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Abstract. When an active contour is applied to a noisy image, the
contour is sometimes attracted to a local energy minimum, since the noise
gives rise to high rates of change of the image gray levels. In this paper
we will describe a novel method of overcoming this problem by using
a sparse set of points to represent the active contour C and randomly
varying the positions of these points.

1 Introduction

Active contours, also known as “snakes” or deformable models, have proven
to be an effective method of boundary delineation. Since the original work by
Kass, Witkin, and Terzopoulos (KWT) in 1988 [1], extensive research has been
carried out on such models [2]. An active contour locates a boundary in an image
by minimizing an energy function. This function includes “internal” terms that
depend on the length and curvature of the contour; these terms are small when
the contour is short and smooth. It also includes “external” terms that depend
on the image gray levels at or near the points of the contour. For example, if
the inverse rate of change of the image gray level is used as the external term,
it will be small when the contour lies close to a strong boundary in the image.

In the KWT active contour model, the energy function is defined by an ex-
pression of the form

E(C) =
∫

C

[w1|vs|2 + w2|vss|2 + ξ(v)]ds

where C is a curve in the image plane; s is a parameter representing a point on
C; v = (x, y) is the position of the point in the plane; vs and vss are the first
and second derivatives of v with respect to s; w1 and w2 are (possibly variable)
weights; and ξ(v) is a function of the image values in a neighborhood of v.

In this expression for E(C), the first two terms are called “internal” energy
terms because they depend only on the geometry of C itself, while the third
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term is called an “external” energy term because it depends on the image gray
levels at or near C. For example, suppose the value of ξ at a point (x, y) is the
inverse rate of change of the image gray level at (x, y); then ξ has low values on
or near image boundaries and high values elsewhere.

It is well known that at a minimum of E(C), the coordinates x, y of the points
of C must satisfy the Euler equations

ex ≡ w1xss + w2xssss + (∂ξ/∂x) = 0

ey ≡ w1yss + w2yssss + (∂ξ/∂y) = 0

In the KWT model these equations are solved by an iterative process in which C
is approximated by a discrete set of points, and at each iteration, the positions
of the points are adjusted so as to reduce ex and ey.

It has long been realized that this basic active contour model must be modified
in order to enable it to detect a distant object boundary, avoid local energy
minima due to noise, and conform to the details of a boundary’s shape. Since
ξ(x, y) depends only on the image gray levels near (x, y), it has an influence on
E(C) only near image features. For example, the inverse rate of change of the
image gray level is low only near an object boundary; elsewhere, the boundary
has no effect on E(C), and C has no tendency to get closer to the boundary. On
the other hand, since noise gives rise to high rates of change of the image gray
level, the inverse is low at noise points, and E(C) may have a local minimum
when C passes through or near noise points. If C does succeed in approaching
an object boundary, it may have difficulty conforming to parts of the boundary
that have high curvature, since the internal energy of C is high on such parts.
Methods of overcoming these difficulties will be discussed in the next sections.

In the remainder of this section we review selected publications on active con-
tours, emphasizing papers that made contributions to the representation of the
contour; the definitions of the internal and external energy terms; the methods
of initialization and energy minimization; and the methods of handling noise.

To improve the performance of active contours, alternative representations for
the contour have been proposed. Kass et al. [1] represented an active contour by
a digital curve. Delagnes et al. [3] defined adjustable polygons: sets of active line
segments that can approximate any object shape; this representation gives good
results if the object to be delineated is noise-free. Wang et al. [4] used a spline
representation; this resulted in some improvement in accuracy and convergence
speed over the KWT model. Wong et al. [5] proposed a segmented snake model;
this converted the problem of global optimization of a closed curve into local
optimization of a number of open arcs. Their approach was able to locate con-
vex, concave and high-curvature parts of an object boundary; its performance
was similar to that of Wang’s spline representation. Chesnaud et al. [6] pro-
posed a region snake model rather than using a boundary-based representation.
Their model was based on Maximum Likelihood estimation of the statistics of
the inner and outer regions defined by the boundary. This approach works well
if we can use a priori assumptions about the statistics of the regions, and if
these statistics are invariant or at least easy to classify. Ray et al. [7] proposed
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a multiresolution approach in which the snake algorithm is applied at an initial
scale, and after the snake stabilizes, a higher resolution is used to adjust it. A
potential disadvantage of this model is that high-curvature parts of the bound-
ary and thick curves may be eliminated at the coarser resolution. Velasco and
Marroquin [8] proposed Sandwich Snakes, which can detect contours that have
complex shapes and reject false minima (up to some level) due to noise. Their
model consists of two snakes, one inside and the other outside the boundary; it
requires a one-to-one correspondence between the two snakes.

