructed as

o(x,t) = x+ (G(x) @ H(t)) c, 2)

where ® denotes the Kronecker direct product and c is a coefficient matrix of
size NK x 2. By construction, ¢(x,t) will be periodic in ¢ which is useful when
describing cardiac motion. The Lagrangian velocity is given by

do(x,t)

o = (G @ M) e

with w a diagonal matrix with elements 27jk/T. The goal is to adapt this model
to data by choosing the coefficient matrix ¢ in an appropriate way.
If @) holds, then

2

d(xt) dxdt = 0

= v(o(x,1),1)

so the particle trace equation can be reformulated as minimization of £. If we
consider v(¢(x,t),t) as a fixed function, not depending on c, we can differentiate
& with respect to ¢ and equate to zero to obtain a linear system

(/ /G® (Hw))T (G @ (Hw) dxdt> // (G ® (Hu))Tv(o(x, ))dxdt.

3)
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For ease of notation we let the left hand side stiffness matrix be denoted by K
and the right hand side by b so that (@] reads

Kc=b. (4)

Now, minimization of £ can be accomplished by iterative sampling of v(x,t) at
x = ¢(x,t), and updating the model parameters by solving ().

2.3 Choice of Spatial Elements

There is a large selection of basis elements to choose from. A common choice
of elements are the piecewise linear interpolation functions, as used by Zhu et
al [19]. This choice may be inappropriate as the resulting function is not differ-
entiable which violates the property that a deformation of a body is required to
be in C? with respect to both space and time [20].

Our use of the elements is quite different from the use in e.g. the finite el-
ement method (FEM) where the purpose is to approximate a function as well
as possible. In FEM applications it is common to refine a solution by adding
and/or reshaping elements. In this application, a refinement would potentially
lead to a less regular solution as the increased number of degrees of freedom will
make it easier for the model to adapt to noise and artifacts. A similar reasoning
applies to elements with a small support.

Thin plate splines (TPS) are a class of widely used non-rigid mappings, and
are often used in computer vision tasks such as image registration or warping.
The TPS is given by [22],

g(x) = [x*Inx,

which is a C? function outside the origin. We construct the vector G in (@) as
G(x); = g(x—x;), where the points x;, 7 = 1,..., N are placed on the boundary
of £2. By this we obtain a model that generates a C? mapping that can be locally
controlled by the coefficient matrix c.

2.4 Extension of the Spatiotemporal Model

The right hand side in () is constructed using measurements. It would therefore
be a good idea to estimate a certainty of v(¢(x,t)). We formally construct it as
w(x,t) : R? — [0,1], and redefine £ as a weighted functional

£ = / /(dq“” v(¢(x,t)7t)>2w(qﬁ(xﬁ),t)dxdt:0.

The explicit construction of w(x,t) will be discussed below. This will also lead
to a linear system, which will be similar to [B]). We construct the weight function
by considering the local variation of the vector field around a given point ¢(xy, t)
and let

w(d(Xp,t) = exp (—/B i (v(o(x,t)) — V(¢(Xk,t)))2 dx/<72>7
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where B, (x1) is a neighborhood of xj, and o is a tunable parameter. Here we
note that the variation is defined for the measured velocities sampled along the
estimated particle traces. As these velocities are supposed to be sampled within
the myocardium, we do not expect them to have a large variation within a given
neighborhood.

Even if we use a motion model, it does not necessarily generate what we, in
some sense, mean by a regular deformation. If the coefficient matrix can be cho-
sen arbitrarily it would be easy to generate deformations that are unreasonable
from both a physiological and a physical point of view. To avoid such unwanted
behavior we propose an additional regularity term in the energy functional. We
construct it as

T
gregularity:/o /Q|A¢(X,y)|2dxdt,

where A is the spatial Laplace operator. This regularity term only affects the spa-
tial part of the deformation. The temporal part can be regularized by e.g. using
only few harmonics in the model. Further, the regularizing term does not penalize
affine transformations and as a consequence does not penalize rigid transforms.
This is an important property, as otherwise the regularity term would depend
on our choice of coordinate system. The addition of this term will transform ()
to

Kc + ALc = b,

where Li; = [, Agi(x)Ag;(x)dx and X > 0 is a tunable parameter that deter-
mines the influence of the regularity term.

2.5 Experimental Validation

In a first experiment we constructed a computer generated phantom based on
a kinematic model of the left ventricle described by Arts et al [23]. This model
was used to generate Lagrangian motion as a gold standard and also FEulerian
velocities which was used as input data. The pixel dimensions and temporal
resolution of the model-generated data was chosen to be similar to measured
velocity data. The Eulerian velocities were corrupted by Gaussian noise with
standard deviation ranging from 0 to 5 pixels/frame which should be compared to
the peak velocities of about 2 pixels/frame. The velocities outside the deforming
body were generated as zero mean Gaussian noise with a standard deviation of
5 pixels/frame.

