
Multiresolution Approach in Computing NTF

Arto Kaarna1,2, Alexey Andriyashin3, Shigeki Nakauchi2, and Jussi Parkkinen3

1 Lappeenranta University of Technology, Department of Information Technology
P.O. Box 20, FIN-53851 Lappeenranta, Finland

2 Toyohashi University of Technology
Department of Information and Computer Sciences

1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, 441-8580, Japan
3 University of Joensuu, Laboratory of Computer Science

P.O. Box 111, FI-80101 Joensuu, Finland

Abstract. The computation of non-negative tensor factorization may
become very time-consuming when large datasets are used. This study
shows how to accelerate NTF using multiresolution approach. The large
dataset is preprocessed with an integer wavelet transform and NTF re-
sults from the low resolution dataset are utilized in the higher resolution
dataset. The experiments show that the multiresolution based speed-up
for NTF computation varies in general from 2 to 10 depending on the
dataset size and on the number of required basis functions.

1 Introduction

Non-negative basis for data description is useful for two reasons. First, the ap-
proach is natural since many measuring devices output only non-negative values.
Secondly, non-negative filters can be physically implemented. Thus, many appli-
cation possibilities exist for non-negative bases. They include feature extraction
in image databases, band selection in spectral imaging, and even image com-
pression.

In general, the basis is a low-dimensional mapping of a high-dimensional data.
The traditional approaches are the principal component analysis, the vector
quantization, and the singular value composition [1]. Their outputs are either
representatives for groups of samples or eigenimages, which are then mixed to
get the reconstruction. The mixing coefficients may be both positive, negative,
or they may have zero values.

Two approaches to find a non-negative factorization of a data set V have
arisen recently. The non-negative matrix factorization (NMF) generates the basis
functions W and their multipliers H for a composition Vr = WH [1]. The number
of columns in W and the number of rows in H is the rank k. If the data set
contains images, then these images must be vectorized to apply NMF. Thus,
the approach is not able to utilize the structural features of images. In the non-
negative tensor factorization (NTF) the original shape of the data is maintained
[2]. The factorization outputs the reconstruction as Vr =

∑
u ⊗ v ⊗ w, where u,

v, and w are the factors for each domain, and the sum is over the rank k.

B.K. Ersbøll and K.S. Pedersen (Eds.): SCIA 2007, LNCS 4522, pp. 334–343, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Multiresolution Approach in Computing NTF 335

In NTF, the factorization in practical applications results in a unique solution,
while in NMF that may vary depending on the initial values for the solution
process.

Both in NMF and NTF the factorization is obtained through an iterative
process. The target is to minimize the distance between the original data and the
reconstructed data. Depending on the application, the distance may be measured
as the energy norm, the entropy, or as the Kullback-Liebler divergence.

The iteration is a time-consuming process. Typically, hours of computation
time is needed to find the factorization for the data set. In most cases the basis
functions are only needed and in the literature, these results are mostly reported,
compared, and evaluated [1,2,3,4,5,6,7].

In this study, our hypothesis is that the number of iterations can be limited
with a selection of relevant initial values. Instead of random initial values, a
starting point generated from the dataset can speed up the iteration. In the
proposed approach, the multiresolution of the data set is used to enhance the
computation of the non-negative tensor factorization. The multiresolution is ob-
tained through the integer wavelet transform. For a low resolution image the
NTF is computed and then the components u, v, and w for that resolution are
interpolated for the next higher resolution level.

The structure of the report is as follows. In Chapter 2 we introduce the NTF
process. In Chapter 3 the give the background for the multiresolution approach
based on the integer wavelet transform. In Chapter 4 the consider the compu-
tational complexity of the multiresolution approach for NTF computation. In
Chapter 5 we show the results form the experiments. The discussion and the
conclusions are in Chapter 6.

2 Non-negative Tensor Factorization

Recently, new approaches have emerged to define non-negative bases for datasets.
Two of the methods are the non-negative matrix factorization (NMF) [1], and
the non-negative tensor factorization (NTF) [2]. The basic approach for both of
these is to find a solution for the problem

min
Vo,Vr≥0

||Vo − Vr || (1)

where Vo is the original data and Vr is the reconstructed data. In composing Vr ,
all the components or substructures required in composition are non-negative.