The performance of active contour models can be improved by modifying the
definition of their internal energy. Cohen [9] proposed the use of a pressure force
which inflates the active contour in the normal direction until it conforms to
the boundary of the object. This model gives good results in noise-free images,
but improper selection of the pressure force yields poor results. Davatzikos and
Prince [10] proposed spatio-temporal variation of the internal energy terms as
functions of position in the image and the number of iterations. This allows
the model to handle high-curvature parts of the boundary more effectively than
fixed-parameter algorithms. Xu et al. [11] proposed a method of compensating
for the normal internal force so as to make it independent of shape. The resulting
model works well, with no need to fine-tune internal parameters, and can con-
form to high-curvature parts of a boundary such as corners; however, its ability
to overcome noise is reduced. Wang et al. [4] divided the energy minimization
process into multiple stages. The first stage was designed to optimize the conver-
gence speed in order to allow the snake to quickly approach the minimum-energy
state. The second stage was devoted to snake refinement and local minimization
of the energy, thereby driving the snake to a quasi-minimum-energy state. Fi-
nally, the third stage used the Bellman optimality principle to fine-tune the
snake to a global minimum-energy state. Metaxas and Kakadiaris [12] presented
a technique for the automatic adaptation of a deformable model’s elastic pa-
rameters in a Kalman filter framework. The parameters are initialized and are
subsequently modified, depending on the data and the noise distribution, until
the contour conforms to the boundary; this works well if the spatial variations of
the data are smooth. Mokhtarian and Mohanna [20] proposed an active contour
model in which the smoothness internal evergy term is replaced by the output
of a Curvature Scale Space filtering process.

Other authors have modified the definition of the external energy to increase
the capture range of a snake and thus make the snake robust to noise. Kass
et al. [1] used a scale space approach to guide a snake toward the boundary
of an object. Xu and Prince [13] proposed a new external energy term called
the “Gradient Vector Flow Field” computed by diffusion of the gradient vectors
of a gray-level or binary edge map derived from the image. This force field is
insensitive to initialization of the snake and allows the snake to move into concave
boundary regions in noise-free images. However, using the diffusion of gradient
vectors to develop this field may increase the effect of noise. Peterfreund [15]
used spatio-velocity space (a combination of optical flow and image forces) to
track boundaries of nonrigid objects on cluttered backgrounds.
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An active contour model can be semi- or fully automatic, depending on how
it is initialized. Kass et al. [1] initialized the snake near a boundary. Cohen [9]
initialized the snake inside or outside an object and used a pressure force to push
the contour outward or inward until it reached the boundary. Neuenschwander et
al. [16] presented a model in which the user has to specify only the two endpoints
of the contour rather than a polygonal approximation. The snake converges from
this minimal initialization by propagating image information along the contour
from both endpoints. The Gradient Vector Flow Field used by Xu and Prince
[13] made the snake insensitive to initialization.

Alternative algorithms for minimizing the energy of an active contour have
also been used. Kass et al. [1] minimized the energy by solving the Euler equa-
tions. Amini et al. [17] used dynamic programming to optimize an active con-
tour; their approach was more stable than the original KWT approach, but it
was time-consuming. Williams and Shah [18] proposed a greedy algorithm, which
gave results comparable to those of Amini’s method but was much faster. A com-
mon disadvantage of both methods was that they are local and hence are rela-
tively sensitive to noise. Caselles et al. [19] proposed Geodesic Active Contours,
which combined a geometric contour model with energy function minimization.
The performance of this approach is comparable to that of conventional active
contour models up to a constant that depends on the initial parameterization of
the contour. The Geodesic Active Contour model combined with level set meth-
ods can be used to delineate the boundaries of multiple objects. This model has
advantages over the original active contour model, but it has the drawback of
being nonlinear.

