Personalizing PageRank-Based Ranking
over Distributed Collections

Stefania Costache, Wolfgang Nejdl, and Raluca Paiu

L3S Research Center / University of Hanover
Deutscher Pavillon, Expo Plaza 1
30539 Hanover, Germany
{costache,nejdl,paiu}@l3s.de

Abstract. In distributed work environments, where users are sharing
and searching resources, ensuring an appropriate ranking at remote peers
is a key problem. While this issue has been investigated for federated
libraries, where the exchange of collection specific information suffices
to enable homogeneous TFxIDF rankings across the participating col-
lections, no solutions are known for PageRank-based ranking schemes,
important for personalized retrieval on the desktop.

Connected users share fulltext resources and metadata expressing in-
formation about them and connecting them. Based on which information
is shared or private, we propose several algorithms for computing person-
alized PageRank-based rankings for these connected peers. We discuss
which information is needed for the ranking computation and how Page-
Rank values can be estimated in case of incomplete information. We
analyze the performance of our algorithms through a set of experiments,
and conclude with suggestions for choosing among these algorithms.

Keywords: PageRank, distributed search, personalization, privacy.

1 Introduction

Collaborative work has become a key factor on the way to success in every
company - people do not work isolated, but rather interact with each other
by exchanging information, using tools like email clients, IM, blogs, wikis or
shared repositories. Every personal desktop thus becomes the sum of all other
desktops it interacts with. Accessing these connected information sources in such
a collaborative work environment becomes a crucial functionality, which so far
has only been partially tackled.

Personal information management [910] is a subject of growing interest to the
database community, and (distributed and heterogeneous) dataspaces will ex-
tend databases beyond centralized and structured information repositories [I1].
The Social Semantic Desktop paradigm integrates data annotation, organization
and search on the desktop, and promises to provide collaborative work envi-
ronments through connecting all shared data resources in a work group. The

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 111 2007.
© Springer-Verlag Berlin Heidelberg 2007

112 S. Costache, W. Nejdl, and R. Paiu

NEPOMUK] project [2] aims to create such an infrastructure, which improves
the state of the art in online collaboration and personal data management, by
providing seamless access to all information created by single or group efforts.

Peers in the NEPOMUK context share fulltext and semi-structured infor-
mation, referring to publications, reports and other desktop documents, emails,
browsed web pages, address books, etc. These metadata represent additional
information about these resources and connect them through semantic rela-
tions, such as authorship of papers and reports, sender and recipient information
for emails or email attachments. Based on this infrastructure, advanced search-
ing and ranking capabilities can utilize both conventional Information Retrieval
(IR)-based information like term frequency in documents and collections, as well
as link-related information, the basis of PageRank-like algorithms, e.g., Object-
Rank [76].

Extending these ranking schemes to a distributed setup is not trivial, because
it involves (partial) sharing of possibly private information. Solutions for dis-
tributed collections in federated libraries exist, but they provide just traditional
IR-based rankings based on TFxIDF metrics through the exchange of collection
specific information. We will investigate which resources and information need
to be shared to enable personalized PageRank-based ranking among peers, and
how algorithms can take privacy constraints for these resources into account.
Specifically, we propose and evaluate new algorithms for consistently comput-
ing ObjectRank, a PageRank variant appropriate for ranking these connected
resources on the desktop.

In Section] we will start with the discussion of a search scenario in a dis-
tributed work group, and then discuss in detail which information needs to be
exchanged in order to achieve appropriate rankings of results. In section [3] we
propose and discuss several new algorithms for computing ObjectRank over a
set of distributed collections / semantically enabled desktops. In section [El we
describe the experimental setup to evaluate our algorithms, present the experi-
ments we performed and analyze the results. Finally, we discuss related work in
section [l and conclude (section []).

2 Which Information Should We Exchange?

2.1 A Motivating Scenario

Let’s imagine Alice, working in a team with five other students for a research
project. Alice’s team uses the NEPOMUK-enabled desktop to interact and share
information. The team members share papers, project documents and group
emails, among others. Papers are annotated with bibliographic information, and
connected to the emails they have been attached to. Alice participates in other
teams as well, where she shares some of the same documents as well as other
information specific only to these other projects. The NEPOMUK infrastructure

! This work was supported by the NEPOMUK project funded by the European Com-
mission under the 6th Framework Programme (IST Contract No. 027705).

Personalizing PageRank-Based Ranking over Distributed Collections 113

allows her to search resources on her own desktop as well as on the desktops of
her team members, to which Alice’s queries are propagated.

The importance of documents (important for the ranking of search results) is
influenced by the importance of their authors and conferences, or by the impor-
tance of team members sending the document as attachment. These factors are
not necessarily the same on each desktop, but are rather based on the confer-
ences relevant to each team member, the number of documents authored by a
given person stored on a specific desktop, or the emails connected to these doc-
uments. Part of this information (importance of conferences, papers stored on a
desktop) can be exchanged easily. Other information such as private emails, or
reports from other projects referencing specific papers, should not be exchanged
among all participants.

