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Abstract. ECOC is a diffused and successful technique to implement
a multiclass classification system by decomposing the original problem
in several two-class problems. In this paper we propose ECOC systems
with a reject option carried out through two different schemes. The first
one estimates the reliability of the output of the ECOC system and does
not require any change in its structure. The second scheme, instead, es-
timates the reliability of the internal dichotomizers and implies a slight
modification in the decoding stage. A final investigation is done on the
sequential combination of both methods.
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1 Introduction

A diffused technique to face a classification problem with many possible classes
is to decompose it into a set of two class problems. The rationale of this approach
rely on the stronger theoretical roots and better comprehension characterizing
two class classifiers (dichotomizers) such as Perceptrons or Support Vector Ma-
chines that, with this method, become employable in multiclass problems.

In this framework, Error Correcting Output Coding (ECOC) has emerged as
a well established technique for many applications in the field of Pattern Recog-
nition and Data Mining, mainly for its good generalization capabilities. In short,
ECOC decomposition labels each class with a bit string (codeword) of length L,
higher than the number of classes. The codewords are arranged as rows of a
coding matrix, whose columns define each a two class problem; thus, for each
problem, the set of the original classes parts into two complementary super-
classes. On such problems induced by the coding matrix, L dichotomizers have
to be trained in the learning phase. In the operating phase, the dichotomizers
will provide a string of L outputs for each sample to be classified. The Ham-
ming distance of such string from each of the codewords of the coding matrix is
then evaluated and the class that corresponds to the nearest codeword is cho-
sen. Usually, the codewords are chosen so as to have a high Hamming distance
between each other; in this way, ECOC is robust to potential errors made by the
dichotomizers. The reasons for the classification efficiency exhibited by ECOC
seem to be the reduction of both bias and variance [1] and the achievement of
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a large margin [2]. After the seminal paper by Dietterich and Bakiri [3], many
studies have been proposed which have analyzed several aspects of ECOC such
as the factors affecting the effectiveness of ECOC classifiers [4], techniques for
designing codes from data [5], evaluations of coding and decoding strategies [2].

A very common point in many applications in which the ECOC approach
is used is that a classification error could have serious consequences, usually
expressed by means of an error cost. In some cases, such cost can be so high
that it is convenient to reject the sample (i.e. to suspend the decision and call
for a further test) instead of risking a wrong decision. Obviously, also this choice
involves a not negligible cost given by the charge of employing a more powerful
system or requiring the decision of a human expert. Thus a rule is needed to find
the optimal trade off between errors and rejects for the application at hand.

This paper proposes the introduction of a reject option for ECOC systems
accomplished through two different schemes. The first one works on the output
of the whole classification system and the reject is accomplished by considering
the Hamming distance among the output codeword and the rows of the cod-
ing matrix. In the second scheme the reject option is performed on the base
classifiers output by taking into account the confidence degrees provided by the
dichotomizers. Such scheme makes use of a particular decoding technique for
the erased bit in the codeword corresponding to rejects. To generalize the reject
option, the cascade of the two approaches has been considered too.

In the rest of the paper we present, after a short description of the ECOC
approach, the two schemes performing the reject option and the cascade of them.
The successive section describes the results obtained from experiments performed
on some UCI repository data sets. Some conclusions and future developments
are drawn in the last section.

2 The ECOC Approach

The Error Correcting Output Coding has been introduced to decompose a mul-
ticlass problem into a set of complementary binary problems. Each class label
is represented by a bit string of length L, called codeword, with the only re-
quirement that distinct classes are represented by distinct codewords. If n is
the number of the original classes, a code is a n × L matrix C = {chk} where
chk ∈ {0, 1}. Each row of C corresponds to a codeword for a class, while each
column corresponds to a binary problem. In this way, the multiclass problem is
reduced to L binary problems on which L dichotomizers have to be trained. An
example of coding matrix with n = 5 and L = 12 is shown in table 1. In the
training phase, each dichotomizer is learned from a finite set of samples. In the
operating phase, the sample x to be classified is fed to all the dichotomizers and
each of them produces a binary value: all such values are collected to make a
vector of binary decisions (output vector) to be compared with the codewords of
the coding matrix. It is possible that some dichotomizer makes a wrong predic-
tion, but this does not necessarily lead to an irrecoverable error in the multiclass
problem since the code matrix is built by n distinct codewords of length L > n,
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Table 1. An example of a coding matrix for a 5 classes problem