In NTF [2] the reconstruction Vr is obtained as a sum of tensor products

Vr =
k∑

j=1

uj ⊗ vj ⊗ wj (2)

where uj are bases for the first domain, vj are bases for the second domain
and wj are bases for the third domain. k is the rank, a normal requirement is
(r + s + t)k < rst, where r, s, and t are the number of samples in each domain.
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Every element i in uj, vj , and wj is non-negative. The number of domains
naturally depends on the dataset. Three domains, u, v, and w are needed for
example for the analysis of grayscale facial image databases, where the first two
domains are the spatial domains of the images and the third domain comes from
the stack of several facial images [2], [3] [4], [5].

We have used the well-known iterative process [2], that minimizes the recon-
struction error in energy sense. Now the iteration steps for uj

i , vj
i , and wj

i are
defined, respectively, as

uj
i ←

uj
i

∑
s,t Gi,s,tv

j
sw

j
t

∑k
m=1 um

i < vm, vj >< wm, wj >
(3)

vj
i ←

vj
i

∑
r,t Gr,i,tu

j
rw

j
t

∑k
m=1 vm

i < um, uj >< wm, wj >
(4)

wj
i ←

wj
i

∑
r,s Gr,s,iu

j
rv

j
s

∑k
m=1 wm

i < um, uj >< vm, vj >
(5)

where < ., . > refers to the inner product, matrix G contains the values from V0.

3 Integer Wavelet Transform

For the multiresolution approach an approximation of the original data is re-
quired. This can be performed in may ways. A simple approach would be to
subsample the data, i.e. select every second value from each domain. This ap-
proach is not suitable for basis function generation, since the bases are typically
required to represent the low-frequency properties of the data. At least with
synthetic data this approach would lead to problems since some features may be
only one pixel wide [2].

The wavelet transform performs the appropriate approximation of the data.
The original data is transformed to the approximative component and to the
detail component [9]. In the inverse wavelet transform these two components are
used to reconstruct the data. The wavelet transform carries the perfect recon-
struction property. In Fig. 1, a), b), the principle of multiresolution is illustrated.
The lower level approximation is received as values aj+1 etc. from the original
values aj. In practice the transform is performed using convolution with low-pass
filter h and high-pass filter g. In definition of the filters different requirements
can be set [9].

The wavelet transform is one-dimensional in nature. In the two-dimensional
case, the one-dimensional transform is applied to the rows and columns of the
image. In the three-dimensional case, the one-dimensional transform is applied
to the spatial and spectral domains separately. In Fig. 1, c), the principle of the
three-dimensional, separable transform is shown.

The datasets in imaging normally contain integer data. Thus, an integer ver-
sion of the wavelet transform suits well to our case. Similarly to the floating case,
there exists different integer wavelet transforms [10,11,13]. The integer wavelet
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Fig. 1. Wavelet transform. a) Forward transform. b) Inverse transform, c) Separable
three-dimensional wavelet transform applid twice.

transform is based on the lifting scheme: different filters are derived by combining
the prediction step with the update step [11].

The basic form S of the integer wavelet transform subtracts the even samples
from the odd samples to get the difference d1 and the new approximation a1 as

d1,l = a0,2l+1 − a0,2l, a1,l = a0,2l + �d1,l/2� (6)

where the original data is stored in a0,.. The second subscript refers to the index
in the sample vector. The exact reconstruction comes from calculating the values
in reverse order as

a0,2l = a1,l − �d1,l/2�, a0,2l+1 = a0,2l + d1,l (7)

In general, the integer wavelet transform consists of prediction and of up-
date based on the lifting where the number of vanishing moments is increased.
In [11], [12], [13], [10] several integer wavelet transforms are defined. We have
implemented the following transforms: TS-transform, S+P -transform, (2+2, 2)-
transform, and 5/3-transform. In Eqs. 8, 9, 10, and 11 the forward transforms
are given, respectively.