In general, there will be resources that Alice can make public and thus share
with everyone, there will be other resources which she will make available only to
her trusted friends or to her work mates and there are of course some resources
she will never want to share with anybody. This is also true for her contex-
tual metadata generated and stored on her computer, which connects all her
resources. Keeping (parts of) her metadata graph private, however, also means
that search result rankings at other peers will not be comparable to her own.
This unfortunately collides with Alice’s desire to get the best ranked matching
resources from all her team members connected in her NEPOMUK network (re-
member that best ranked in this case means “according to Alice’s interests / set
of resources”).

What do we need to exchange in order to provide an appropriate ranking over
all document collections Alice asks for results? Clearly, given that the metadata
graph determines Alice’s ObjectRank scores for all resources (details are de-
seribed in [7]), we have to exchange PageRank/ObjectRank-related information
in addition to the usual IR statistics. We will discuss in the next sections, what
can and should be exchanged, in order to rank results for Alice’s query on her
team members desktops in a way compatible with Alice’s ranking. We will take
into account the constraint that Alice and her team members do not want to
exchange their complete data graphs, which would provide information about
all resources they have on their machines.

2.2 Exchanging IR Related Information

Let us first look at a typical scenario in which a user is doing a full-text search
over several distributed collections, and wants to rank results according to the
usual TFxIDF measures ([4/12]). A query ¢ will consist of several keywords, say
q1 and ¢o, and is posed to a broker, which forwards it to a set of m search engines
/ peers, P!, which will then send back to the broker their document rankings
R!. In practice the user is only interested in the best “top-k” results, where £ is
usually between 5 and 20. For this, all rankings R} have to be merged into one
ranked list Rm and the top-k results are presented to the user. Our goal is to
achieve the same ranking in the distributed case as produced by the same search
on a single collection C containing all documents.

114 S. Costache, W. Nejdl, and R. Paiu

The ranking of the documents in a collection is based on TEXIDF weights, which
measure the significance of a word with respect to a document in a collection. The
significance of a term increases proportionally to the number of times the term
appears in the document, but decreases with the frequency of the term in the whole
collection. So, Term Frequency (7TF) in the given document gives a measure of
importance of the term ¢; within that particular document, whereas the Inverted
Document Frequency (IDF) is a measure of the general importance of the term.
A high weight in TFXIDF is reached by a high TF (in the given document) and a
low Document Frequency (DF') of the term in the whole collection of documents.

For distributed retrieval, we want to make the distributed similarity score
equal to the similarity scores computed on a single collection C. Therefore, the
collection specific values, number of documents (N) and DF, need to be com-
puted before query time (see for example []), and recomputed when changes
in the collections occur (such as document additions, deletions and updates).
To exchange and aggregate them over all collections, we need to send them
to the query broker, which can compute the overall Global Inverted Document
Frequency (GIDF) value, which is then sent back to all search engines. During
query execution, all peers will rank results with comparable scores, since they
use the common GIDF, propagated together with the query. A globally ranked
list is achieved by merging the sub-result list entries in descending order of global
similarity score. Figure [Tl illustrates this process in detail.

Global document scores ——

Number of documents N;

and document frequency _r”ﬁ"'_Df_‘
DF, statistics for every

term in database i

Search engine I:’
Broker O

Global Inverted
Document Frequency _GIpRy
GIDFi

Top-k aggregated results —>

Fig. 1. Statistics propagation for results merging

1. A, B, C send to the Broker the total number of documents in the collections (Na, Np, N¢)
and the DF values. E

Peer A sends a query to the Broker and the Broker forwards it to B and C.

The Broker computes the GIDF; for each keyword ¢; and sends them back to all peers.

A, B, C find the matching results for the query and send the top-k results to the Broker sorted
by the Global Document Scores.

5. The Broker merges the results from all peers and sends back to peer A the top-k results.

Ll el

2 TF values need not be exchanged since they are document-dependent and therefore

do not influence the order of the aggregated result list entries.

Personalizing PageRank-Based Ranking over Distributed Collections 115

2.3 Exchanging ObjectRank Related Information

Let us now look at PageRank / ObjectRank based ranking and which informa-
tion has to be exchanged to make such rankings on distributed peers compatible
with each other. Recall that the computation of PageRank is based on the ran-
dom surfer model, with the surfer traversing links through the graph of resources,
and sometimes jumping randomly to another resource. Then the PageRank value
of a resource represents the probability that the random surfer stays on this re-
source at a given time. If we represent the link structure between all resources
through the adjacency matrix A and the random jump through the e vector
and the dampening factor d (usually 0.85), PageRank values R are computed
through the following eigenvector computation:

R=d-A-R+(1—d)-e (1)

For ObjectRank computation, we do not assume the same weight for each
link, but rather define link weights based on the type of the connected nodes,
through an authority transfer schema [8]. Such a schema specifies how much im-
portance (represented as a real number between 0 and 1) is transferred between
connected nodes. The weights of the links between the instances correspond to
the weights specified in the authority transfer schema divided by the number
of links of the same type. For example, 70% of the importance of a conference
node is distributed evenly to each of the publications which are presented at
this conference (see [6] for a more detailed description of the algorithm). Let us

Top-k results

Peer E
O

DG,\\"'DGB DGB"‘DGC

"

Broker

DG +DGDG Data graph for peer i _DGi,.