The convergence speed and accuracy of active contours depends greatly on
the level of noise in the image. Filtering techniques can be used to reduce the
noise to some degree, but it is almost impossible to eliminate it completely. As a
result, a snake may get stuck at energy minima caused by noise before it reaches
a boundary. To avoid this situation, Davatzikos and Prince [10] proposed an
algorithm in which the internal energy varies spatially. By giving high weight to
the internal energy in noisy parts of the image they were able to overcome local
minima. His model worked well when the object to be delineated had smooth
boundaries. Delagnes et al. [3] proposed a new energy function based on textural
characteristics of objects to resolve conflict situations when tracking objects on a
cluttered background. Their method worked well when the textures were easily
distinguishable. Other active contour models that were designed to overcome
noise include those proposed by Metaxas and Kakadiaris [12], Chesnaud et al.
[6], and Velasco and Marroquin [8]; these models were described above.

The organization of this paper is as follows: In Section 2 we show how local
minima in the energy of an active contour, due to noise in the image, can be
avoided by perturbing the contour representation during the energy minimiza-
tion process. Section 3 and Section 4 describes our methods. Section 5 describes
an experiment in which an active contour is used to delineate the boundary of
a moving hand in an image sequence. Section 6 summarizes our methods.
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2 Overcoming Local Energy Minima Due to Noise

When an active contour is applied to a noisy image, the contour sometimes is
attracted to a local energy minimum, since the noise gives rise to high rates of
change of the image gray levels. In this section we will describe a method of
overcoming this problem by using a sparse set of points to represent the active
contour C and randomly varying the positions of these points.

The number of points chosen to represent C must be a fraction of the total
number of pixels on the (digital) contour, so there will be room to vary the posi-
tion of the points. (We can roughly estimate the number of points on the contour
by examining the output of the boundary extraction process [21]) On the other
hand, the fraction cannot be too small, since it must be possible to closely ap-
proximate the shape of the contour by interpolating between the points. In the
experiments described in this section, C was several hundred pixels long, and
we represented it by about 60 points. Note that when we use scale-space meth-
ods to detect object boundaries at a distance, we are reducing (and afterwards
increasing) the number of pixels on the contour, and the number of points used
to represent the contour must be reduced or increased correspondingly.

In an active contour algorithm that uses a sparse representation, the contour
C is represented by (say) n points. At each iteration of the algorithm, the points
shift slightly; the new n points represent a new contour C′. This process is
repeated at each iteration.

We have investigated a method of incorporating random variation into the
points that represent the contour. In our method the number n of points remains
constant. At each iteration of the active contour algorithm, we interpolate a
smooth digital curve C′ through the points. We choose n equally spaced points
of C′, one of which coincides with one of the original points on C′. We then
randomly shift the new points along C′ by an amount less than the spacing
between the points. The points all shift together; their spacing remains the same.
We refer to this method as “phase perturbation”.

If many of the points that represent the contour coincide with noise points in
the image, the external energy of the contour will be low, since external energy
is inversely related to the gradient of the image gray level, which is high at
noise points. Thus a contour configuration in which many of the points coincide
with noise points may give rise to a local minimum in the energy, and the active
contour algorithm may not be able to leave this minimum. However, if we perturb
the points that represent the contour using phase perturbation, the perturbed
points will no longer coincide with the noise points, so the contour has a chance
of escaping the local energy minimum.

When phase perturbation is used, the number n of points that represent the
contour remains constant, so the expected number of coincidences between these
points and noise points is also constant. Thus the random displacement of the
n points can be chosen from a uniform distribution over an interval.

