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Abstract. Many image segmentation approaches rely upon or are enhanced by
using spatial relationship information between image regions and their object
correspondences. Spatial relationships are usually captured in terms of relative
neighborhood graphs such as the Delaunay graph. Neighborhood graphs capture
information about which objects are close to each other in the plane or in space
but may not capture complete spatial relationships such as containment or holes.
Additionally, the typical approach used to compute the Delaunay graph (or its
dual, the Voronoi polytopes) is based on using only the point-based (i.e., centroid)
representation of each object. This can lead to incorrect spatial neighborhood
graphs for sized objects with complex topology, eventually resulting in poor seg-
mentation. This paper proposes a new algorithm for efficiently, and accurately ex-
tracting accurate neighborhood graphs in linear time by computing the Hamilton-
Jacobi generalized Voronoi diagram (GVD) using the exact Euclidean-distance
transform with Laplacian-of-Gaussian, and morphological operators. The algo-
rithm is validated using synthetic, and real biological imagery of epithelial cells.

1 Introduction

Spatial neighborhood relationships among objects is an important characteristic in many
image analysis, computer vision and robotics applications. One common approach is to
compute Delaunay graphs from an ordinary Voronoi diagram (OVD), using information
from centroids of objects [1]. In the context of biological image analysis, the OVD has
been used for accurate segmentation and analysis of confluent migrating cells [2, 3],
tissue architecture characterization [4], or endothelial cell classification [5]. Our appli-
cation is primarily focused on accurate segmentation and tracking of cells in biomedical
video sequences that undergo complex shape changes like mitosis and apoptosis.

An OVD using points is insensitive to object properties like size, shape, orientation or
containment. Thus, neighborhood graphs derived from point-based centroid representa-
tions of arbitrarily-shaped objects often lead to incorrect neighborhood relationships as
shown in Figs. 1(b) and (e). Applications that depend on accurate spatial neighborhood
relationships would consequently fail or lead to unpredictable behavior. For example,
incorrect neighborhood relationships may lead to false merges of neighboring cells in
the segmentation algorithm described in [2]. In other applications, such as robot path
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Fig. 1. [a and d]: Synthetic images showing arbitrarily-shaped objects. [b and e]: It is evident
that an ordinary Voronoi diagram (OVD), computed from centroid points of objects (shown as
white squares) leads to incorrect neighborhood relationships. [c and f]: However, using a gen-
eralized Voronoi diagram (GVD) leads to correct boundaries and neighborhood relationships.
Corresponding neighborhood adjacency graphs are shown in Tables 1 and 2.

planning, inaccurate neighborhoods obtained from OVD’s may impede the movement
of the robot or lead to weak navigation performance [6]. An alternative to the OVD
is to compute the generalized Voronoi diagram (GVD) that takes into account the size,
shape, orientation, and placement of objects when computing neighborhood relation-
ships. As seen from Figs. 1(c) and 1(f) the GVD accurately identifies the neighborhoods
of complex-shaped objects (e.g., the thin long non-convex worm-like object).

The GVD in any dimension can be precisely defined using point to object distance
measures [1, p 280]. Let A = {A1, A2, . . . , AN} be a set of arbitrarily shaped objects in
a d−dimensional space R

d. Now, for any point p ∈ R
d, let D(p, Ai) denote a distance

measure representing how far the point p is from the object Ai which is typically the
minimum distance from p to any point in object Ai. The dominance region (also known
as influence-zone) of Ai, is then defined as

Dom(Ai, Aj) =
�
p |D(p,Ai) ≤ D(p,Aj), ∀j, j �= i

�
(1)

A generalized Voronoi boundary, between Ai and Aj, can then be defined as the loci
of equidistant points between both objects, L(Ai, Aj), where

L(Ai, Aj) =
{
p |D(p, Ai) = D(p, Aj)

}
, (2)

and the corresponding influence zone for Ai, V (Ai), is the set intersection

V (Ai) =
⋂
i�=j

Dom(Ai, Aj) (3)
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Hence, the generalized Voronoi diagram of A, GVD(A), is given by the union of of
such generalized Voronoi regions, as

GVD(A) =
⋃
i

V (Ai)

=
⋃
i

⋂
i�=j

{
p |D(p, Ai) ≤ D(p, Aj), ∀j, j �= i

}
(4)

When A is a collection of points rather than sized objects, GVD(A) reduces to an
ordinary Voronoi diagram, OVD(A). Note that OVD boundaries are always straight
lines or hyperplanes, whereas GVD boundaries can be complex curves or surfaces. Fig.
1 shows examples of the OVD and GVD for objects in a plane (i.e., d = 2). For those
interested in properties of the OVD for point objects, we direct them to the book by
Okabe et al. [1] and the survey paper by Aurenhammer [7].