Top-k aggregated results ——>

Fig. 2. Aggregated ObjectRank computation

assume, without loss of generality, that all peers use the same authority transfer
schema as basis for the ranking computation. Each peer computes ObjectRank
scores for its collection. Since this ObjectRank computation is based on the data
graph, the adjacency matrix of each peer needs to be updated so that it reflects
the new structure created by the integration of the other peers’ resources into
its own data graph. Therefore, peers need to exchange the URIs of the resources
they are sharing, together with the links connecting them. External URIs are
integrated into each peer’s own data graph of resources. The more resources are
shared among peers, the more accurate the aggregated ranked results will be.

116 S. Costache, W. Nejdl, and R. Paiu

Figure 2l presents the necessary steps for computing the aggregated ObjectRank
scores in the ideal case, where peers share all resources they own:

Peer A sends a query to the Brokerd and the Broker forwards it to B and C.

The data graph, DG, is sent to the Broker by each peer.

The Broker merges DG a+DGp+ DG ¢ and sends the results to the peers.

Peers compute ObjectRank on DG 4+DGp+DG ¢ and send top-k results to the Broker.
The Broker merges the results from all peers and sends back to peer A the top-k results.

LR N

3 Information Exchange and Rank Computation

3.1 Privacy vs. Information Exchange

The discussion in the previous section assumed the ideal case, where peers share
everything they have on their machines. This is usually not the case, instead
peers will decide to share only parts of their data graphs and protect the rest.
Moreover, peers usually do not want to involve third parties in the exchange
process, because this would imply additional privacy and security issues, so they
do not want to send data through a broker. We therefore need to develop strate-
gies which do not involve a broker and which allow sending only specific parts
of the data graph to the other peers.

As we have already seen, to be able to appropriately rank resources for their
neighbors, peers need to know their corresponding data graphs, or at least parts
of them. For exchanging this information, peers have the following alternatives:

1. send all nodes in the graph

2. send some of the nodes in the graph

3. send all nodes in the graph, part of them anonymized (the items they want
to keep private have hidden URIs, e.g. “hidden 41323”)

4. send all nodes in the graph, part of them hashed - which keeps the nodes
secret if the other peer does not have them and makes them identifiable if
the other peer has them too and uses the same hashing function

5. send all nodes summarized into a world node [5] (which appropriately ag-
gregates node and link information of the graph)

Ranking computation can be based on: a) simple ObjectRank; or b) ObjectRank
with biasing [6] on the resources coming from the other peers. We will discuss
appropriate combinations of these alternatives in the following.

To describe the graphs used by the different algorithms, we will use the fol-
lowing notations: let G; = (V;, E;) be the data graph of peer i, where V; and
E; are the corresponding sets of nodes and weighted edges, respectively. In this
context, the nodes model the desktop resources (files, emails, visited web pages,
etc.), while the edges represent the semantic relationships between them [7].
Gl = (V/, El) represents the data graph corresponding only to the shared re-
sources, where G, C G;, V! C Vi, E} C E; and E] = {eji|j, k € V/,j # k}.

3 We assume that the peers have already agreed on the authority transfer schema to
be used for the ObjectRank computation.

Personalizing PageRank-Based Ranking over Distributed Collections 117

Ggnen = (Vemen gonen) denotes the anonymized data graph of peer i, where
G?non — G; U Can?’LymiZ@d(G;LnShared), V'ianon — V'i/ U ar[l()7,ly7,rw'Zed(V'iunshamed)7
Gunshared — G G and E2™" = E;. With G = (V" E") we refer to the hashed
data graph, where G = hash(G;), V;* = hash(V;) and E!' = E;. An example
covering all these graphs is presented in figure [3fi.

3.2 Aggregating Graphs into World Nodes

One especially interesting possibility of keeping a graph private, yet provide some
information about its connections to the graphs of other peers, is to aggregate all
nodes in the graph into a world node and aggregate his connections to the other
graphs as well. An example is presented in figure @l where P2 creates a world
node out of its nodes and connects it to the data graph of P1. Using a similar
notation as in section Bl we define GV = (VWN EWVN) where VVN = WN
and EVY is formed as follows:

G = (V. E) G = (V™ E5T) G" = (Vhi, Ehi)
Vi={1,23,45} Vet = {1,2,3,4,5% V= {f(1).£(2),(3),f(4),1(5)}
Ei={ab.cdef} N = fa,b,c.d.e.f} E" ={ab.cdef

Fig. 3. Example of weighted data graphs - different setups

1. All links from nodes in the other peers’ graphs pointing to the nodes in the
graph of the peer aggregated into the world node become inlinks of the world
node.

2. All links from the nodes of the peer creating the world node pointing to

nodes of other peers become outlinks of the world node.
For a better approximation of the total authority score mass that is received
from nodes aggregated in the world node, we weigh every outlink from the
world node based on the sum of the weights aggregated into it (the links
from the world node to a node of other peers), divided by the number of
nodes summarized into the world node.

3. To represent internal links between nodes aggregated into the world node,

we create a self-loop link at the world node.
The weight of this self-loop link is given by the sum of all weights corre-
sponding to the internal links inside the world node, divided by the number
of nodes in the world node. The self-loop link represents the probability that
a random surfer remains inside the graph that was aggregated into the world
node, when following links.

4 4 to f are real numbers, representing the weights of the edges.

