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Abstract. In this paper, we propose novel blur invariant features for the
recognition of objects in images. The features are computed either using
the phase-only spectrum or bispectrum of the images and are invariant
to centrally symmetric blur, such as linear motion or defocus blur as well
as linear illumination changes. The features based on the bispectrum are
also invariant to translation, and according to our knowledge they are
the only combined blur-translation invariants in the frequency domain.
We have compared our features to the blur invariants based on image
moments in simulated and real experiments. The results show that our
features can recognize blurred images better and, in a practical situation,
they are faster to compute using FFT.

1 Introduction

Recognition of objects and patterns in images is a fundamental part of computer
vision with numerous applications. The task is difficult as the objects rarely look
exactly similar in different conditions. In real applications, images contain vari-
ous artifacts such as geometrical and convolutional degradations. Image analysis
systems should be able to operate also in these nonideal conditions. There has
been a vast amount of research in this field of invariant pattern and object recog-
nition [1]. However, the invariant recognition of objects degraded by blur is a
much less studied topic.

In various applications, images may contain blur, which can result, for ex-
ample, from atmospheric turbulence, out-of-focus, or relative motion between
the camera and the scene. This degradation process can be modeled as a linear
shift-invariant system in which the relation between an ideal image f(x) and an
observed image g(x) is given by

g(x) = f(x) ∗ h(x) + n(x) , (1)

where x is a 2-D spatial coordinate vector, h(x) the point spread function (PSF)
of the system, n(x) additive noise, and ∗ denotes 2-D convolution. The point
spread function h(x) represents blur while other degradations are captured by
the noise term n(x).

The analysis of blurred images is often carried out by first deblurring the
images and then applying standard methods for further analysis. Unfortunately,
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image deblurring is a difficult problem. Conventional solutions include the esti-
mation of the PSF of the blur and deconvolution of the image using that PSF.
When the PSF is known, the latter ill-posed problem can be solved using ap-
proaches which use regularization [2]. In practice, the PSF is often unknown and
very hard to estimate accurately. In this case, blind image restoration algorithms
are used [3].

The analysis of the blurred images can also be performed without deblurring
using features which are invariant to blur. Flusser and Suk proposed the first
blur invariant features in [4]. These invariants are based on geometric moments,
central moments (MOMIs) or the spectrum (SPEIs) of the image. Of these, the
MOMIs are also invariant to translation. The MOMIs have been applied to tem-
plate matching [4], recognition of defocused objects [5] and registration of X-ray
images [6]. In [7], blur, rotation and scale invariants based on complex moments
were proposed. In [8,9], the theory was extended to blur and affine moment in-
variants. A shortcoming of these blur invariant features is their sensitivity to
noise, especially in the case of SPEIs [10]. Probably for this reason, the SPEIs
do not have known applications. In addition, translation invariance has not been
incorporated into Fourier domain blur invariants.

The features presented in this paper are invariant to centrally symmetric
blur, which is exactly the same condition as with the MOMIs and SPEIs. The
invariants are computed from the phase-only spectrum, (phase blur invariants,
PBIs) or using phase-only bispectrum in which case we achieve blur-translation
invariants (PBTIs). The computation of the invariants can be done efficiently
using FFT.

2 Frequency Domain Blur Invariant Features

2.1 Features Invariant to Blur

In this section, we show how invariance to blur is obtained in the Fourier domain
by using the phase-only spectrum.

If noise n(x) is neglected, (1) can be expressed in the Fourier domain using
the convolution theorem by

G(u) = F (u) · H(u) , (2)

and in the phasor form by

G(u) = |G(u)| e−iφg(u) , (3)

where u is a vector in the 2-D frequency space.
If the Fourier transform G(u) is normalized by its magnitude, only the com-

plex exponential containing the phase remains, namely

G(u)
|G(u)| = e−iφg(u) = e−i[φf (u)+φh(u)] , (4)
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where φf (u) is the phase of the original image f(x) and φh(u) the phase of the
blur PSF h(x).