The GVD representation of a set of objects has a number of useful properties: (i)
it is a thin set that partitions a space into connected regions (ii) it is homotopic to the
number of objects, (iii) it is invariant under transformations applied to all objects, and
(iv) each region of the GVD is guaranteed to contain the entire object.

Sugihara presents an algorithm to construct an approximate GVD by reducing an
object to a collection of points [8]. A different class of algorithms to construct GVD’s
is based on morphological operators and label propagation. This consists of labeling
connected components (objects) in an image, and simultaneously growing them using
dilation operators. The loci of points at which these regions stop growing determine the
influence zone of each object. In the literature, this algorithm is referred to as skeletons
by influence zone (SKIZ) and is described in detail by Vincent [9, 5]. Lu and Tan have
presented a variation of SKIZ by approximating connected components as polygons and
expanding the regions using Freeman codes for document image analysis [10]. Hoff
et al. have reported a fast algorithm for GVD construction using graphics hardware
[11].

Recently, Siddiqi et al. proposed a new class of algorithms to compute object skele-
tons using the average outward flux of the gradient of a distance transform [12]. Ho-
motopy preserving properties of this algorithm makes it a strong alternative to other
algorithms that use the Euclidean distance transform (EDT) to compute object skele-
tons. A Hamilton-Jacobi formulation for shock tracking, combined with homotopy pre-
serving thinning leads to a robust and low-complexity implementation. As an original
contribution, we propose using the Hamilton-Jacobi formulation to compute GVD’s.
The focus of this paper is on efficiently extracting exact neighborhood relationships of
arbitrarily shaped objects (e.g., biological cells) using the GVD as the basic underlying
framework, based on a fast EDT. It should be noted that even though our algorithm
aims at solving a problem in biological image analysis, it can be applied to other appli-
cations in computer vision such as robot navigation, remote sensing of urban areas or
content-based image retrieval.

The paper is organized as follows. In Sec. 2, we summarize our proposed algorithm
and explain its key features. Comparative results of using OVD versus GVD for com-
puting cell neighborhood relationships are shown in Sec. 3, and conclusions in Sec. 4.



424 S.K. Nath, K. Palaniappan, and F. Bunyak

Algorithm 1. Compute a 2D Neighborhood Adj. Graph

Input :

P, a 2D mask with N labeled objects,
TLD, threshold to detect ridges,
THS, threshold for max. hole size, and
σ, to control smoothing.

Output : N (P), the adjacency graph of P
1: Remove labeled 8-connected pixels in P that are adjacent to one or more different labels.
2: Convert the processed mask into a binary image B.
3: Compute the Euclidean distance transform (EDT), D, of B using the FH-EDT algorithm [13].

4: Compute E = ∇2Gσ � D, the Laplacian of the smoothed EDT.
5: Obtain a binary image, Ethr , from E using a threshold value TLD.
6: Fill holes using THS , the hole-size threshold.
7: Apply a suitable thinning algorithm (e.g., [14, 15]) on Ethr to obtain an image with 1-pixel

thick GVD boundaries, Ethn
thr .

8: Apply any homotopy-preserving algorithm [16] to prune branches from the generalized
Voronoi diagram, Ethn

thr .
9: Assign Q ← (Ethn

thr )c; the complementary image of Ethn
thr

10: Using 4-connectivity, label the connected components of Q.
11: Update the neighborhood relationship map N (P) by checking a 3×3 neighborhood of each

background pixel (i.e., boundary pixels of connected components) in Q.

2 Neighborhood Adjacency Graphs Using GVD

The proposed algorithm to compute a neighborhood adjacency graph N (P) for an im-
age P containing N−arbitrarily shaped objects, using GVD in R

2 is shown in Algo-
rithm 1., and described in detail in the following paragraphs.

In order to compute reliable GVD boundaries touching objects need to be separated
by at least a one-pixel gap. In Step 1, labeled pixels are (temporarily) removed from the
image if they are adjacent to one or more different labeled pixels, without any gap. In
Step 2, we convert the modified multi-labeled mask into a binary image with non-zero
pixels representing N distinct connected components.