118 S. Costache, W. Nejdl, and R. Paiu

Gy=(Vi,Ei) Gp= (Vs En) Gy = (V4, Eq) G:::z = (V" EM™My)
Vi={123 V,={45} Vi ={1,2,3} Vo2 = IWN
E: = {a.c} E;={e.i} Ey ={a.c} E™ = {(e+i)/2}

Eiz = {b.d,fg} E",2 = {b.d,f12,9/2)

Fig. 4. Example of world node creation

In figure @ we defined E1 as the edges between peers 1 and 2 and EJ5 ™V as the
edges between P1 and the world node representing P2. An important observation
is that for being able to consistently create the world node, a peer needs to
know at least a partial structure of the graph of the other peers, otherwise it
cannot connect the world node to the other peers’ graphs. This means for our
setup in figure @ that P1, who is sending the query, also needs to send its data
graph (either the original graph or a hashed version), or at least a part of its
graph (original / hashed), such that P2 can correctly put the corresponding
inlinks/outlinks to/from its world node.

The big advantage of aggregating everything into a world node is that this
protects all internal information about resources and their connections from
the receiving peers, while still disclosing (most) information related to external
connections and overall weights / scores of the aggregated graph.

3.3 Query Processing and Ranking

Using these notations, we can now distinguish between 8 different query process-
ing and ranking algorithms. These 8 algorithms result as appropriate combina-
tions of the 5 possibilities of exchanging information with the 2 modalities of
ranking computation (section BI]). We eliminated several cases as they proved
to be equivalent to the remaining 8 ones. We will describe our algorithms in the
following, using 3 peers P;, P, and P5, with P; always sending the query to P2
and P3. In each case P; will eventually have a ranked list of results from all
peers, including himself.

Algorithm 1 represents the ideal setup, where everything is shared among
the three peers, so that each of them can access the aggregated data graph (all
peers’ graphs merged into one). Algorithm 2 describes the situation when P1
shares all its resources, but P2 and P3 share only some parts of their data items
and anonymize the rest. So P2 and P3 will have complete information regarding
P1’s graph, but P1 will not know the exact data structures of P2 and P3.

Personalizing PageRank-Based Ranking

Algorithm 1.

Py
: Py
:P3

CUR W N

sends G to Py and Ps
sends G2 to P; and Ps
sends G3 to P; and Py

: Peers aggregate G, = G1 U G2 U G3
: Peers compute ObjectRank on G,

Algorithm 2.

1: P1

sends G1 to Py and P3

computes ObjectRank on G2 = G1 U G2
computes ObjectRank on G3 = G1 U G3
sends G5"°" to Py

sends G5"°" to Pp

aggregates G, = G1 UG5™°™" U G5
computes ObjectRank on G,

Algorithm 3.

1: P,
2: Py

sends G{"°" to Py and Ps3
computes ObjectRank on

G2 = G§™°" U Gs

Py

computes ObjectRank on

G3 =G UGy

3: Py
Ps
4: P
5: P
Ra

=

sends G5"°" and Ry = rank(G2) to Py
sends G§"°" and Rz = rank(G3) to Py
aggregates G = G1 UGS"°" UG
computes ObjectRank on G, biasing on
and R3

Algorithm 4.

1: P1

W
3

Py
3: Py
Ps
4: P
5: P
Rs

=

sends G'l to Py and P3

computes ObjectRank on G2 = G U G2
computes ObjectRank on G3 = G| U G3
sends G§"°" and R2 = rank(G2) to P,
sends G§"°" and Rz = rank(G3) to Py
aggregates G = G1 UG5"°" UG
computes ObjectRank on G, biasing on
and Rg3

Algorithm 5.

1: P1
2: Pz

sends G'l to Py and P3
computes ObjectRank on G2 = G| U G2

. P
. P

Ps
Py

:Pz

Ps

=)

Rs

over Distributed Collections 119

computes ObjectRank on G3 = G} U G3
and Ps3 bias on resources from P;

sends G5"°" and Ry = rank(G2) to P,
sends G§"°" and R3 = rank(G3) to Py
aggregates G, = G1 UG3"°" U G§"o"
computes ObjectRank on G, biasing on
and R3

Algorithm 6.

3

el

R2

sends G'l to Py and Ps3

computes ObjectRank on G2 = G U G2
computes ObjectRank on G3 = G| U G3
and Ps3 bias on resources from P;

sends G5 and Rs = rank(G2) to P;
sends G5 and Rz = rank(G3) to Py
aggregates Go = G1 U G4 UG}
computes ObjectRank on G, biasing on
and R3

Algorithm 7.

o«

: P
. P

[S

Ps

v

sends G1 to Py and Ps3

computes ObjectRank on G2 = G U G2
computes ObjectRank on G3 = G1 U G3
sends GZVN and EYgN to Py

sends ranked results matching the query
sends G;}VN and EY‘?{N to Py

sends ranked results matching the query
aggregates G, = G1 U G‘Z/VN U GgVN
adds to G, the edges from EY‘Q/N U EY‘;N
computes ObjectRank on G,

merges P2 and P3 results into final list

Algorithm 8.

