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Abstract. The segmentation of objects in image sequences is an im-
portant and difficult problem in computer vision with applications to
e.g. video surveillance. In this paper we propose a new method for vari-
ational segmentation of image sequences containing nonrigid, moving
objects. The method is based on the classical Chan-Vese model aug-
mented with a novel frame-to-frame interaction term, which allow us to
update the segmentation result from one image frame to the next using
the previous segmentation result as a shape prior. The interaction term
is constructed to be pose-invariant and to allow moderate deformations
in shape. It is expected to handle the appearance of occlusions which
otherwise can make segmentation fail. The performance of the model is
illustrated with experiments on real image sequences.

Keyword: Variational formulation, segmentation, tracking, region-based,
level sets, interaction terms, deformable shape priors.

1 Introduction

In this paper we address the problem of segmentation in image sequences using
region-based active contours and level set methods. Segmentation is an impor-
tant and difficult process in computer vision, with the purpose of dividing a
given image into one or several meaningful regions or objects. This process is
more difficult when the objects to be segmented are moving and nonrigid. The
shape of nonrigid, moving objects may vary a lot along image sequences due to,
for instance, deformations or occlusions, which puts additional constraints on
the segmentation process.

There have been a number of methods proposed and applied to this problem.
Active contours are powerful methods for image segmentation; either boundary-
based such as geodesic active contours [1], or region-based such as Chan-Vese
models [2], which are formulated as variational problems. Those variational for-
mulations perform quite well and have often been applied based on level sets.
Active contour based segmentation methods often fail due to noise, clutter and
occlusion. In order to make the segmentation process robust against these ef-
fects, shape priors have been proposed to be incorporated into the segmentation
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process. In recent years, many researchers have successfully introduced shape
priors into segmentation methods such as in [3,4,5,6,7,8,9].

We are interested in segmenting nonrigid moving objects in image sequences.
When the objects are nonrigid, an appropriate segmentation method that can
deal with shape deformations should be used. The application of active con-
tour methods for segmentation in image sequences gives promising results as in
[10,11,12]. These methods use variants of the classical Chan-Vese model as the
basis for segmentation. In [10], for instance, it is proposed to simply use the
result from one image as an initializer in the segmentation of the next.

The main purpose of this paper is to propose and analyze a novel variational
segmentation method for image sequences, that can both deal with shape de-
formations and at the same time is robust to noise, clutter and occlusions. The
proposed method is based on minimizing an energy functional containing the
standard Chan-Vese functional as one part and a term that penalizes the devia-
tion from the previous shape as a second part. The second part of the functional
is based on a transformed distance map to the previous contour, where differ-
ent transformation groups, such as Euclidean, similarity or affine, can be used
depending on the particular application.

This paper is organized as follows: in Sect. 2 we discuss region-based seg-
mentation, the level set method, and gradient descent procedures. In Sect. 3 we
describe the segmentation model proposed. Experimental results of the model
are presented in Sect. 4. We end the paper with some conclusions and future
work plans.

2 Theoretical Background

2.1 Region-Based Segmentation

We begin with a brief review of the classical Chan-Vese segmentation model [2].
In this model a gray scale image is considered to be a real valued function
I : D → R defined on the image domain D ⊂ R2, usually a rectangle. A point
x ∈ D is often referred to as a pixel, and the function value I = I(x) as the pixel
value, or the gray scale value. The Chan-Vese model is an active contour model.
The idea is to find a contour Γ , by which we mean a finite union of disjoint,
simple, closed curves in D, such that the image I is optimally approximated by
a single gray scale value μint on int(Γ ), the inside of Γ , and by another gray
scale value μext on ext(Γ ), the outside of Γ . The optimal contour Γ ∗ and the
corresponding pair of optimal gray scale values μ∗ = (μ∗

int, μ
∗
ext) are defined as

the solution of the variational problem,

ECV (μ∗, Γ ∗) = min
µ,Γ

ECV (μ, Γ ), (1)

where ECV is the well-known Chan-Vese functional,

ECV (μ, Γ ) = α

∫
Γ

dσ+β

{
1
2

∫
int(Γ )

(I(x)−μint)2 dx+
1
2

∫
ext(Γ )

(I(x)−μext)2 dx
}

.