classes
codewords

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

1 0 0 1 1 1 1 0 1 0 1 1 0
2 1 0 0 1 0 0 0 1 1 1 1 0
3 0 0 1 1 0 1 1 1 0 0 0 0
4 1 1 1 0 1 0 1 1 0 0 1 0
5 0 1 0 0 1 1 0 1 1 1 0 0

so as to make the Hamming distance between every pair of codewords as large as
possible. The Hamming distance DH between two words is given by the number
of position where the bit patterns of the two words differ.

The minimum Hamming distance (MHD) d = mini,j DH(ci, cj) between any
pair of codewords is a measure of the quality of the code. In particular it is
possible to correct codewords which contains no more than �(d − 1)/2� single bit
errors. In this way, a single bit error does not influence the result, as it can happen
when using the usual one-per-class coding, where the Hamming distance between
each pair of strings is 2. To pass from the binary to the multiclass problem, the
most common approach consists in evaluating the Hamming distances between
the output vector o and the codewords of the matrix and choose for the nearest
codeword, i.e. for the codeword exhibiting the minimum Hamming distance from
the output vector. Therefore, the decision for the k-th class ωk corresponding to
the ck codeword is taken according to:

ωk = arg min
j

(DH(cj ,o)), (1)

In particular, if the dichotomizers have soft output (e.g. they provide a confidence
degree which is a real value ranging from 0 to 1), it is necessary to threshold
their responses to obtain the value of the bits in the corresponding positions of
the codeword.

3 The Multiclass Reject Option

The goal of this paper is to introduce a reject option for a multiclass problem
in order to decrease the total classification cost by turning as many errors as
possible into rejects. In fact, for a realistic problem, the error cost should be
higher than a reject cost and thus an effective reject option is advantageous
for the original multiclass classification problem. In general, a reject option is
accomplished on a classifier by evaluating in some way the reliability of the
decision taken by the classifier and rejecting the decision if the reliability is lower
than a given threshold. In the case of an ECOC-based classification system, there
are actually two places in which a decision is taken: the first place is the decoding
stage, where the final multiclass decision is taken on the basis of the MHD. The
second place is given by all the dichotomizers, each taking a two-class decision.
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As a consequence, two different strategies are possible. The first one affects the
decoding stage and evaluates the reliability of the multiclass decision on the basis
of the MHD obtained; we will define external such scheme since it works at the
output of the whole classification system. The second scheme (internal scheme),
instead, evaluates the reliability of the outputs coming from the dichotomizers
and rejects the decisions not sufficiently reliable. This approach affects the struc-
ture of the output vector since, in this case, it will contain, besides the usual
values of 0 and 1, another symbol (let us call it r) which indicates that for the
corresponding dichotomizer a reject has been taken. The decoding algorithm has
to be consequently modified in order to handle the 3-value output vector. Obvi-
ously, this makes the second approach quite less general since, besides the change
on the decoding stage, it puts some requirements on the characteristics of the
dichotomizers to be employed. The two schemes are described in the following
sections together with the cascade of them.

3.1 The External Reject Option

In literature, the decision in the ECOC approach has been principally based on
the minimization of the Hamming distance among the codewords of the coding
matrix and the output vector produced by the dichotomizers. Every employed
dichotomizer gives an output that can be thresholded and combined to determine
the final output vector: o = (o1, o2, . . . , oL).

Let us consider two codewords ch and ck that differs on d bits. If the number
of erroneous bits is lower than d/2 we can correctly decode the word by using
the MHD rule. When the number of errors is higher than d/2 it is not possible to
recover the right codeword, i.e., the final decoding will be erroneous. This means
that the greater is the Hamming distance between the output vector and the
correct codeword the greater is the probability of an erroneous decision. In this
situation it is possible to consider a reject rule based on the Hamming distance
that introduces a reject region between the two codewords. This allows us to
avoid to take a decision when the distance between the output vector and its
nearest codeword is too high. If te is the reject threshold and ωk is the class
chosen according to eq. (1) the reject rule is:

r(o, te) =

{
ωk if DH(ck,o) < te,
reject if DH(ck,o) ≥ te.

