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Abstract. The detection of basic events such as turning points in ob-
ject trajectories is an important low-level task of image sequence analysis.
We propose extending the SUSAN algorithm to the spatio-temporal do-
main for a context-free detection of salient events, which can be used
as a starting point for further motion analysis. While in the static 2D-
case SUSAN returns a map indicating edges and corners, we obtain in a
straight forward extension of SUSAN a 2D+1D saliency map indicating
edges and corners in both space and time. Since the mixture of spatial
and temporal structures is still unsatisfying, we propose a modification
better suited for event analysis.

1 Introduction

For the analysis of static images, the detection of regions of interest or points
of interest (representing a region) is an important technique to direct the fo-
cus of attention. Thus the most relevant patches for further processing can be
found. Such methods serve two purposes: Making computations more efficient,
and pre-selecting relevant patterns. That is, even the close-to-signal algorithms
are actually part of the pattern classification. Therefore, multiple cues such as
colour and texture are in use (e.g. [1]).

The benefit of attentional techniques such as segmentation and interest point
(IP) detection is that they are free of context [2], i.e. not adapted to a particular
domain. Thus, they serve as a purely data driven starting point for the processing
cycle. But in spite of the success in the static case, image sequence analysis rarely
makes use of attentional methods, at least not of such that really process the
spatio-temporal data. In other words, attention is directed to regions based on
isolated frames. While for segmentation there are some approaches (e.g. [3])
that exploit the 2D+1D image data (time being the additional dimension), in
the field of IP-detection so far only the Harris-detector [4] has been extended to
spatio-temporal data [5].

This is astonishing, since for the decomposition of static scenes into meaning-
ful components, IPs are a standard technique to filter out and represent areas
which appear relevant at the signal level. Applications are image retrieval [6],
active vision [7], object recognition [8], or image compression [9]. In the present
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paper, we will therefore transfer the concept to the spatio-temporal domain for
the detection of baisc actions and events. In comparison to the common tech-
nique which is computation of the optical flow, IP-detection is less computation-
ally costly. Certainly, it will not be possible to cover the entire complexity of
natural actions by IP-detection, but in the same way as IPs offer cues for static
patterns such as symmetry [2,8], basic events like turning points, acceleration,
rotation, or approach of two objects (a closing gap) can be detected.

For static imagery, IPs are points which are “salient” or “distinctive” as com-
pared to their neighbourhood. To be more precise, an IP is not necessarily an
isolated salient pixel, rather, the IP at a pixel location which stands for a salient
patch of the image. Most algorithms for IP detection are aimed at the detection
of corners or edges in grey value images [10,4,11,12,13,14]. Methods of this kind
which detect edges or corners are particularly promising for the spatio-temporal
case, since 3D-corners may indicate the turning points of 2D-corners in a tem-
poral sequence. Thus they would indicate saliency both in the geometrical sense
and in the sense of an event.

Laptev and Lindeberg [5] have shown how the concept of spatial edge- and
corner-based IPs can be extended to the spatio-temporal domain for the HARRIS
detector [4]. They extend the detection of IPs from the eigenvalues of the 2D
autocorrelation matrix of the signal to the 3D matrix in a straight forward
approach, in addition, they propose a scale space approach to deal with different
spatial and temporal scales. But since the 2D- and 3D-HARRIS detector depends
on the often problematic computation of grey value derivatives, we chose to
extend another IP-detector to the spatio-temporal domain: The SUSAN detector
proposed by Smith and Brady [12], which detects edges and corners merely from
the grey values.

We will first describe the spatial SUSAN detector (section 2), then its exten-
sion to the spatio-temporal domain is described in section 3. The new 3D-SUSAN
detector is tested in section 4 using artificial image sequences displaying proto-
typical events. But since the tests uncover shortcomings of the straight forward
extension from 2D to 3D, a modification is introduced in section 5. Finally, the
new approach is tested on real image sequences.

2 The SUSAN-Detector for Static Images

Smith and Brady have proposed an approach to detect edges and corners, i.e.,
one- and two-dimensional image features [12]. While most algorithms of this kind
rely on the (first) derivatives of the image matrix, the SUSAN-detector relies on
the local binarisation of grey values. To compute the edge- or corner strength
of a pixel (called the “nucleus”), a circular mask A around the pixel is consid-
ered. By choice of a brightness difference threshold ϑ, an area within the mask
is selected which consists of pixels similar in brightness to the nucleus. This area
is called USAN (“Univalue Segment Assimilating Nucleus”). To be more precise,
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let I(r) denote the grey value at pixel r, n the area (i.e. # pixels) of the USAN,
and r0 the nucleus. Then

n(r0) =
∑

r∈A

c(r, r0), with c(r, r0) =
{

1 for |I(r) − I(r0)| ≤ ϑ
0 for |I(r) − I(r0)| > ϑ .