1:
2:

3:

: P
Py
: P

o R

P

e

Ps
Py
Py
Ps
Ps

[

[

P

[

sends G'l to P> and Ps

computes ObjectRank on G2 = G| U G2
computes ObjectRank on G3 = G} U G3
sends GXVN and E{gN to Py

sends ranked results matching the query
sends GXVN and EgN to Py

sends ranked results matching the query
aggregates G, = G1 U G;’VN U GgVN
adds to G, the edges from EY‘Z/N U EY‘?{N
computes ObjectRank on G,

merges P2 and P3 results into final list

We can also bias ranking computation at P1 on the graphs sent by P2 and
P3. In Algorithm 3, P1, P2 and P3 share only parts of their resources and
anonymize their corresponding data graphs for the items they want to keep pri-
vate. P2 and P3 compute ObjectRank on the data graph resulting from merging
the anonymized data graph of P1 and their own data graph. Results are sent
back to P1, which computes ObjectRank on the graph including its own data
graph and the anonymized graphs of P2 and P3, biasing the computation on
the results coming from P2 and P3. Algorithm 4, with P1 sending a subgraph
containing only the resources it wants to share, is similar to Algorithm 3.

120 S. Costache, W. Nejdl, and R. Paiu

We can also bias ranking computation at P2 and P3 on the resources received
from P1, and then get Algorithm 5, based on Algorithm 3, and Algorithm 6,
based on Algorithm 4. Note that when peers send hashed data graphs, the results
will not differ from the case where they anonymize nodes in the private part of
their graph. This is because for hashed resources, the receiving peers can identify
all resources they share with the sending peers if they use the same hashing
function. For the resources they do not share, they will get all information about
the link structure, but with the node names unknown / anonymized.

Algorithms 7 and 8 represent the situations where P2 and P3 protect their
resources as much as possible, while still providing useful information to P1
using world node aggregation. Algorithm 7 is a special case of Algorithm 2:
P1 shares all its resources but P2 and P3 aggregate their graphs into a world
node, keeping the connections to and from P1’s graph. Algorithm 8 is similar
to Algorithm 7, only that P1 sends only part of his graph to P2 and P3. In both
algorithms, P1 will have to merge results received from P2 and P3 with its own
resources, and still keep the relative importance of the items it received, which
it can estimate through the information transmitted from P2 and P3 in form of
their world nodes, connected to the graph of P1.

All the algorithms we presented can be obviously extended to the general case
where a peer is querying in a larger network with more than 2 neighbours.

4 Experiments

4.1 Experimental Setup

To evaluate our algorithms, we gathered metadata from 9 different users (a total
of 46500 RDF triples) and partitioned them into 3 sets, the 3 peers. Metadata
were produced by a number of metadata generators integrated in Beagle++ [I],
and correspond to several types of resources: files, web pages, emails, attach-
ments, publications, persons and conferences. The data set from a single user
did not get partitioned into different peers, since we wanted to simulate real
peers, with their own profile, but metadata from some of the physical users was
copied to more than one peer to simulate different sizes of overlap between the
peers. In all considered scenarios, our peers have a common set of data, as we
are dealing with peers collaborating with each other. Figure] gives an overview:
a) resources residing in X are common to all peers; b) slice R contains resources
appearing only at peer 1; ¢) slice O contains resources only from peer 2 and d)
slice T contains private resources of peer 3. Based on the amount and type of
resources the three peers are sharing, we have three different setups:

1. P1, P2 and P3 share everything, except of some items they want to protect
from the uncommon parts, T, O and R;

2. P1, P2, P3 protect resources which can be located both in the common part
X, as well as in the uncommon parts of the graph, T, O and R;

3. We experimented with different sizes of the common part X, i.e. the overlap
among the peers: a) small; b) medium; and c¢) large.

Personalizing PageRank-Based Ranking over Distributed Collections 121

Peer1 (P1)=XUR
Peer2 (P2)=XUO

Peer3 (P3)=XUT

Fig. 5. Peers’ resource distribution

For SETUPs 1 and 2 we used Partitioning 1, having P1 with 40264 triples, P2
with 7700, P3 with 1786 and a size of the overlap of 1624 triples. For SETUP
3 (Partitioning 2) we used a different partitioning: for the big overlap case we
divided the set into 45512, 45434, 45584 triples for P1, P2 and P3 respectively
and 45015 triples the size of the overlap; for medium overlap 6815 (P1), 44715
(P2), 7120 (P3) and 6075 triples the overlap. The small overlap was simulated
with a partitioning of 1215 (P1), 6785 (P2), 38780 (P3) and 140 common triples.
In all our algorithms P1 initiates the query, thus we observe the rank evolu-
tion for P1. For all three setups and each algorithm described in section B, we
investigated how the scores of the resources evolve. We compared the Object-
Rank scores using 2 similarity metrics between the ObjectRank scores obtained
in different algorithms and the ideal case for P1, defined as follows (see also [13]):
1. OSim indicates the degree of overlap between the top n elements of two
ranked lists 71 and 7. It is defined as

|Topy (1) N Topy(72)|
n

(2)

2. KSim is a variant of Kendall’s 7 distance measure. Unlike OSim, it measures
the degree of agreement between the two ranked lists. If U is the union of
items in 71 and 75 and 87 is U\ 7y, then let 7 be the extension of 71 containing
61 apearing after all items in 7;. Similarly, 75 is defined as an extension of
T9. Using these notations, KSim is defined as follows:

\(u, v) : 7('{ a;ld T4 agree on order|
. 7 (u,v), and u # v

KS = A
im(71,T2) Ul | f

4.2 Results and Analysis

For all three setups we computed KSim and OSim measures (tables 1-5), com-
paring the ObjectRank results we obtained for algorithms 2-6/2-8 (column 2)
against algorithm 1 (column 1), representing the ideal situation, where all peers
share everything they have. We analyzed the top 5, 10, 20, 50 and 1008 ranked
results for each algorithm.