Siddiqi et al. have reported using a Borgefors distance transform (BDT) in their
skeletonization algorithm [12]. However, the BDT is an approximation of the Euclidean
distance transform (EDT). Hence, in Step 3, we compute the exact EDT using a “sep-
arable algorithm” proposed by Felsenzwalb and Huttenlocher (FH-EDT) that is fast
(linear time), and efficient to implement [13].

Let G1 = {0, 1, . . . , n − 1} be a 1D grid, and f : G1 → R an arbitrary function on
the grid. The one-dimensional FH-EDT of f is defined as

Df (p) = min
q∈G1

(
(p − q)2 + f(q)

)
(5)

with the added constraint that for each point q ∈ G1, the distance transform of f is
bounded by a parabola rooted at (q, f(q)). The distance transform at point p is the
height of the lower envelope of all such parabolas [13, Fig. 1]. The FH-EDT algorithm
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Fig. 2. Examples of isolated holes and checker-board pattern holes that are formed when a large
number of single pixel width ridges appear very close to each other. Non-pruned branches may
affect the performance of such applications as robot navigation. A relatively higher value of TLD

can reduce such occurrences, with the possibility of breaking actual GVD boundaries. This figure
is related to problems that are solved in Steps 6 - 8 in Algorithm 1.. The actual GVD boundary is
shown in (d).

computes the distance transform in O(n) time. The efficiency of this algorithm is evi-
dent by considering a two-dimensional grid G2 = {0, 1, . . . , n−1}×{0, 1, . . . , m−1},
and f : G2 → R an arbitrary function on the grid. The two-dimensional distance trans-
form of f is given by

Df (x, y) = min
x′,y′

(
(x − x′)2 + (y − y′)2 + f(x′, y′),

)

= min
x′

(
(x − x′)2 + min

y′

(
(y − y′)2 + f(x′, y′)

))
,

= min
x′

(
(x − x′)2 + Df |x′ (y)

)
, (6)

where Df |x′ (y) is the 1D distance transform of f restricted to the column indexed by
x′. Hence, the 2D distance transform can be computed separably in linear time.

In order to detect points of singularities (or shock points), Siddiqi et al. propose to
compute the average outward flux at every point in a vector field q̇ (derived from the
distance transform) using a Hamilton-Jacobi formulation [12]. Using the divergence
theorem, a relationship between the divergence of the vector field div(q̇), and the aver-
age outward flux is given by [12]

div(q̇) ≡ lim
Δa→0

∫

δR

< q̇, Ns > ds

Δa
, (7)

where δR is the bounding contour of the region R, Ns is the outward normal at each
point of the contour, and ds is the element of integration. The divergence div(q̇) can
be equivalently written as the sum of partial derivatives with respect to each of the
vector field’s component directions. However, the vector field (i.e., distance field) is
differentiable at all points except at singular or shock points. This is the justification
provided by Siddiqi et al. for using Eq. 7, and a limit approximation, to locate singu-
larities in q̇. As an alternative, in Step 4, we propose using a 2D Laplacian-of-Gaussian
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(a)
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Fig. 3. A flow diagram that describes Algorithm 1.. (a) A section of the original mask with four
unique foreground colors obtained from Nath et al. algorithm [2]. Cells that are touching each
other are marked with arrows. (b) A binary image B is obtained as per rules outlined in as per
Step 1 of Algorithm 1.. (c) 3D view of the distance transform (D), that shows the difficulty in
isolating ridges (i.e., Voronoi boundaries). (d) ∇2 Dσ . (e) A thresholded version of Fig. 3(d)
after removal of small holes. (f) A pruning step removes branches from the generalized Voronoi
diagram. (g) Connected-component labeling, followed by generation of N (P), is implemented
on a complement of the image, obtained in Fig 3(f), as per Steps 10-11 of Algorithm 1.. (h) The
final generalized Voronoi diagram and neighbors of cells are shown in white and yellow, while
cells are shown in colors used previously for labeling Voronoi cells in Fig. 3(g).

∇2Gσ � D operator on the distance transform, D, in order to detect regions of local
maxima (or minima, depending on how the Laplacian operator is applied), i.e., ridge
points. The Gaussian operator Gσ smooths the distance transform prior to applying the
Laplacian operator insuring differentiability at shock points. Smoothing, however, does
not guarantee homotopy preservation of GVD boundary points. Hence, to satisfy both
constraints, the regularization parameter σ is set to a small value.