(1)

The response of the SUSAN-detector at pixel r0 is given by

R(r0) =
{

g − n(r0) for n(r0) < g
0 else ,

(2)

where g is called the geometric threshold. For edge detection, a suitable value is
g = 3

4nmax, for corner detection g = 1
2nmax. It can be shown the these values

are optimal in certain aspects for the assumption of a particular signal-to-noise
ratio.

Smith and Brady [12] obtain a saliency map which indicates edge and corner
strength as the inverted USAN area for each nucleus pixel. IPs are then found as
the local minima of the USAN area, thus the name SUSAN (= Smallest Univalue
Segment Assimilating Nucleus).

To find the local direction of an edge and to localize corners precisely, geo-
metrical features of the USAN have to be exploited, see [12] for details.

The SUSAN-approach is well suited for a fast detection of one- and two-
dimensional basic image features with the benefit that both localization precision
and the implicitly built-in noise reduction are robust to changes of the size of
the circular mask.

3 Spatio-temporal Extension of SUSAN

In this section we introduce the extension of the normal 2D-SUSAN-detector to
the spatio-temporal (“3D”) domain [15].

The generalization of an isotropic circular mask in two dimensions is a sphere
in three dimensions. But since the spatial coordinates are independent of time, a
(rotationally symmetric) ellipsoid around the time axis is betters suited for event
detection since it allows suitable scaling (note the same physical event may, e.g.,
be captured using different frame rates). However, also other 3D-shapes with a
circular cross section come into question. In the following, two algorithms using
different 3D-masks ME and MZ are investigated:

ME(x, y, t) =

{
1 if x2+y2

R2
xy

+ t2

R2
t

< 1
0 otherwise

(3)

MZ(x, y, t) =

{
1 if x2+y2

R2
xy

∧ −Rt ≤ t ≤ Rt

0 otherwise
(4)

where Rxy denotes the radius in the x-y-plain, and Rt the extension of the mask in
on the temporal t−axis. In the same way as the 2D-SUSAN-detector is applied to
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(a) (b) (c) (d) (e) (f)

Fig. 1. A selection of different kinds of motion. The USANs are shown in the x − t-
plain: (a) Rest, (b) constant velocity, (c) stop-event, (d) acceleration, (e) turn-around,
(f) sudden appearance.

each spatial point, now the mask must be applied to each spatio-temporal point
of an image sequence, and the grey value of the nucleus is compared to the other
pixels within the mask to obtain the USAN-volume. Instead of the original binary
decision function, we use the improved version as proposed by Smith and Brady:

c(r, r0) = e−( I(r)−I(r0)
t )6 (5)

By this means, the robustness of the algorithm is improved since now slight
variations of luminance may not lead to a large variation of the output. The
USAN-volume can be calculated as

V (x, y, z) =
∑

x′,y′,z′

I(x′, y′, z′)M(x + x′, y + y′, z + z′), (6)

Fig. 1 illustrates the way SUSAN3D processes different motion events (in only
one spatial dimension). The x-axis points from left to right, the t-axis upwards.
The USAN is the white area within the mask. While Fig. 1(a) shows an edge
element at rest, Fig. 1(b) depicts motion at constant velocity. The result of
V = 0.5 (of the area) is the same in both cases. Figs. 1(c) and 1(d) depict a
stop-event and acceleration, respectively. For these cases, values V clearly below
0.5 are to be expected. The smallest value V is to be expected in the case
depicted in Fig. 1e, which shows a turning point. Fig. 1(f) shows either a sudden
appearance of the object or motion at a velocity to high to be resolved. Again,
the volume is V = 0.5.

Summarizing, by evaluating the 3D-USAN values in the manner of the con-
ventional 2D-SUSAN-detector “salient” events can be detected, such as accel-
eration and turn around (values the smaller the stronger curvature). However,
rest, constant motion, and sudden appearance (all three V = 0.5) can not be dis-
criminated. While this is still satisfactory for rest and constant motion (V = 0.5
being larger than for acceleration and turn-around), sudden appearance should
get the smallest value (i.e. the largest saliency output).