We will now verify experimentally that using a uniform distribution is prefer-
able in phase perturbation.
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Figure 1(a) shows a 100 × 100 image that contains a blurred hollow square
on a noisy background; the outer boundary of the square is represented by a
solid curve S, and an initial active contour C surrounding S is overlaid on the
image. We chose n equally spaced points to initially represent C, and performed
500 iterations of a sparse version of the KWT algorithm. (Randomness can be
introduced into any active contour algorithm, but in our experiments we used
the KWT algorithm.) After each iteration we also had the option of performing
a phase perturbation by shifting the n points by an integer number of steps
along the contour, where the number never exceeded the spacing s between the
points. We performed six versions of this experiment:

a) No shift.
b-e) A shift chosen randomly in the range [0,2], [0,3], [0,4], or [0,s].

f) The shift that resulted in the highest external energy of C′ (to maximize
the likelihood of C escaping from the local energy minimum).

where (a to f) stands for (top-down). Figure 1(b) shows plots of the area (in pixel
units) contained between C and S as a function of iteration number, averaged
over 500 instances of the noise. We see that in all cases, the area at first decreases
rapidly from its initial value of about 5000 as C shrinks toward S, but it then
levels off. When no shifts were used (version (a)) the area levels off at about
2700. When random shifts were used (versions (b-e)), the area continues to drop;
the larger the range of the shifts, the greater the drop, because there are more
possibilities for increasing the energy. For shifts in the range [0,s] the area drops

(a) (b) (c)

Fig. 1. (a)- A square in a noisy image. The initial active contour and the boundary
of the square are overlaid on the image. (b)- Phase perturbation. Each curve shows
the area between the active contour and the boundary of the square as a function
of iteration number. The curves are averages over 500 instances of the image noise.
Top to bottom: (a) No perturbation. (b-e) Shifts chosen randomly in the ranges [0,2],
[0,3], [0,4], and [0,s], where s is the spacing between the points that represent the active
contour. (f) The shifts that resulted in the highest external energy of the active contour.
(c)- Comparison of two algorithms on a non-noisy version of Figure 1(a): a sparse
version of the KWT algorithm, and algorithm that incorporated phase perturbation.
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to less than 2200; this is nearly as good as when we use the shift that results in
the highest external energy of C (version (f)).

Our algorithms represent a contour by a discrete set of points, and interpolate
a smooth digital curve on these points each time a perturbation is applied. It
might be thought that this repeated interpolation would result in a contour
evolution process, but in fact this did not happen. To demonstrate this, we
applied two algorithms to a version of Figure 1(a) that contained no noise: a
sparse version of the KWT algorithm, and versions that incorporated phase
perturbation. As we see in Figure 1(C), the plots of the area between C and S
are virtually indistinguishable for both algorithms. This demonstrates that our
use of repeated interpolation did not result in contour evolution.

In the experiments described in this section, the active contour C never pen-
etrated the boundary of the square S; we could therefore use the area contained
between C and S as an error measure. In the real examples described in the
next section it is possible for C to penetrate the object boundary B. We will
therefore use a more general error measure: the area of the symmetric difference
between the regions surrounded by C and B.

3 Delineating an Object Boundary

Active contour performance can be improved by dividing the energy minimiza-
tion process into stages [4] and allowing the energy function to vary during the
process [12,13]. In Section 4 we will describe how such an adaptive active con-
tour algorithm can be used to detect an object boundary at a distance and then
locate details of the boundary’s shape.

An active contour can be used to track the boundary of a moving object in an
image sequence. This is usually done by locating the boundary (by minimizing
the energy of the contour) in each frame of the sequence, and then using the
result to initialize the contour in the next frame. In Section 5 we will use an
active contour to locate the boundary of a moving object in an image sequence,
using the moving boundary extraction process described in [21]. We will describe
an experiment in which an active contour is used to locate the boundary of a
hand moving against a complex background.

4 Detecting and Conforming to the Boundary

Since the external energy ξ of C depends only on the image values in the vicin-
ity of C, distant object boundaries have no effect on ξ. Thus if C is initialized
far from an image boundary, minimization of E(C) does not attract C toward
the boundary. This problem can be overcome by blurring the image before ini-
tializing C; but blurring the image may destroy details of the shapes of object
boundaries. To achieve both detection at a distance and accurate location of
shape details, we can vary the amount of image blur during the minimization
process [1,12,13]. The blur remains high until ξ becomes low, indicating that C
is approaching a boundary; the blur can then be gradually reduced so that C
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can accurately conform to the boundary shape. The spacing of the points that
we use to represent the contour does not exceed the amount of the blur.