(2)

Fig. 1 shows an example for such a problem. In fig. 1.a two samples belonging
to the class ωp produce two output vectors o1 and o2. In the first case a correct
decision is taken while o2 will be assigned to the wrong class ωq. Introducing
the reject rule, a decision for the vector o2 will not be taken so avoiding an error
(see fig. 1.b). It is worth noting that the lowest Hamming distance is zero while
the highest one depends on the codewords of the matrix C. If L is the maximum
distance that we can have between two codewords (i.e., in the coding matrix
there are two complementary rows) an upper bound of the maximum distance
allowable for the reject threshold is L/2. It is worth noting that such scheme
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Fig. 1. Example of the decoding method based on the MHD in the standard approach
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Fig. 2. The block diagram for the external reject rule

does not require any assumption neither on the dichotomizers nor on the coding
matrix. The whole scheme is described in fig. 2.

3.2 The Internal Reject Option

Let us now suppose that we can estimate the reliability of the output of each
dichotomizer in the ECOC system. For example, let us consider a model for the
dichotomizer which provides a soft value ranging from 0 to 1. In this case, we
should threshold the soft output to have a crisp response with a typical threshold
value of 0.5. However, it is easy to see that a value for the soft output falling
near the threshold will be much less reliable than a value near 0 or near 1. As a
consequence, we can adopt a reject rule for each dichotomizers as:

oj(x, ti) =

⎧⎪⎨
⎪⎩

1 if fj(x) > 0.5 + ti

0 if fj(x) < 0.5 − ti

r otherwise
(3)

Since in this case the output vector can also contain rejected bits, i.e. ci ∈
{0, 1, r}, we have to focus on a decoding rule able to handle the 3 values. To this
aim, it is possible to analyze the effect of an erasure (i.e. a reject) on the ECOC
system. If μ is the number of erasures, the minimum distance between codewords
(evaluated on the unerased bits) becomes d−μ and the error correcting capability
of the code decreases to �(d − μ − 1)/2�. Therefore, to have a correct decision
the number of errors and erasures should verify the following condition:

2ν + μ < d (4)
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where ν is the number of errors. This means that is twice difficult to correct
an error than to correct an erasure. To show how the internal reject can be
advantageous for the final decision, let us consider an output vector affected
by ν errors. Without internal reject a correct decision will be taken if 2ν < d.
Applying the internal reject rule we turn some erroneous bits (say μ1) into
erasures while the remaining erasures (say μ2 = μ − μ1) come from correct
decisions. In this case, the correct decision will be taken if 2ν1 + μ1 + μ2 < d
where ν1 = ν − μ1. Therefore, we will take advantage from the internal reject if
μ1 < μ2 that is if at least half of the erasures comes from erroneous bits.

In order to take a decision, an erasure filling method called erasure decoding
[6] is adopted in the decoding stage. To understand its rationale, let us suppose
to replace all the erased bits by 0 and decode the obtained vector. If no more
than half of the erasures should have been ones and eq. (4) is satisfied, then the
number of errors is still less than half of d and the decoding will be correct. On
the other hand, if more than half of the erasures should have been ones then
we are introducing other bit errors and the decision will be erroneous. In this
case, if we fill all the erased bits with 1 the decision will be successful. Therefore,
the erasure filling procedure consists in decoding twice and choose the codeword
that is closer to the output vector in terms of Hamming distance. The resulting
procedure can be summarized as follows:

1. Place zeros in all erased position and decode to the closer codeword (in
Hamming distance terms) c(0);

2. Place ones in all erased position and decode to the closer codeword (in Ham-
ming distance terms) c(1);

3. Choose the closest c(j) to the received codeword in the unerased positions,
where j = 0, 1.

The first two steps of the algorithm are meant to solve the rejects/erasures while
the last one exploits the error correction capability of the code.

However, it could happen that the output vector falls (according to the erasure
decoding) on the halfway between two different codewords. In this case, the
decision can not be reliably taken and thus a reject is produced. The complete
rule can be described as:

r(C,x) =

⎧⎪⎨
⎪⎩

ω
(0)
k if D∗

H(ck, c(0)) < D∗
H(ck, c(1)),

ω
(1)
k if D∗

H(ck, c(1)) < D∗
H(ck, c(0)),

reject if D∗
H(ck, c(0)) = D∗

H(ck, c(1)).
(5)

where D∗
H is the Hamming distance on the unerased bits. The resulting system

is shown in fig. 3.