Since h(x) is assumed to be centrally symmetric, its Fourier transform H(u)
is real and its phase φh(u) has only two possible values

φh(u) = 0 ∨ φh(u) = π . (5)

It follows from this and from the periodicity of the complex argument that the
equality

[e−iφg(u)]2n = e−i2nφg(u)

= e−i2nφf (u)e−i2nφh(u) (6)
= [e−iφf (u)]2n

holds for any integer n.
Thus, any even power of the normalized Fourier transform, i.e. e−i2nφ(u), of

the observed image is invariant to the convolution of the original image with
any centrally symmetric PSF. In other words, any even multiple of the Fourier
transform phase modulo 2π is also invariant. We construct the invariants in this
way using value n=1, namely

B(u) = 2φ(u) mod 2π , (7)

where φ(u) is the phase spectrum of the image. Henceforth, B(u) is called phase
blur invariant (PBI). Some similarities with the derivation of the SPEIs in [4]
can be observed. In this case, the invariance is obtained by using the tangent of
the phase spectrum φ(u).

2.2 Features Invariant to Blur and Translation

In this section, we extent the theory presented in Section 2.1 to incorporate also
invariance to translation.

The phase spectrum of an image, which is used to construct the invariants in
Section 2.1, is not invariant to translation. The amplitude spectrum is invariant
to translation, but, on the other hand, blur invariants can not be constructed
from it. This is the reason why we have to turn to the higher order spectra
defined by

Ψn(u1,u2, · · · ,un) = F ∗(s)
n∏

i=1

F (ui) , (8)

where ui with i = 1, · · · , n are vectors in the 2-D frequency space, and s =
u1 + u2 + · · · + un. It can be easily shown that Ψn is shift invariant [11].

When n = 1 in (8) we get the power spectrum and further with the value
n = 2 the bispectrum, namely

Ψ2(u1,u2) = F (u1)F (u2)F (u2 + u2) . (9)
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We are interested in the bispectrum as besides its invariance with respect to
translation it does not loose any essential information about the original image.
This means that it also retains the phase information in contrast to the power
spectrum. For these reasons, it is possible to construct a blur invariant phase-
only bispectrum where the exponentials containing the phase are raised to the
second power, similar to (6), namely

P (u1,u2) = e−i2φ(u1)e−i2φ(u2)e−i2φ(u1+u2) (10)
= e−i2[φ(u1)+φ(u2)+φ(u1+u2)] .

By looking the equation (9), we see that the bispectrum is a function of two
vector arguments, containing totally four scalar variables. Assuming that F (u)
is an N -by-N discrete Fourier transform (DFT) of an image f(x) the bispectrum
becomes a four-dimensional N -by-N -by-N -by-N matrix. Fortunately, it is not
necessary to evaluate the whole bispectrum. It is possible to take only 2-D slices
of the original bispectrum, which contain basically the same information. There
are various ways of defining the slices [12,13]. We define the slices as

Sk(u) = Ψ2(u, ku) ∀k ∈ R . (11)

We then form blur invariants corresponding to (10) using only one slice (11)
with value k = 1 of the whole bispectrum (9), namely

P
′
(u) = e−i2[φ(u)+φ(u)+φ(u+u)] (12)

= e−i2[2φ(u)+φ(2u)] .

Finally, we construct the invariants with respect to blur and translation used
throughout this paper, similarly to (7), as

T (u) = 2[2φ(u) + φ(2u)] mod 2π . (13)

These invariants are called phase blur-translation invariants (PBTIs).
It would also be possible to use more slices in building up the invariants. It

can be seen from (9), (10) and (11) that we need frequency samples in points u
but also at ku and (k+1)u to compute an arbitrary slice. If we assume that the
images are discrete and that the spectrum is computed using DFT, the samples
in the two latter cases can be extracted from DFT by utilizing its conjugate
symmetry and periodicity. In our case, we only need frequency samples from
points u and 2u.

If the DFT size is N -by-N we have approximately N/2 non-redundant invari-
ants available at once. This is opposite to the MOMIs, of which computation
time depends on the number of invariants used. However, the invariants corre-
sponding to the lower frequencies have higher signal-to-noise ratio (SNR), and
there is some optimal number of invariants that should be used depending on the
noise level. In the experiments, we have used L invariants of (7) or (13) for which
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√
u2

1 + u2
2 ≤ r, when u = [u1, u2], but without using the conjugate symmetric or

zero frequency components. Other possibility would be to weight the invariants
according to SNR.