(2)
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Here dσ denotes the arc length element, and α, β > 0 are weight parameters. The
first term in ECV is the total length of the contour: It serves to regularize the
optimal contour. The second term is the fidelity term, which penalizes deviations
of the piecewise constant image model from the actual image I.

For any fixed contour Γ , not necessarily the optimal one, it turns out that
the best choice of the gray scale values μ = (μint, μext) corresponds to the mean
value of the pixel values inside and the outside Γ , respectively:

μint = μint(Γ ) =
1

| int(Γ )|

∫
int(Γ )

I(x) dx, (3)

μext = μext(Γ ) =
1

| ext(Γ )|

∫
ext(Γ )

I(x) dx. (4)

Here the symbol |A| denotes the area of the subset A ⊂ R2. Now, if we introduce
the so-called “reduced” Chan-Vese functional

ER
CV (Γ ) := ECV (μ(Γ ), Γ ), (5)

then the optimal contour Γ ∗ can be found by solving the simpler minimization
problem

ER
CV (Γ ∗) = min

Γ
ER

CV (Γ ). (6)

Once Γ ∗ is found we have μ∗ = μ(Γ ∗), of course. The minimization problem in
(6) is solved using a gradient descent procedure, which will be recalled in the
next section, after the material on the level set representation and the kinematics
of moving surfaces have been presented.

2.2 The Level Set Method and Gradient Descent Evolutions

A simple closed curve Γ can be represented as the zero level set of a function
φ : R2 → R as

Γ = {x ∈ R2 ; φ(x) = 0} . (7)

The sets int(Γ ) = {x ; φ(x) < 0} and ext(Γ ) = {x ; φ(x) ≥ 0} are then
the inside and the outside of Γ , respectively. Geometric quantities such as the
outward unit normal n and the curvature κ can be expressed in terms of φ as

n =
∇φ

|∇φ| and κ = ∇ · ∇φ

|∇φ| . (8)

The function φ is usually called the level set function for Γ , cf. e.g. [13].
A curve evolution, that is, a time dependent curve t �→ Γ (t) can be represented

by a time dependent level set function φ : R2 × R → R as Γ (t) = {x ∈
R2 ; φ(x, t) = 0}. Let us consider the kinematics of curve evolutions. It does
not make sense to “track” points as there is no way of knowing the tangential
motion of points on Γ (t). The important notion is that of normal velocity. The
normal velocity of a curve evolution t �→ Γ (t) is the scalar function defined by

v(Γ )(x) =
d

dt
Γ (t)(x) := −∂φ(x, t)/∂t

|∇φ(x, t)| (x ∈ Γ (t)) . (9)
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The normal velocity is independent of the curve representation, in particular of
the choice of level set function φ for Γ , and is therefore a geometric property of
the evolution, cf. [14]. The set of possible normal velocities v = v(Γ ) of moving
contours t �→ Γ (t) passing through the contour Γ at time t = 0 is an infinite
dimensional vector space. This vector space can be endowed with a natural scalar
product and a corresponding norm, cf. [14],

〈v, w〉Γ =
∫

Γ

v(x)w(x) dσ and ‖v‖2
Γ = 〈v, v〉Γ , (10)

where v, w are normal velocities and dσ is the arc length element. In the following
we therefore denote the vector space of normal velocities at Γ by L2(Γ ).