 ObjectRank is not query dependent, which means that the rankings for specific

queries will be a combination between the ObjectRank values and TFxIDF and
therefore the matching results can be located beyond top-20.

122 S. Costache, W. Nejdl, and R. Paiu

Table 1. SETUP 1 - OSim, KSim

SETUP 1
Vs. Top 5 Top 10 Top 20 Top 50 Top 100
Algorithm Algorithm OSim KSim OSim KSim OSim KSim OSim KSim OSim KSim
1 2 1.0 1.0 0.9 0.927 1.0 0.926 1.0 0.977 1.0 0.991

0.4 0.607 0.6 0.582 0.9 0.670 1.0 0.909 0.96 0.936
.4 0.607 0.6 0.582 0.9 0.670 1.0 0.909 0.96 0.936
0.4 0.607 0.4 0.5 0.55 0.586 0.98 0.805 0.94 0.897
0.2 0.472 0.3 0.448 0.55 0.534 0.98 0.755 0.91 0.871

—
o Uk W
o
S

—

Partitioning 1. In SETUP 1 (Table 1), the peers protect resources located
only in the non-shared parts, R, O, or T. Given this restriction and the way the
world node is constructed we do not need to perform simulations for algorithms
7 and 8, since they yield the same results as in setup A9, In terms of both KSim
and OSim, the second algorithm performs best: P1 integrates into its own data
graph the anonymized data graphs of P2 and P3, but since P1 is dominating from
the point of the number of triples in the graph, this does not have any significant
impact on the final scores of P1. Algorithm 6, when every peer biases on the
resources received from the others and when only the subgraphs containing the
shared resources are sent through the network, performs worst. The reason is
that P1 is dominant and the final result will be too much biased on the shared
resources of P1. Algorithms 3 and 4 perform the same, as P1 receives the same
data graphs in both algorithms.

SETUP 2 (Table 2) differs from SETUP 1 by the fact that the peers can keep
private resources from any parts of the graph, X, R, O, or T. When looking
at the top-5 ranked results, algorithm 2 still performs good, but as we increase
top-k, algorithm 6 gets considerably better. If we consider a small value for k,
then for P1 it is better to send part of its data graph containing only the shared
resources rather than anonymizing the graph, because anonymization introduces
errors (peers are not able to identify what the anonymized resources represent
and therefore can introduce duplicates - the resource itself and its anonymized
copy). For algorithm 6 with increasing k, biasing on both P2/P3’s and P1’s side
significantly improves the results. Algorithms 7 and 8, using the world node-
based approach, perform best, both in terms of OSim and KSim. Evaluating
these last two algorithms is done as follows (remember that the list of results
contains all nodes of P1 plus the world nodes representing P2 and P3): We
merged into the list of P1 (without the world nodes) the lists that P2 and P3
computed after integrating the resources of P1. The way we construct the world
node and determine the weights of its outlinks and of the self-loop link models
with high fidelity the internal structure of the original graph. Even if the receiving
peers do not know the graph structure residing at the other peers - that is the

5 In algorithm 7 P1 sends all his graph, so that no anonymization is involved which
makes SETUP 1 and SETUP 2 exactly the same. For algorithm 8 in SETUP 2,
the resources that P1 does not share from X (common part) will still appear in the
graphs of P2 and P3, therefore this setup is the same as SETUP 1.

Personalizing PageRank-Based Ranking over Distributed Collections 123

Table 2. SETUP 2 - OSim, KSim

SETUP 2
Vs. Top 5 Top 10 Top 20 Top 50 Top 100
Algorithm Algorithm OSim KSim OSim KSim OSim KSim OSim KSim OSim KSim
1 2 0.8 0.6 0.7 0.705 0.9 0.757 0.88 0.873 0.75 0.827

0.4 0.607 0.6 0.626 0.9 0.701 0.86 0.855 0.81 0.836
0.6 0.666 0.6 0.648 0.95 0.647 0.8 0.853 0.74 0.806
.4 0.607 0.3 0.573 0.65 0.581 0.86 0.8 0.86 0.835
0.4 0.607 0.4 0.558 0.65 0.581 0.92 0.796 0.89 0.853
1.0 0.9 0.8 0.893 1.0 0.815 0.96 0.923 0.94 0.929
1.0 0.9 0.8 0.893 1.0 0.815 0.98 0.923 0.93 0.912

= e e
00~ O Utk Ww
o
=~

Table 3. SETUP 3 - Small Overlap

SETUP 3 - Small Overlap
Vs. Top 5 Top 10 Top 20 Top 50 Top 100

Algorithm Algorithm OSim KSim OSim KSim OSim KSim OSim KSim OSim KSim

1 1.0 09 1.0 0.977 1.0 0.989 0.84 0.934 0.87 0.834
0.6 0.761 0.7 0.666 0.9 0.744 0.88 0.906 0.8 0.835
0.4 0.607 0.6 0.582 0.85 0.683 0.88 0.883 0.87 0.869
.6 0.761 0.7 0.666 0.9 0.740 0.82 0.879 0.86 0.846
0.6 0.666 0.4 0.616 0.6 0.658 0.86 0.780 0.9 0.822
1.0 1.0 06 0.824 1.0 0.7 0.9 0.888 0.88 0.841
1.0 1.0 06 0.824 1.0 0.7 0.9 0.878 0.85 0.817

e
00~ O U WN
o
=2}

peer does not disclose any sensible information - the authority transfer among
the peers is captured within this model.