TS

{
d1,l = a0,2l+1 − a0,2l, a1,l = a0,2l + �d1,l/2�
d1,l = d1,l + �1/4(a1,l−1 − a1,l) + 1/4(a1,l − a1,l+1)�

(8)

S + P

⎧
⎨

⎩

d1,l = a0,2l+1 − a0,2l, a1,l = a0,2l + �d1,l/2�
d1,l = d1,l + �2/8(a1,l−1 − a1,l)+

3/8(a1,l − a1,l+1) + 2/8d1,l+1�
(9)

(2 + 2, 2)

⎧
⎪⎪⎨

⎪⎪⎩

d1,l = a0,2l+1 − �1/2(a0,2l + a0,2l+2) + 1/2�
a1,l = a0,2l + �1/4(d1,l−1 + d1,l) + 1/2�
d1,l = d1,l − �1/8(−1/2a1,l−1 + a1,l − 1/2a1,l+1)+

1/8(−1/2a1,l + a1,l+1 − 1/2a1,l+2) + 1/2�
(10)
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5/3
{

d1,l = a0,2l+1 − �1/2(a0,2l+2 + a0,2l)�
a1,l = a0,2l + �1/4(d1,l + d1,l−1 + 1/2)� (11)

The integer wavelet transform outputs non-negative values for the approxima-
tion coefficients a if the original data is non-negative. When details d are added
in the inverse transform, the output is still non-negative. Thus, the transform
does not violate the requirement of non-negativeness of the data for NTF.

4 Definition and Computational Complexity of the
Proposed Algorithm

Non-negative matrix factorization outputs k vectors for each domain. The num-
ber of samples for each domain are r, s, and t, if a three-dimensional dataset is
used. This is the normal case, when NTF is used with a grayscale facial image
dataset or with a spectral image. For the spectral dataset, one domain, like v,
can be neglegted, since the data is only two-dimensional, the first domain is the
spectral domain and the second domain consists of the large number of spectra.

4.1 Definition of the Algorithm

The algorithm for the multiresolution approach for computing the NTF consists
of the integer wavelet transform (IWT) and of NTF computaion. The details are
given in Algorithm 1.

Algorithm 1
1. Compute the lowest resolution transform using IWT for the original data

set.
2. Compute u, v, and w for this lowest level in multiresolution.
3. Interpolate u, v, and w for the next higher level in multiresolution.
4. Use inverse IWT to compute the next higher level in multiresolution.
5. Compute u, v, and w for the current multiresolution level.
6. If u, v, and w are computed for the highest level in multiresolution, then

Stop. Otherwise, goto Step 3.

4.2 Computational Complexity

The one-dimensional wavelet transform is of order O(n), where n is the number
of samples. In three-dimensional case the number of samples n is n = rst. At
each step to lower level in resolution, the number of samples is divided by eight,
so one half of the samples in each domain is transfered to the next level. Each
IWT described in Eqs. 8, 9, 10, and 11, require from 4 (S-transform, Eq. 6) to 24
((2 + 2, 2)-transform, Eq. 10) operations to get the two new values in the lower
resolution level. Normally, a low number of levels are needed in the transform,
like from 3 to 5 levels.

In NTF, u, v, and w are obtained through an iterative process. In each iter-
ation step j, see Eqs. 3, 4, 5, the computational load is proportional to O(rst).
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The number of iterations depends on the data set used in the application. Typ-
ically, hundreds or even thousands of iterations are needed for the process to
converge [8].

In the implementation, we selected various number of iterations for each res-
olution level. At low resolution, it was possible to select a large number of it-
erations with only a nominal effect to the whole computational time. The final
target was to minimize the required number of iterations at the highest resolu-
tion, since at the highest resolution the iteration was most time-consuming in
finding the final components u, v and w for the data set.

5 Experiments

Three phases were performed in the expriments. The first phase was to select a
suitable integer wavelet filter for the multiresolution analysis. The second phase
considered the number of levels in the multiresolution. In the last phase NTF
within the multiresolution approach was performed.

5.1 Experimental Data

Three data set were used in the experiments. The first set is a two-dimensional
set containing t = 1269 color spectra. Each spectrum had r = 384 samples.
Typical representatives of the spectra set are shown in Fig. 2 [14].
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Samples from Munsell data set with 12 bit resolution.

Fig. 2. Test set 1: Samples from Munsell color spectra set

The second data set was constructed from facial images from CBCL data set
[15]. The number of images was t = 192, and each image was of size rs = 96×96
pixels. Samples of the data set are shown in Fig. 3.

The third data set is a spectral image of size rst = 256×256×224. The image
is part of Moffet Field remote sensing image captured using AVIRIS equipment
[16].
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Samples from facial image dataset.