4 Evaluation of the Naive Spatio-temporal Algorithm

In the following, we test the SUSAN3D-detector on artificial image sequences,
using as a mask a cylinder of 2Rxy = 7 pixels and 2Rt = 7 frames, yielding a
total volume of 224. The brightness threshold is set to 27 as in the 2D-version.
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4.1 Simulations

The first test sequence shows squares moving in different ways. Fig. 2(a) shows,
from top to bottom, the SUSAN3D response maps for an accelerating square, a
moving one with high constant velocity, a moving one with low constant velocity,
and a square at rest. Obviously, the response of the SUSAN3D is mainly governed
by geometrical features, not by dynamical features. To reduce the influence of
geometrical features, the response of SUSAN3D was tested in 2(b)-(h) by a
moving filled circle, i.e. an object without any corners. Fig. 2(b) is the resulting
spatio-temporal map of a circle at rest. Figs. 2(c)-(e) show the results for a
circle moving to the right at a constant velocity of one, two, and three pixels
per frame. In 2 (f), the circle is accelerating by a constant acceleration of a =
2 pixels/frame2, in 2 (g), acceleration grows exponentially Fig. 2 (h) shows a
turn-around.

Now we searched for the minimum of the USAN. To compare the USAN
values achieved at a certain spot of the moving circle, in a first test we searched
for the minimum not within the entire response map but only in the area of
the righthand circle border on a horizontal line through the middle of the map.
The rest of the map was discarded. Results are listed in table 1. Remarkably, the
minimal USAN-value is always 112 — except for the turn around — which is half
of the mask volume (first line of table 1). So, the expectation that acceleration
expresses itself in lower USAN values did not come true in this experiment. For a
better analysis of this result, the seven circular “slices” of the mask cylinder have
been analysed in separation in table 1 lines “-3” . . . “3” (“0” corresponds to the
central slice of the mask cylinder). Obviously, the contributions of the partial
volumina are different. While the distribution differs for columns v = 0, 1, 2
and thus reflects the fact that the object moves at a different velocity, columns
v = 3, a = 2 and exp do not exhibit any difference, because velocity is too large

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Output of SUSAN3D at a single moment for different image sequences, see text
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Table 1. Results of the first experiment with SUSAN3D, see Fig. 2

v = 0 v = 1 v = 2 v = 3 a = 2 exp turn

USAN 112 112 112 112 112 112 36
-3 16 0 0 0 0 0 0
-2 16 4 0 0 0 0 0
-1 16 10 4 0 0 0 10
0 16 16 16 16 16 16 16
1 16 22 28 32 32 32 10
2 16 28 32 32 32 32 0
3 16 32 32 32 32 32 0

for the chosen mask size. I.e., the object is so fast that each of the three motions
is equivalent to an “appearance out of nowhere” for the detector (cf. Fig. 1(f) ).
In column “turn”, the turn around becomes visible both in a small USAN-value
and in the distribution throughout the mask cylinder (cf. 1(e) ).

4.2 Discussion on the Simulations

There is still a flaw in the “naive” extension of SUSAN: Geometrical and dy-
namical features are coupled implicitly. Therefore, an accelerating straight edge
leads to smaller output in the sequence of saliency maps than a stationary cor-
ner. For event detection, however, the first case is more relevant, so the influence
of the geometrical features should be attenuated. Fig. 3 illustrates that this is a
non-trivial problem: In both cases, the corners move at a constant velocity from
the left to the right, the only difference being the rotation of the object. The
circles are the slices of the mask cylinder corresponding to successive frames of
the sequence, which exhibit different intersections with the corners. In total, case
Fig. 3(a) leads to a smaller USAN-volume than case Fig. 3(b), though, regarded
in isolation, both the geometrical and the dynamical features are equal for both
types of corners.

The contributions of the single circular slices of the mask cylinder first in-
crease, then decrease in Fig. 3(a), whereas they continually increase for 3(b).
Classification according to Fig. 1 yields “turning point” for Fig. 3(a) but “con-
stant velocity” for Fig. 3(b). Thus, application of the SUSAN3D-detector is not
feasible since it mixes geometrical and dynamical features.

Further, the size of the mask is difficult to choose: While it should be suffi-
ciently small to overlap only corners or edges but no larger structures, it should
be large enough to realize a reasonable resolution for the analysis of different
velocities and accelerations. These opposing requirements refer both to the tem-
poral and spatial dimension. In principle, the same problem exists for the spatial
SUSAN-detector and in general for any windowed function, but it becomes more
difficult in the spatio-temporal domain. While in the spatial domain a given
window size simply selects a certain scale, in the spatio-temporal domain the
coupling between typical spatial and temporal scales has to be dealt with.
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(a) (b)

Fig. 3. A corner with constant velocity moving from left to right at different angles (a,
b). The cylindrical mask of the object is indicated by its temporal “slices”.