The scalar product (10) is important in the construction of gradient descent
flows for energy functionals E(Γ ) defined on curves. Suppose v ∈ L2(Γ ) is a
fixed normal velocity, and let t �→ Γ (t) be any moving contour which satisfies
Γ (0) = Γ , and (d/dt)Γ (0) = v. Then the Gâteaux variation dE(Γ )v of the
functional E = E(Γ ) at the contour Γ is defined as the derivative,

dE(Γ )v :=
d

dt
E(Γ (t))

∣∣∣
t=0

. (11)

Suppose there exists a function ∇E(Γ ) ∈ L2(Γ ) such that E’s Gâteaux variation
dE(Γ )v at Γ can be expressed in terms of the scalar product (10) in the following
manner,

dE(Γ )v = 〈∇E(Γ ), v〉Γ for all v ∈ L2(Γ ) . (12)

Then the vector ∇E(Γ ) it is called the L2-gradient of E at Γ . It is unique if it
exists. The gradient descent flow for the problem of minimizing E(Γ ) can now
be defined as the initial value problem:

d

dt
Γ (t) = −∇E(Γ (t)), Γ (0) = Γ0, (13)

where Γ0 is an initial contour specified by the user.
As an example, relevant for the application in this paper, notice that the

L2-gradient of the reduced functional ER
CV defined in (5) is given by:

∇ER
CV (Γ ;x) = ακ+β

[1
2
(I(x)−μint(Γ ))2−1

2
(I(x)−μext(Γ ))2

]
, (x ∈ Γ ), (14)

where κ = κ(x) is the curvature at x ∈ Γ . If we combine the definition of
gradient descent evolutions in (13) with the formula (9) for the normal velocity,
then we get the gradient descent procedure in the level set framework:

∂

∂t
φ(x, t) =

(
ακ+β

[1
2
(I(x)−μint(Γ ))2 − 1

2
(I(x)−μext(Γ ))2

])
|∇φ(x, t)|, (15)

with φ(x, 0) = φ0(x), where φ0 is the level set function for the initial contour
Γ0. It is understood that the gray scale values μint(Γ ) and μext(Γ ) are given by
(3) and (4), respectively.
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3 Segmentation of Image Sequences

3.1 A Variational Updating-Model

In this section we are going to present the basic principles behind our variational
model for updating segmentation results from one frame to the next in an image
sequence.

Let Ij : D → R, j = 1, . . . , N , be a succession of frames from a given
image sequence. Also, for some integer k, 1 ≤ k ≤ N , suppose that all the
frames I1, I2, . . . , Ik−1 have already been segmented, such that the correspond-
ing contours Γ1, Γ2, . . . , Γk−1 are available. In order to take advantage of the
prior knowledge obtained from earlier frames in the segmentation of Ik, we pro-
pose the following method: If k = 1, i.e. if no previous frames have actually
been segmented, then we just use the classical Chan-Vese model, as presented in
Sect. 2. If k > 1, then the segmentation of Ik is given by the contour Γk which
minimizes an augmented Chan-Vese functional of the form,

EA
CV (Γk−1, Γ ) := ER

CV (Γ ) + γEI(Γk−1, Γ ), (16)

where ER
CV is the reduced Chan-Vese functional defined in (5), EI = EI(Γk−1, Γ )

is an interaction term, which penalizes deviations of the current active contour Γ
from the previous one, Γk−1, and γ > 0 is a coupling constant which determines
the strength of the interaction. The precise definition of EI is described in the
next section.

3.2 The Interaction Term

The interaction EI(Γ0, Γ ) between a fixed contour Γ0 and an active contour Γ ,
used in (16), may be chosen in several different ways. Two common choices are
the so-called pseudo-distances, cf. [6], and the area of the symmetric difference
of the sets int(Γ ) and int(Γ0), cf. [3]. We have found that none of the mentioned
contour interactions satisfy our needs, and we have therefore chosen to introduce
a completely new pose-invariant interaction term.

To describe this interaction term, let φ0 : D → R denote the signed distance
function associated with the contour Γ0, that is, the function:

φ0(x) =

{
dist(x, Γ0) for x ∈ ext(Γ0),

− dist(x, Γ0) for x ∈ int(Γ0).
(17)

Then the interaction EI = EI(Γ0; Γ ) is defined by the formula,

EI(Γ0, Γ ) = min
T

∫
int(Γ )

φ0(T−1x) dx, (18)

where the minimum is taken over the group of Euclidean transformations T :
R2 → R2 which preserves the orientation of the plane, that is, transformations
T which are compositions of translations and rotations (but not reflections).
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Minimizing over groups of transformations is a standard devise to obtain pose-
invariant interactions, see [3] and [6].