In a second experiment we used the acquired gridtag images as gold standard.
Gridtag sequences were analyzed manually and tagline intersections were tracked
manually through all time frames and for all image series acquired.

We investigated several versions of the spatiotemporal model. As a reference
we used the case with piecewise linear elements with no data certainty estimate
or regularization parameter. This will be close to the method proposed by Zhu
et al [19]. In the other experiments we used TPS elements and combinations of
weighted fit and regularity term. The parameters used were o = 0.1 pixels/frame,
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A = 100 and the size of the neighborhood B, was 3 pixels. We typically use
N = 25 spatial basis elements and 10 iterations in the algorithm.

The root mean square (RMS) was used to measure the error between the par-
ticle traces estimated by our proposed method and the Lagrangian motion given
by the kinematic model in the first experiment and the manually constructed
particle traces in the second experiment.

3 Results

Figure [I] shows the result of motion tracking using simulated data. The linear
element model and the TPS model without adjustments perform in a similar way
and the best model is the TPS model with weighted fit and a regularity term.A
qualitative comparison of the case with piecewise linear elements and the case
with TPS elements with regularity term are shown in Figure[2l The TPS based
model generates a smoother deformation than the other model. It is possible to
see drastic changes in the deformation in the linear elements case which are due
to the tessellation of the domain. In absolute terms the methods perform in a

—©—Linear elements

—+—TPS elements

—<—TPS elements, weighted fit

2.5 | —=-TPS elemtens, with regularity term

——TPS elements, weighted fit and regularity term

RMS error /pixels
&

0.5

.
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Noise standard deviation

0 . . . .

Fig.1. The figure shows the motion tracking error for the simulated phantom for
different levels of Gaussian noise. It can be seen that linear element model and the
TPS model without adjustments are the worst performers. For higher levels of noise the
weighting term flattens out and treats all noisy measurements in the same way which
explains the appearance of the curve. Thus, it becomes essential that a regularity term
is added when the noise level is high.
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Fig. 2. A qualitative comparison of a spatiotemporal model with piecewise linear ele-
ments (top) and a model with TPS elements and additional regularity term (bottom).
The deformation is shown at end systole (peak of contraction). The TPS based model
generated a smoother deformation than the other model. It is possible to see drastic
changes in the deformation in the top figure which are due to the tessellation of the
domain.
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Fig. 3. A quantitative comparison of the different spatiotemporal models. The figure
gives the mean RMS error for the 20 cases compared to grid tag MRI. The absolute
difference between the different variants is small which is due to the sparsity of the
displacement obtained from the grid tag images. The error is higher during the second
half of the cardiac cycle which is due to grid tag fading. Note that the model using
linear elements has a higher error than all the other methods. The model with the
smallest error is the one with both a data certainty term and a regularity term.

similar way, the difference between particle traces generated by the two models
will often be on the order of a pixel or less. This difference is, however, enough
to generate quite different deformations, if evaluated in a qualitative way.

Figure [3 shows the RMS error for the different models. The best performer
was the model with both data certainty and regularity terms. Again, the absolute
differences between the models were quite small.

4 Discussion

In this paper we have extended a spatiotemporal model of cardiac deformation
proposed by Zhu et al [19] in several ways. First, we made the observation
that piecewise linear elements are inappropriate as they are not differentiable.
Therefore we used the TPS as a spatial element. Second, we estimated a data
certainty term so that the model does not adapt to noisy measurements. Third,
we also added a regularity term so that smooth deformations are encouraged.
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We also defined the model in Lagrangian coordinates which is beneficial from a
computational point of view.

Based on the qualitative and quantitative results presented we conclude that
all variants of our proposed model performs better than, or equally well, as
the model of Zhu et al. The adjustments made to the model have proven to
be beneficial as showed using a computer generated motion phantom where the
RMS error can be up to 50% lower for our proposed model. There are however,
only small quantitative differences between the model variants when evaluated
in vivo. Part of this can be explained by our validation procedure where we
used gridtag MRI as a gold standard. Grid tag MRI will only provide a sparse
displacement field which means that the regularity of the calculated deformation
will not be reflected in the error. The grid tag images were manually analyzed
which is an additional source of error, in particular during diastole where tag
fading complicates the analysis. This effect can be seen in Figure Bl where the
error is higher during the second half of the cardiac cycle. Figure [2 showed that
the absolute difference between the deformations generated by the model will
be small, which is reflected in the error shown in Figure [3l The use of in vitro
measurements would be helpful in order to determine the best model variant
and is therefore the focus of future work.
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