The distance between images f(x) and g(x) to be classified is computed as

D =

√√√√
L∑

i=1

e2
i , (14)

where

ei = min
{
|I(f)

i − I
(g)
i |, |I(f)

i − I
(g)
i | − 2π

}
. (15)

Here, Ii, i = 1,...,L, are the invariants of (7) or (13).
It should be noted that the composition of our frequency domain invariants

is quite robust to noise in contrast to the SPEIs of [4], which are based on the
discontinuous tangent of the phase. Another useful property of our invariants,
which results from the normalization of the amplitude information, is the invari-
ance to uniform illumination changes.

As mentioned earlier, our invariants, as well as the moment invariants, are
invariant to centrally symmetric blur. However, this is not exactly true for arbi-
trary images as the blur exchanges the information across the boundaries of the
image causing some error. Also the translation invariance retains only if there is
no information flow across the image boundaries.

3 Experiments

In the experiments, we classified blurred and noisy images using nearest neigh-
bor classification and compared the results of our blur invariant features to the
MOMIs and SPEIs, which were implemented as proposed in [4]. For all the fre-
quency domain invariants r=

√
5 or

√
10, and the order of the MOMIs is up to

5 or 7. This results to either L=10 or 18 invariants.
In the first experiment, we compared the features invariant only to blur. In

comparison we used the invariants based on central moments (MOMIs), which
are also translation invariant, as they seemed to perform better compared to the
invariants based on ordinary moments. As test images, we had 40 computer gen-
erated uniformly distributed noise images, which were filtered using a Gaussian
low pass filter of size 10-by-10 with the standard deviation σ=1 to get an image,
as in Figure 1(a), that resemples some natural texture. We picked one image
at time, blurred and added noise to it, as in Figure 1(b), and tried to classify
it as one of the original 40 image categories using the invariants. The blur was
circular with a radius varying from 0 to 10 pixels with steps of 2 pixels. This
kind of blur is a simple model of the out-of-focus effect found in many imaging
systems [2]. The image size was cropped finally to 80-by-80 containing only the
valid part of the convolutions. The experiment was repeated 20 times for each
blur size and for each of the 40 images.
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(a) (b)

Fig. 1. (a) An example of the 40 filtered noise images used in the first experiment, and
(b) a degraded version of it (blur radius is 5 and PSNR 30 dB)
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(b)

Fig. 2. Classification accuracy of nearest neighbor classification of blurred and noisy
images when PSNR is (a) 40 dB (b) 20 dB. The solid lines show the cases where 10
invariants are used and the dashed lines the case of 18 invariants.

The percentage of correct classification for the three methods, our PBIs, the
MOMIs and the SPEIs, is shown in Figures 2(a) and 2(b) when the peak signal-
to-noise ratio (PSNR) is 40 and 20 dB, respectively. The solid lines show the
case of 10 invariants and the dashed lines the case in which 18 invariants are
used.

In theory, all the methods are invariant to blur, but in practice, there are
differences in their robustness to noise and boundary error. The results show that
the SPEIs perform worst as was expected because of their unstable construction.
If compared to the PBIs, also the MOMIs seem to be more sensitive at least to
noise. The use of 18 invariants seems to give significantly better results compared
to the use of 10 invariants only for the PBIs. In contrast, the result of the SPEIs
and the MOMIs mainly degrades when 18 invariants are used. This means that
the higher order MOMIs and the high frequency SPEIs are already too sensitive
to perturbations in these conditions.

The second experiment mimics the situation in which there is an object to
be classified on a uniform background. Here we compared the blur-translation
invariants, the PBTIs and the MOMIs. We created 20 60-by-60 images, which
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(a) (b)

Fig. 3. (a) An Example image used in the second experiment containing an artificial
object (filtered noise). (b) A motion blurred and noisy version of the same image (blur
length 10 and PSNR 30 dB).
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Fig. 4. The object classification accuracy of the blur-translation invariant methods.
The solid lines show the cases where 10 invariants are used and the dashed lines the
case of 18 invariants.

were similar to the filtered noise images of the first experiment, on a black 80-by-
80 background depicting an artificial object, as shown in Figure 3(a). Distorted
versions of these images were then generated, which were to be classified as
one of the originals using each type of invariants and the nearest neighbor rule.
The distortion included random displacement of the object in the range [-5,5]
pixels using linear interpolation, motion blur with the length of 10 pixels in a
random direction and additive Gaussian noise (also on the background) with
PSNR varying from 50 dB to 10 dB in steps of 5 dB. Figure 3(b) shows a
degraded object. The border effect does not distort the invariants now when the
background is uniform.