3.3 The Cascade Reject Option

It is worth noting that the output of the ECOC system provided with the internal
reject option is still based on the MHD criterion. Therefore, it is possible to
implement a cascade of the two procedures before described using the output
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of the internal rule as input for the external reject option. In such a case the
Hamming distance between the codewords and the output vector (and then the
threshold for the external reject option) is evaluated only on the unerased bits.
The goal of the cascade of the two methods is to reduce the number of erroneous
decision that we obtain after the internal rule. It is worth noting that in this
case we have to choose two different thresholds. A block scheme of this approach
(that we called cascade reject rule) is reported in fig. 4.
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4 Experiments

In order to evaluate the performance of the proposed methods, experiments
were made on some data sets publicly available at the UCI Machine Learning
Repository [7]; all of them have numerical input features and a variable number of

Table 2. Data sets and coding matrices used in the experiments

Data Sets # Classes # Features Coding Matrix Length (L) # Samples
Glass 6 9 Exhaustive 31 214

SatImage 6 36 Exhaustive 31 6435
Yeast 10 8 BCH 31-21 31 1484
Vowel 11 10 14-11 14 435
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Fig. 5. Comparison between external (left side) and internal (right side) reject option
on the different data sets: (a-b) Glass, (c-d) SatImage, (e-f) Yeast, (g-h) Vowel
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Fig. 6. The results obtained with the cascade option (left side) and the comparison
between the three methods (right side) on the different data sets: (a-b) Glass, (c-d)
SatImage, (e-f) Yeast, (g-h) Vowel
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classes. More details for the data sets are given in table 2. The table provides also
the type of ECOC matrix employed for each data set. As in [3] we have chosen
an exhaustive code for the sets that have a number of classes lower than 8 and
a BCH code for those having a number of classes greater than 8. In particular,
for Vowel data set we used a matrix (named 14-11) with a reduced number
of columns available at http://web.engr.oregonstate.edu/∼tgd/software/
ecoc-codes.tar.gz As base dichotomizers in the ECOC framework Modest
AdaBoost [8] has been used using a simple decision tree as weak learner with a
randomized number of splits in every run. To avoid any bias in the comparison,
12 runs of a multiple hold out procedure have been performed on all the data
sets. In each run, the data set has been split in three subsets: a training set
(containing the 70% of the samples of each class) to train the base classifiers,
a validation set and a test set (each containing the 15% of the samples of each
class) used respectively to normalize the outputs into the range [0, 1] and to
evaluate the performance for the multiclass classification.

To compare the different methods a useful representation to evaluate the
benefits of a reject option is the error-reject curve that has been built varying
the opportune thresholds ti and te for all the data sets. In fig. 5 we report
the results of the comparison between the external and internal schemes. The
number of reject thresholds for the two cases are different: the external approach
considers values ranging between [0, L/2] as discussed in section 3.1 while the
internal rule considers all the possible normalized output values observed in the
range [0, 0.5]. It should be also noted that since for the internal option we fix
a multiclass reject rule (see eq. 5) we obtain a reject rate always greater than
zero since we can have a reject even if ti = 0 . Experimental results does not
show better performance of one of these strategies on the other but they are
practically equivalent. In fig. 6 we show (on the left side) the results obtained on
each data set with the cascade approach. In each graph the error-reject curves
varying the internal threshold for a fixed external threshold are reported. For
the sake of comparison the convex hull of all these curves has been evaluated and
compared with the two previous methods in the right side of fig. 6. The cascade
option presents always a lower error-reject curve on all the data sets with only
one exception on Vowel data set (see fig. 6) where for the range [0, 0.18] the
curve of the external reject rule exhibits lower error probabilities.

5 Conclusions

In this paper we have proposed two schemes to provide an ECOC classification
system with a reject option. The experiments have shown that the two methods
give similar results, even though they are effective on different situations. In
fact, when both are activated in a cascade scheme, the results obtained are
clearly better. The future work will focus on the analysis of particular codes
more suitable for erasure decoding.
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