Partitioning 2. In SETUP 3 (Tables 3-5) we experimented with 3 different
sizes of the overlap.

If the overlap is small or medium, algorithm 2 still performs best for the top-
10 and 20 results. If the overlap is big, algorithm 7 performs best for all top-k
we consider, followed by algorithm 8 with really small differences. In this case,
world nodes (algorithms 7, 8) are strongly connected to the rest of the graph
and can therefore very accurately model the influence of the hidden parts of the
graph. When looking at top-5 in all variants, algorithms 7 and 8 are the best
ones. Algorithms 3 and 4 now perform differently, the biggest difference being
for the top-5 ranked results.

Table 4. SETUP 3 - Medium Overlap

SETUP 3 - Medium Overlap

Vs. Top 5 Top 10 Top 20 Top 50 Top 100
Algorithm Algorithm OSim KSim OSim KSim OSim KSim OSim KSim OSim KSim
1 2 1.0 0.8 1.0 0.955 1.0 0.984 0.88 0.944 0.77 0.828

0.6 0.714 0.3 0.625 0.75 0.623 0.86 0.818 0.82 0.797
0.6 0.714 0.5 0.628 0.7 0.68 0.84 0.829 0.76 0.814
4 0.642 0.5 0.590 0.75 0.68 0.88 0.801 0.82 0.805
0.4 0.678 0.5 0.638 0.75 0.686 0.96 0.811 0.89 0.846
1.0 1.0 06 0.824 1.0 0.736 0.9 0.881 0.88 0.847
1.0 1.0 0.6 0.824 1.0 0.7 0.9 0.878 0.86 0.832

= e e
00~ O Ut W
o
'

124 S. Costache, W. Nejdl, and R. Paiu

Table 5. SETUP 3 - Big Overlap

SETUP 3 - Big Overlap
Vs. Top 5 Top 10 Top 20 Top 50 Top 100

Algorithm Algorithm OSim KSim OSim KSim OSim KSim OSim KSim OSim KSim

1 2 0.8 0.6 0.6 0.692 0.85 0.664 0.86 0.864 0.8 0.818
0.8 0.866 0.6 0.703 0.95 0.661 0.86 0.865 0.8 0.830
0.6 0.761 0.5 0.619 0.95 0.628 0.86 0.874 0.81 0.845
.8 0.866 0.5 0.704 0.8 0.673 0.94 0.828 0.86 0.881
0.4 0.678 0.5 0.561 0.6 0.648 0.96 0.779 0.89 0.844
1.0 1.0 0.7 0.884 1.0 0.784 1.0 0.935 0.98 0.981
1.0 09 0.7 0.846 1.0 0.684 1.0 0.902 0.92 0.931

= e e
00~ O Utk Ww
o
oo

5 Related Work

In the last two years researchers have investigated how to compute PageRank
in a distributed manner. [I5] proposes a distributed search engine framework, in
which every web server answers queries over its data, and results from multiple
web servers are merged into one ranked list. Each web server constructs a web
link graph based on its own pages to compute a Local PageRank vector, then
they exchange their inter-server link information and compute a ServerRank
vector, which is used to refine their Local PageRank vectors. Similarly, [I6] com-
putes SiteRank, based on applying PageRank to the graph of Web sites, i.e., the
Web graph at the granularity of Web sites instead of Web pages. Aggregating
the rankings from multiple sites produces results similar to the true PageRank
scores. Both approaches aim to distribute the PageRank computation using sev-
eral servers and iterations, such that the computational load is reduced, but still
the final scores are similar enough with the ones obtained from a global compu-
tation. Our goal is to ensure a personalized view over heterogeneous collections,
distributed over several desktops, using exchange of appropriate collection/link
information before the computation.

[5] was the first paper to introduce the concept of “world node”, to incremen-
tally compute a good approximation of PageRank as links evolve. They identify
a small portion of the web graph in the vicinity of changes and model the rest of
the Web as a single node in this small graph, onto which they compute a version
of PageRank and suitably transfer back the results to the original graph. Build-
ing on this work, [14] describes a P2P search engine architecture where peers
are autonomous, crawl Web fragments and index them locally, but collaborate
for query routing and execution. Each peer computes the PageRank scores for
the pages it has in its local index. Peers meet and exchange information, and
then recompute their PageRank scores. Their original local graph G is extended
by adding a special node W, world node, representing all pages in the network
that do not belong to G. Their algorithm assumes that URLs of pages in the
world node are known, only their content is not known (not yet crawled). In our
scenario, peers do not know the URIs of the external resources and therefore
need to send at least part of their data graph to the other peers so that these
can create the world node for them. As our world node is used to keep link and

Personalizing PageRank-Based Ranking over Distributed Collections 125

node information private, no inner structure is known. Moreover, all other ap-
proaches perform ranking computation on graphs containing only web pages and
hyperlinks, while in our case we have different types of links among the nodes,
based on their type and on the desktop ontology.