5 The SUSANinTime Detector

The discussion of the last section has shown that a straight forward extension of
the SUSAN-detector to three dimensions is not satisfying. Of course, additional
features could be computed to correct the detector response, but then the simple
and elegant idea of using the USAN-volume as a feature for IP-detection would be
more or less abandoned. Therefore, in the following we will outline an alternative
approach, which applies the SUSAN principle only on the temporal dimension.

The first step is computation of the USAN-area within a cylindrical volume
around the nucleus. The single x-y-slices of the cylindrical mask are evaluated
to find the USAN-areas for every frame, these values are saved in a 1D-array
(areas[]). Then the SUSAN principle is applied to the 1D-array areas[] in the
following way: The USAN-area at the current time is considered to be a (second)
nucleus value (nucleus2). Note the second nucleus value is an area, not a grey
value. Then the array areas[] is binarised with respect to the nucleus2 value,
and the final detector response is the sum of the now binarised array.

In the pseudocode given in Fig. 4, mask[x][y][t] takes a value of 1 if x,y,t
is inside the volume covered by the detector, else 0. c1 and c2 denote the thresh-
olding functions for the spatial binarisation of the x-y-slices and the binarisation
of the areas[] array, respectively.

SUSANinTime(x, y, t)
nucleus <- getpixel(x,y,t)
FOR tt FROM -R TO R DO

areas[tt] <- 0
FOR yy FROM -r TO r DO

FOR xx FROM -r TO r DO
IF mask[x][y][t] = 1 THEN

pixel <- getpixel(x + xx, y + yy, t + tt);
areas[tt] <- areas[tt] + c_1(nucleus, pixel)

nucleus2 <- areas[0]
value <- 0
FOR tt FROM -R TO R DO

value <- value + c_2(nucleus2, areas[tt])
RETURN value

Fig. 4. Pseudocode of SUSANinTime, see text
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Fig. 5. Left: Output of the SUSANinTime-detector to the sequences of moving squares
used in Fig. 2. Right: USAN-area as a function of time.

The idea of the SUSANinTime algorithm is to give a high response to such
space-time volumes which exhibit a high activity, where “activity” is defined
as a high temporal variation of the USAN-area. Fig. 5 illustrates the principle.
It shows the USAN-area (as the percentage of a complete circular slice) as a
function of time (to be more precise, as a function of the t-coordinate of the
cylindrical mask). The nucleus value is 50% for all of the motion sequences. The
SUSANinTime-detector computes for which span of time the USAN-areas are
still within a surroundings the nucleus value. This time span takes a maximum
for zero velocity (v = 0) and decreases with increasing velocity (v = 1, v = 2).
Thus, it becomes also clear that the return value of SUSANinTime does not
allow measurement of acceleration (a = 2, a = −2). Though the SUSANinTime-
algorithm can not classify space-time events in categories velocity / acceleration,
it has nevertheless highly useful properties. Fig. 5, left, shows the response of
the SUSANinTime detector, where the input sequence is the one of Fig. 2(a).
The detector response is approximately proportional to the velocity, for station-
ary regions, the detector is “blind” (here, small intensity values denote a high
response). In contrast to Fig. 2(a), the corners of the squares yield no stronger re-
sponse than the edges, though being geometrically more salient. So the response
is determined by the dynamics, not stationary features — a major advantage,
since now geometrical features detected by separate modules can be included in
a final saliency map in a well-defined way.

First experiments on real world image sequences have shown that the al-
gorithm yields robust results. Fig. 6 shows the output of the SUSANinTime
detector for a sequence. At first, the hand accelerates in a movement to the
right, then stops. Different intensities of the map reflect the different velocities.
Note that the appearance or disappearance of (otherwise) static structures in
the background is likewise detected as motion.
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Fig. 6. Output of the SUSANinTime detector for a real image sequence. The pointing
event can be clearly detected.

6 Summary and Conclusion

For the detection of generic events in image sequences such as turning points,
we have introduced two extensions of the SUSAN IP-detector: A naive exten-
sion of SUSAN to a third dimension (time) is unsatisfactory, because dynamical
features are less prominent in the computed sequence of saliency maps than the
static edge- and corner-features. The SUSANinTime algorithms overcomes these
problems both on artificial and real image sequences. Tests for human gestures
and object manipulation by human hands have shown that important aspects of
motion such as pointing events can be well captured.

In future work, we want to apply SUSANinTime for the classification of more
complex events such as grasping an object. For this we plan to gather spatio-
temporal IPs over a period of time long enough to capture the movement. Around
each of the IPs local features will be extracted from the space-time volume. While
in isolation features of this kind are not sufficient to characterize complex motion,
we hope that a whole “cloud” of IPs provides sufficient information, which we
intend to classify in a way similar to the (static) IP-based scene classification
described in [16].
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