In Step 5, we threshold E = ∇2Gσ � D) to obtain the binary image, Ethr,

Ethr =
{

1 E > TLD,
0 otherwise,

before computing the GVD, A suitable choice of the threshold value, TLD, is critical
in homotopy preservation of GVD boundaries. A low threshold value results in larger
number of spurious features (such as branches and associated holes), while a larger
threshold significantly reduces these features at the cost of breaking real object bound-
aries. We set TLD = 0 by default.

After binarization of E, the background should normally be segmented into N con-
nected generalized Voronoi regions, corresponding to N input objects. However, when
computing the Laplacian of the EDT, regions of local maxima, i.e., ridges, may appear
very close to each other and interact to produce “holes” that are small connected back-
ground components (shown in Fig. 2(b) and (c)). In our algorithm, each influence zone
(i.e., V (Ai)) corresponds to a unique object (Ai) in the image. Hence, in Step 6, such
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Fig. 4. Examples of neighborhood relationships between connected components when centering
a 3×3 neighborhood on a boundary pixel (marked with a X). Shaded regions indicate one pixel
thick boundaries of connected components in Q. Valid generalized Voronoi boundary pixels sep-
arate different influence zones, resulting in at least two different sets of foreground labels in the
neighborhood ( Figs. 4(a) - 4(c) ). On the other hand, spurs/branches are contained within a single
influence zone, thus resulting in a single set of foreground labels in the neighborhood. As a result,
no changes need to be made in the adjacency graph N (P) (Figs. 4(d) - 4(f) ).

holes are removed using a threshold parameter THS , prior to computing the GVD. Non-
removal of such holes prevents further removal of ridges that are attached to such holes,
termed as branches. Hole removal is effected by size-constrained connected component
analysis. The binarized image, obtained in Step 5 of Algorithm 1. is inverted followed
by a connected component analysis. All connected components below a certain size are
classified as part of the background which results in “hole-filling”.

In Step 8, a thinning algorithm (c.f. [15]) is applied to the hole-filled, binarized image
in order to reduce ridge boundaries to single pixel thickness. This step is necessary in
order to simplify the search for neighborhood adjacency relationships along boundaries.
A key component of any thinning algorithm is the preservation of end points. Thus, after
thinning, spurious ridges, without holes, remain attached to actual GVD boundaries. We
term such ridges as spurs (see Fig. 5(f) for example). Hence, in Step 9, we remove such
spurs by applying a pruning algorithm having the same features as standard thinning
algorithms (e.g., [15]) but enforcing the constraint of non-preservation of end points.
Let this thinned (and optionally pruned) image be represented as Ethn

thr .
After obtaining one-pixel thick GVD boundaries, we invert Ethn

thr in Step 9 as Q =
(Ethn

thr )c. This is followed, in Step 10, by a connected component analysis on P and
assigning unique labels to each GVD influence zone, i.e., Q =

⋃
i Q(Vi), where Q(Vi)

is the ith connected component formed from the corresponding generalized Voronoi in-
fluence zone. Finally, in Step 11, a 3×3 window positioned at each boundary pixel (i.e.,
pixels not part of any connected component) is analyzed, from which a neighborhood
relationship map N (P) is constructed (see Fig. 4 for some examples). To complement
the discussion in previous paragraphs, key steps of our algorithm are shown in Fig. 3.

3 Results and Discussion

The Hamilton-Jacobi GVD algorithm for determining accurate neighborhood graphs
was applied to a biomedical application involving cell segmentation and tracking [2].
Time-lapse phase contrast microscopy of epithelial cells moving in a monolayer sheet
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(d) (e) (f)

(a) (b) (c)
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Fig. 5. (a) A representative region from the original image (Frame 46). (b) OVD boundaries su-
perimposed with four unique colors. The centroids are represented as small squares. (c) GVD
boundaries superimposed with four unique colors. (d) Neighborhood relationships in two repre-
sentative regions A and B, when using the OVD from (b). The OVD leads to incorrect neigh-
borhood relationships, as shown by edges E1, E2 and E3. This leads to neighboring cells being
assigned the same color during graph-vertex coloring [2]. (e) Neighborhood relationships using
GVD with correct assignments indicated by E

′
1, E

′
2 and E

′
3 with an additional neighborhood re-

lationship E
′
4 that is detected when. (f) Neighborhood relationships without pruning branches of

the GVD does not affect neighborhood relationships between cells. This feature will be addressed
in a different paper. Parameters used in computing the Hamilton-Jacobi GVD are: σ = 0.5, 9-tap
Laplacian kernel with a center weight of 8, TLD = 0.0, and THS = 5.

are imaged at 0.13μm resolution, and appear as a clustering of dark colored nuclei with
indistinct boundaries (Fig. 5(a)) [3, 2, 17].