The idea of how communities influence each other is investigated in [3]. They
introduce the interesting notion of “energy” of communities, which they define
for subsets of the global graph. A community can be viewed as a set of pages
on a given topic and the corresponding energy is a measure of the community’s
authority. The “energy” concept is also applicable in our case, since we are
investigating how peers influence each other through the data they are sharing.
However, their formulas assume all information about the graph at one location is
known, which is not the case in our scenario. It will be interesting to find suitable
formulas for approximating energy level and flow for our scenarios, where we have
only partial information about the whole graph.

6 Conclusions

An important functionality in distributed work environments is to provide
searching and ranking capabilities over collections distributed over the desktops
of a work group. In this paper we introduced several algorithms for retrieving
resources over a network of such desktops, which rely on the exchange of col-
lection specific information between the participating peers in order to achieve
appropriate ranking using PageRank-based algorithms. All our algorithms take
privacy into account, i.e. peers want to exchange only certain parts of their desk-
top content, a constraint which has been neglected so far in all previous work
on distributed PageRank computation.

We analyzed in detail how our algorithms perform in several setups of resource
sharing. In particular, we experimented with different sizes of data sets residing
on the peers’ desktops and with different dimensions of the overlapping infor-
mation. Our experiments show that we can compute appropriate ObjectRank
values even if the peers do not share everything they have. Specifically, algo-
rithms aggregating node and link information into one ”world node* proved to
be the best tradeoff between privacy and quality. They offer the best way of pro-
tecting resources, since peers do not reveal any of their nodes or the way they
are interconnected, approximate ObjectRank values very well, and guarantee
the smallest network load. In future work we will extend these algorithms with
methods to estimate the potential of peers to influence results of other peers,
and come up with incremental update schemes when peer content changes.

References

1. Beagle++. (2006) http://beagle.kbs.uni-hannover.de/

2. NEPOMUK - The Social Semantic Desktop. (2006)
http://nepomuk.semanticdesktop.org

3. Bianchini, M., Gori, M., Scarselli, F.: Inside pagerank. ACM Trans. Inter.
Tech. 5(1), 92-128 (2005)

http://beagle.kbs.uni-hannover.de/
http://nepomuk.semanticdesktop.org

126

4.

10.

11.

12.

13.
14.

15.

16.

S. Costache, W. Nejdl, and R. Paiu

Callan, J.P., Lu, Z., Croft, W.B.: Searching distributed collections with inference
networks. In: Proc. of the Intl. Conf. on Research and Development in Information
Retrieval (SIGIR) (1995)

. Chien, S., Dwork, C., Kumar, S., Sivakumar, D.: Towards exploiting link evolution.

In: Unpublished manuscript (2001)

. Chirita, P.A., Costache, S., Nejdl, W., Paiu, R.: Beagle4++: Semantically enhanced

searching and ranking on the desktop. In: Proc. of the European Semantic Web
Conf. (ESWC) (2006)

. Chirita, P.A.) Ghita, S., Nejdl, W., Paiu, R.: Semantically enhanced searching and

ranking on the desktop. In: Proc. of the Semantic Desktop Workshop held at the
Intl. Semantic Web Conf (2005)

. Damian, A., Nejdl, W., Paiu, R.: Peer-sensitive objectrank: Valuing contextual

information in social networks. In: Proc. of the Intl. Conf. on Web Information
Systems Engineering (2005)

. Dong, X., Halevy, A.Y.: A platform for personal information management and

integration. In: Proc. of Conf. on Innovative Data Systems Research (CIDR) (2005)
Dong, X., Halevy, A.Y., Nemes, E., Sigundsson, S.B., Domingos, P.: Semex: To-
ward on-the-fly personal information integration. In: Proc. of the Workshop on
Information Integration on the Web (2004)

Franklin, M., Halevy, A.Y., Maier, D.: From databases to dataspaces: a new ab-
straction for information management. SIGMOD Rec. 34(4), 27-33 (2005)

Green, N., Ipeirotis, P.G., Gravano, L.: SDLIP + STARTS = SDARTS a pro-
tocol and toolkit for metasearching. In: ACM/IEEE Joint Conference on Digital
Libraries, pp. 207-214 (2001)

Haveliwala, T.: Topic-sensitive pagerank. In: Proc. of the Intl. WWW Conf (2002)
Parreira, J.X., Donato, D., Michel, S., Weikum, G.: Efficient and decentralized
pagerank approximation in a peer-to-peer web search network. In: Proc. of the
Intl. Conf. on Very Large Data Bases (VLDB) (2006)

Wang, Y., DeWitt, D.: Computing pagerank in a distributed internet search sys-
tem. In: Proc. of the Intl. Conf. on Very Large Databases (VLDB) (2004)

Wu, J., Aberer, K.: Using siterank for decentralized computation of web document
ranking. In: Proc. of Intl. Conf. on Adaptive Hypermedia and Adaptive WebBased
Systems (2004)

	Introduction
	Which Information Should We Exchange?
	A Motivating Scenario
	Exchanging IR Related Information
	Exchanging ObjectRank Related Information

	Information Exchange and Rank Computation
	Privacy vs. Information Exchange
	Aggregating Graphs into World Nodes
	Query Processing and Ranking

	Experiments
	Experimental Setup
	Results and Analysis

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