The need to conform to boundary parts that have high curvatures introduces
another problem: the internal energy of C is high when its curvature is high.
This problem can be overcome [13] by gradually reducing the weight given to
the curvature term of E(C) as C approaches the boundary.

5 An Application: Delineating the Boundary of a Moving
Hand in an Image Sequence

In this section we use an active contour to delineate the boundary of a moving
object; the boundary is initially extracted by the method described in [21].

Figure 2(a) shows part of a frame of a 20-frame video sequence of a hand and
arm moving in an indoor scene. A number of final boundaries located by the
active contour after energy minimization is overlaid on the image. Figure 2(b)
shows the moving boundary points extracted from that frame by the method
described in [21]. Most of these points are concentrated near the hand and arm
boundaries.

C was initialized on a large square which was close to the image border.
Gaussian blur was initially applied to the moving boundaries that were extracted
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Fig. 2. Delineation of a moving hand in a video. (a) One frame of the video, with
the final contours overlaid. (b) Initial contour, final Stage 1 contour, and final Stage 2
contour overlaid on the output of the moving boundary points that were extracted from
the image. (c) Area (in pixels) of the symmetric difference between the hand and the
interior of the contour, as a function of iteration number, averaged over 20 frames. The
solid curve is the mean; the dotted curves are one standard deviation above and below
the mean. Upper curves: Algorithm without perturbation. Lower curves: Algorithm
with perturbation. Note the shoulder in the curves at iteration 250, when the first
stage ended.
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from that image (Figure 2(b)). The rate of change of the gray level in this
blurred image was used as the external energy term of C. This rate of change is
a maximum at the inflections of the Gaussian; hence its inverse is a minimum.
Minimization of E(C) thus causes C to shrink and to approach the hand and
arm boundary until it reaches the inflections. In Figure 2(b) the location of C
after 250 iterations overlaid on the image.

By this time the external energy of C was quite low. A second stage of energy
minimization was then initiated, in which the amount of image blur and the
weight given to curvature in the internal energy of C were both progressively
decreased, as described in Section 4. This allowed C to approach the boundary
closely and to conform to its shape. The location of C after 200 iterations of the
second-stage process is also overlaid on the Figure 2(b).

To reach its final location, C must cross noisy parts of the image background.
As discussed in Section 2, it is possible for C to be trapped by a local energy
minimum caused by the noise, but this can be avoided by applying phase per-
turbation to the points that define C.

To study how this perturbation improves performance, we applied two versions
of our active contour algorithm to the 20 frames of our image sequence; the first
version perturbed the points that represent the contour and the second version
did not. Figure 2(c) compares the average performance of the two versions on
the 20 frames; the upper curves are for the second version and the lower curves
for the first version. In each frame, we computed the area of the symmetric
difference between the hand/arm region and the interior of the active contour,
as a function of iteration number. (The solid curve is the 20-frame average; the
dotted curves are one standard deviation above and below the average.) We see
that the first version of the algorithm converged more quickly and approximated
the boundary more accurately. The lower curve comes close to a minimum after
150 iterations in the first stage of the process, and after 450 iterations it is less
than 20% as high as the upper curve.

6 Concluding Remarks

This paper has made the following contributions: First; an active contour can
be trapped by local energy minima when too many of its points are influenced
by image noise. We have shown that this situation can be prevented by incorpo-
rating randomness to the points that represents the contour. Second; to speed
up the process of convergence and to conform to boundary shape we developed
a two stage algorithm. Our model is a mixture of deterministic and random
components that made it robust with respect to noise. We have shown that our
model performs equally well as other sparse models when there is no noise, the
robustness becomes visible only when the image contains noise. Using this ac-
tive contour model, we were able to locate and track a moving boundary in a
sequence of images in the presence of noise.
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