The OVD regions, and associated Delaunay graph based on centroids of cell nuclei in
Fig. 5(a) are shown Figs. 5(b) and (d), respectively. Edges E1, E2, and E3 show incorrect
object adjacency relationships based on OVD regions A, and B. The object colors are
based on graph-vertex coloring and used to implement a fast 4-color level set-based
cell segmentation algorithm incorporating spatial coupling constraints [2]. The main
feature of the 4-color level set algorithm is to assign different colors to neighboring
cells, in order to prevent false merges. From Fig. 5(b) it can be observed from region A
that the two green-colored cells are neighbors of each other, yet they are not marked as
neighbors when using an OVD. However, in Fig. 5(c) and 5(e), these cells are correctly
classified as neighbors when using our proposed GVD algorithm (the cells have been
recolored).

The neighborhood adjacency graphs for the synthetic images shown in Figs. 1(a) and
1(d) using the OVD and GVD are shown in Tables 1 and 2, respectively. It is clearly
evident that the Hamilton-Jacobi GVD algorithm correctly identifies neighbors of ob-
jects in both images, while errors are evident when using OVD to compute the spatial
adjacencies of objects. For example, the long thing worm-like object, B6, is adjacent
to smaller elliptical objects B1, B3, B4, B5, B7, and, B8. It does not overlap any other
object and has a worm-like influence zone based on the GVD, as seen in Fig. 1(f).
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Table 1. Neighborhood map of Fig. 1(a)

Q(Vi) OVD GVD
A1 A2, A3 A2, A3, A4

A2 A1, A3 A1, A3

A3 A1, A2, A4, A5 A1, A2, A4, A5

A4 A3, A5 A1, A3, A5

A5 A3, A4 A3, A4

Table 2. Neighborhood map of Fig. 1(d)

Q(Vi) OVD GVD
B1 B2, B3 B2, B3, B6

B2 B1, B3, B4, B5 B1, B3, B4, B5

B3 B1, B2, B4, B6 B1, B2, B4, B6

B4 B2, B3, B5, B6 B2, B3, B5, B6

B5 B2, B4, B6, B8 B2, B4, B6

B6 B4, B5, B7, B8 B1, B3, B4, B5, B7, B8

B7 B6, B8 B6, B8

B8 B5, B6, B7 B6, B7

(a)

(b) (d)

(c)

(f)

(e)

Fig. 6. [a]: Subset of objects from Fig. 1(a) showing objects A4 and A5. [b]: Same objects with
perturbed boundaries. [c and d]: SKIZ-based implementation of GVD with 8-connected label
propagation. [e and f]: Hamilton-Jacobi GVD.

We compare the robustness of the Hamilton-Jacobi GVD algorithm with a
watershed-based, fast implementation of SKIZ [18, pg. 170-173] in MATLAB.
Figs. 6 (c) and (d), and Figs. 6 (e) and (f) show that the SKIZ-based GVD, and the
Hamilton-Jacobi GVD are both relatively insensitive to perturbations in object bound-
aries as indicated by the arrows. However, Hamilton-Jacobi GVD boundaries are more
accurate (same arrows), since the exact EDT is used.

4 Conclusion

In this paper, we have presented a novel algorithm for computing Hamilton-Jacobi
based GVD’s to build accurate spatial neighborhood adjacency graphs for arbitrarily-
shaped objects. Our algorithm extends the Hamilton-Jacobi skeletonization algorithm
of Siddiqi et al. [12], and is coupled with morphological-based operators to remove
spurious regions from the initial GVD boundaries. A fast Laplacian-of-Gaussian (LoG)
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filter is used to detect potential GVD boundary locations (i.e., shock points). Useful fea-
tures of the LoG filter, like the guarantee of closed contours, continuity of ridges, and
non-formation of new ridges with an increase in scale (smoothing) makes it appealing
for our algorithm. We compare the performance of our Hamilton-Jacobi GVD algo-
rithm, with a previously developed OVD framework for cell segmentation in [2] on real
biological, as well as synthetic images. In all instances, we demonstrate the superiority
of our GVD algorithm.

As a future work, we would like to present a comparison of our algorithm with other
state-of-the-art algorithms described in the literature. Due to the separable nature of the
FH-EDT algorithm [13], we can obtain neighborhood relationships between objects in
higher dimensions. Hence, we would like to extend our algorithm to R

d, d > 2.
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