Fig. 3. Test set 2: Facial image dataset, samples from the set

Moffet spectral image. Bands 11, 21, 41, 71, and 91

Fig. 4. Test set 3: Moffet Field spectral image, bands 11, 21, 41, 61, and 91

5.2 Selection of the Integer Filter and the Number of Levels in
Multiresolution

In [10], the best lossless compression results for gray-scale images were obtained
with the 5/3-transform. This means that the filter can capture essential features
from the data set to a low number of coefficients. Our target is different. The
purpose is to describe the data set such that features from a lower resolution
to a higher resolution remain similar. Thus, the first task is to select a suitable
IWT filter.

We computed the algorithm with k = 3 for the third data set with various
IWT filters. The results are collected to Table 1. The quality is computed as the
signal-to-noise ratio and it is expressed in decibels (dB). For filter S the results
for the whole multiresolution solution are shown. For other filters, only the final
result is shown. The starting point for the iteration was the same for all filters.

The conclusion from this experiment is that all filters act similarly, except
filter 5/3, which outputs slightly worse results than the others. The final selection

Table 1. IWT filter selection, k = 3

Filter name level # of iterations Quality (dB) Relative time
S 4 2000 18.453 1.080

3 600 15.975 2.190
2 300 14.333 27.910
1 50 13.119 74.540
0 1 12.408 24.730

TS 0 1 12.408 31.780
SP 0 1 12.408 42.830

(2 + 2, 2) 0 1 12.405 41.070
5/3 0 1 12.393 31.730
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criterion is the computational time which is lowest for the filter S. Thus, all the
experiments were performed with filter S.

Next, we wanted to find out, how many steps in the multiresolution ladder
are needed. The experiment was performed with filter S, with the spectral image
data set. The results are shown in Table 2.

Table 2. Selection of the number of levels in the multiresolution. IWT filter S, k = 3.

level # of iterations Quality (dB) Relative time
3 600 15.974 2.020
2 300 14.332 24.430
1 50 13.119 70.050
0 1 12.408 24.300
2 300 14.320 32.230
1 50 13.112 77.640
0 1 12.402 24.400
1 50 12.627 67.740
0 1 12.020 22.630

From Tables 1 and 2 we can conclude that at least three levels of multires-
olution are required to achieve the good quality in reconstruction. In the next
experiments, four levels in multiresolution were applied, since the computational
cost in the lowest level is very small compared to the whole process.

5.3 Computational Results for NTF

The last experiment considerers the whole process described in Alg. 1. The
three datasets were used, in IWT the filter was filter S, and four levels in the
multiresolution ladder were used. The results from the experiment are shown in
Figs. 5 a), b), and c). On the horizontal axis there is the relative computational
time with a logaritmic scale, and on the vertical axis there is the reconstruction
quality in dB.

Each subfigure in Fig. 5 contains ranks k = 1, 2, 3, 4, 6, 8, 16, 32. For each k
without multiresolution, the number of iterations were 2, 4, 8, 16, 32, 64, 128, 256,
512, 1024. The qualities for the latest iterations are shown for each k. For the mul-
tiresolution case, only the final result is shown as a single box (�) for each k.

6 Conclusions

In this study, we have enhanced the computation of u, v, and w for the non-
negative tensor factorization with a multi-resolution approach. The multiresolu-
tion was computed using the integer wavelet transform.

The following conclusions can be made from the experiments. In general, the
proposed approach is from 2 to 10 times faster than the original computation.
Especially, for a data set with large values for r and s, the approach is very good.
When the rank k is large, the original solution requires time that is fifty-fold
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Fig. 5. Computational time vs. reconstruction quality, a) Munsell data set. b) Facial
image data set. c) Moffet Field spectral image. For each run 2,4,8,16,32,64,128,256, and
1024 iteraton steps were used. For larger rank k, only last steps are marked. For each
k, the computational time for the highest quality of the proposed method is marked
by �.
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compared to the proposed approach, see Fig. 5, c). The gain from the proposed
approach is from 2 to 10 fold. For facial image data set, the same conclusions
can be drawn, see Fig 5, b).

For the Munsell data, the approach provides clear gain when k is larger, like k =
4, 6, 8, 16, 32. With k = 1 the proposed approach is not usable, there is the extra
load of the IWT compared to the original solution, see Figs. 5 a), b), c). In practice,
a small number of iterations (even 2 iterations) results in the converged solution.
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