For any given contour Γ , let T = T (Γ ) denote the transformation which min-
imizes the expression on the right hand side of (18). Since this is an optimization
problem T (Γ ) can be found using gradient descent. For simplicity of presenta-
tion, suppose we only consider the group of translations Ta : x �→ x+a, a ∈ R2,
and want to determine the optimal translation vector a = a(Γ ). Then we have
to solve the optimization problem

min
a

∫
int(Γ )

φ0(x − a) dx .

The optimal translation a(Γ ) can then be obtained as the limit, as time t tends
to infinity, of the solution to initial value problem

ȧ(t) =
∫

int(Γ )
∇φ0(x − a(t)) dx , a(0) = 0 . (19)

Similar gradient descent schemes can be devised for rotations and scalings (in
the case of similarity transforms), cf. [3], but will not be written out explicitly
here.

3.3 The Gradient Descent Equations

The augmented Chan-Vese functional (16) is minimized using standard gradient
descent as described in Sect. 2. That is, we solve the initial value problem

d

dt
Γ (t) = −∇EA

CV (Γk−1, Γ (t)) := −∇ER
CV (Γk−1, Γ (t)) − γ∇EI(Γk−1; Γ (t)),

(20)
with the initial contour Γ (0) = Γk−1, and pass to the limit t → ∞. Here ∇ER

CV

is the L2-gradient of the reduced Chan-Vese functional, see Eq. (14), and ∇EI

is the L2-gradient of the interaction EI , which is given by the formula,

∇EI(Γk−1, Γ ;x) = φk−1(T (Γ )x), (for x ∈ Γ ), (21)

as is easily verified. Here φk−1 is the signed distance function for Γk−1.

4 Numerical Implementation and Experiments

In this section we present the results obtained from experiments using three
different image sequences. In the first image of the sequence we use the Chan-
Vese model to segment a selected object with approximately uniform intensity.
Then the proposed method is applied to segment the image sequences sequen-
tially frame-by-frame, where the segmentation in one frame is used as the initial
contour in the next one. The minimization of the functional, giving the optimal
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contour, is obtained from the gradient descent procedure (20) which has been
implemented in the level set framework outlined in Sect. 2. See also [13].

As illustrated in Fig. 1, the original Chan-Vese model is capable of segmenting
a selected object in an image sequence without any problems. Further such
results can be found in [10].

Fig. 1. Segmentation of a person in human walking sequence using the classical Chan-
Vese model

Another experiment is given in Fig. 3, where a walking person is being seg-
mented. Here the proposed method prevents the segmentation of the wrong
objects, as is clearly shown.

However, as pointed out in the above reference, the classical Chan-Vese method
will have problems segmenting an object if occlusions appear in the image which
cover the whole or parts of the selected object. In Fig 2, we show the segmen-
tation results for a car (the white van) in a traffic sequence, where occlusions
occur. The classical Chan-Vese method fails to segment the selected object when
it reaches the occlusion (first column). Using the proposed method, including the
frame-to-frame interaction term, we obtain much better results (second column).

In both experiments the coupling constant γ is varied to see the influence of
the interaction term on the segmentation results. The contour is only slightly
affected by the prior if γ is small. On the other hand, if γ is too large, the contour
will be close to a similarity transformed version of the prior.

5 Conclusions and Future Works

We have presented a new method for variational segmentation of image sequences
containing nonrigid, moving objects. The proposed method is formulated as vari-
ational problem, with one part of the functional corresponding to the Chan-Vese
model and another part corresponding to the pose-invariant interaction with a
shape prior based on the previous contour. The optimal transformation as well as
the shape deformation are determined by minimization of an energy functional
using a gradient descent scheme. Preliminary results are shown on several real
image sequences and its performance looks promising.
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Fig. 2. Segmentation of a car which passes occlusions in the traffic sequence. Left
Column: without interaction term, and Right Column: γ = 80.
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Fig. 3. Segmentation of a person covered by an occlusion in the human walking se-
quence. Left Column: without interaction term, Middle Column: γ = 20, and Right
Column: γ = 70.
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