Figure 4 presents the classification accuracy of the two methods as a function
of PSNR, when the experiment is repeated 20 times for each noise level and for
each test image. Similar to the previous experiment, the number of the invariants
used is 10 and 18 shown by the solid and dashed lines, respectively. It is clear
from the results that the MOMIs are affected much more by the noise. Especially,
the noise in the background seems to be harmful. On the contrary, the PBTIs
can handle also this situation and perform very well compared to the MOMIs.
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Fig. 5. Each row contains examples of one class (Queen of Clubs and King of Hearts,
respectively) of the total of 10 classes of playing card images used in the third classi-
fication experiment. Cards were unusual and contained very similar figures. From left
to right, there are a sharp, defocused and motion blurred image of each class.

In the final experiment, we wanted to confirm the results of the second ex-
periment in practice. We classified real gray scale images of playing cards on the
black background which were captured using a Sony DFW-X710 video camera.
First, we formed 10 classes by photographing sharp images of 10 playing cards.
Then, we captured three motion blurred and three out-of-focus blurred versions
of these 10 cards resulting to 60 blurred card images that were to be classified
as one of the 10 classes. The size of the images was 130-by-130. Motion blur was
generated by panning the camera vertically in a tripod with a relatively long
shutter time. Out-of-focus blur was created by defocusing the camera slightly.
In Figure 5, there are sample images of two classes. In each row, from left to
right, there is a sharp, defocused and motion blurred image of the same class.
As can be seen, the blur is so strong that it is impossible to recognize the cards
visually. Table 1 shows the classification accuracies for the two methods when 10
and 18 invariants are used. The best accuracy 95 % is achieved using 18 PBTIs.
The number of correctly classified images is nearly double compared to the 18
MOMIs with the accuracy of 48 %. For example, PBTIs were able to classify
all the blurred images in Figure 5, but MOMIs could only classify the blurred
images on the top row were the level of blurring is lower. These results are in
line with the results obtained using the artificial images.

Finally, we discuss about the computational demands of the invariants. Asymp-
totic complexity of the central moments, as well as the MOMIs which are build on
them, is O(N2). This is less than the complexity of all types of the frequency do-
main invariants using radix-2 FFT, which is O(N2 log2 N). However, for practical
image sizes the MOMIs require much more computation than the frequency do-
main invariants, as shown in Figure 6 where the approximate number of arithmetic
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Table 1. Classification accuracies of the PBTIs and the MOMIs in the case of real
degraded images of playing cards when 10 and 18 invariants are used

Method PBTIs 18 PBTIs 10 MOMIs 18 MOMIs 10

Accuracy 95 % 73 % 48 % 45 %
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Fig. 6. The number of arithmetic operations needed to compute different types of
invariants for an N-by-N image. For MOMIs the value depends on the number of
invariants, which is 10 and 18.

operations per pixel is shown as the function of N when the image size is N -by-N .
All operations, including complex operations of FFT and high exponents of the
moments, are counted as one for simplicity. In addition, the computation load for
the MOMIs also depends on the number of invariants used, while for the frequency
domain methods N/2 non-redundant invariants are derived simultaneously. As
can be seen, 10 MOMIs becomes preferable in terms of operation count at the im-
age size 109-by-109. For 18 MOMIs this size is 1019-by-1019. Both of these image
sizes are unrealistic. The explanation for this property is the very large number
of geometric moments that have to be computed to get the corresponding MOMI
features.

4 Conclusions

In this paper, we have shown how it is possible to derive new blur invariant
features, PBIs and PBTIs, based on even powers of the phase-only spectrum
and bispectrum of the images, respectively. The features are invariant to cen-
trally symmetric blur, and the PBTI features based on the bispectrum are also
invariant to translation. The features can be used to recognize blurred images
or objects as demonstrated in the paper. Because the features are based on the
normalized phase-only spectrum or bispectrum, they are also invariant to linear
brightness changes. In addition, they can be computed efficiently using FFT.

We compared the PBIs and the PBTIs with the MOMI and SPEI features
proposed in [4] for classification of blurred images and objects on an uniform
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background. In both cases, our features performed better. In practice, our fea-
tures need also less computation, if we do not take into account the SPEIs which
are very sensitive to noise.

A shortcoming of our features is that they do not carry further invariance to
geometrical transformations such as rotation and scaling. On the other hand,
there is no other frequency domain blur invariant method available that would
carry the invariance to translation.
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