
J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 469–484, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Concepts for Incremental Method Evolution:
Empirical Exploration and Validation in Requirements

Management

Inge van de Weerd, Sjaak Brinkkemper, and Johan Versendaal

Department of Information and Computing Sciences
Utrecht University, Utrecht, The Netherlands

{i.vandeweerd, s.brinkkemper, j.versendaal}@cs.uu.nl

Abstract. Product software companies are confronted with performance
failures in their processes for which standard theories on situational method
engineering need to be revisited. By developing a knowledge infrastructure, we
support these companies with their method evolution by increasing the maturity
of their processes incrementally. We first identify and formalize general method
increments that are found in an exploratory case study. Then, we formalize
common process needs, by developing a root-cause map for software product
management and by identifying the root causes and process alternatives that are
related to them. We validate the formalized method increments, and process
needs by applying them to an extensive case study conducted at Infor Global
Solutions. The results show that the formalized method increment types cover
all increments that were found in the exploratory case study, and that the root-
cause map is a useful technique to model the root causes encountered in product
software companies.

Keywords: method engineering, meta-modeling, software process improvement,
incremental method evolution, root cause analysis.

1 Introduction: Incremental Method Evolution

Many organizations are struggling with the evolution of their information systems
development methods [6]. To control this, several software process improvement
methods have been proposed (e.g. [8] [14]), which can be implemented in different
ways and which are evolutionary in nature. In our research, we focus on such an
evolutionary approach instead of a mere revolutionary approach for several reasons:
a) it is a fundamental way to reduce risk on complex improvement projects [10]; and
b) we observe in practice that this is the natural way for method evolution [26] [27].

This evolutionary approach has been subject of research in various scientific
studies: methods have been developed to measure and to increase a company’s
maturity [8] [14]; studies have been carried out to find the best approach to instigate a
process improvement [17] [22]; and research has been done on the key success factors
that influence software process improvement [15]. However, in 2002, it was estimated
that still 70% of software process improvement projects failed [21].

470 I. van de Weerd, S. Brinkkemper, and J. Versendaal

In this work, we choose to take the existing research on software process
improvement a step further. Our aim is to develop a knowledge infrastructure that
supports product software (PS) companies that build off-the-shelf software products
for a market [28] in the incremental evolution of their methods, by dealing with their
process needs and guiding them to higher maturity levels. We keep the increments
local (i.e. one process at a time is changed) and small (in comparison to existing
incremental approaches with larger increments like CMM [14] and SPICE [8]).

In the next section, we describe our research approach, introduce process-
deliverable diagrams for modeling methods, and describe the context of this research.
In section 3, we define and formalize the process needs. In section 4, we validate the
formalized method increments by carrying out a case study at Infor Global Solutions.
Finally, in section 5, we describe our conclusions and future research.

2 Research Approach

Our aim is to support PS companies in their method evolution, by improving parts, or
fragments, of their existing methods in an automated way. Method engineering [3]
has been used successfully to engineer (parts of) methods for specific situations [1]
[16]; to serve as an instrument in software process improvement [27]; and to use as an
approach to manage evolutionary method development by integrating formal meta-
models with an informal method rationale [19].

For scoping reasons we limit our research to the software product management
domain of PS companies, covering requirements management, release planning,
product roadmapping, and portfolio management. In industry, software product
management is a clearly defined function, but in science research is fragmented [24].

2.1 Research Question and Methodology Outline

We define the following research question:

“How can product software companies improve their software product
management methods in an evolutionary way, using method fragment increments?”

We address this question by applying method engineering theory. Incremental
method engineering has been subject to research by e.g. [10] and [23]. However, a
definition of method increment seems not to be available. Therefore, we define a
method increment as: a method adaptation, in order to improve the overall
performance of a method. Note that adaptation can mean insertion, editing or removal
of method fragments.

Actual method increments in industry are explored in an explorative case study at a
HRM software vendor (from now on: HRM case study), in order to derive a list of
method increment types that occur during the evolution. By formalizing and
generalizing the increments, we model incremental evolution of a product software
company’s processes. The formalized increments are then validated in an ERP case
study. Using Root Cause Analysis (RCA, [18]) techniques we determine an initial set
of root causes of process needs that PS companies may encounter in the software
product management domain. RCA has been applied to process improvement and
incident prevention in software and non-software industries; see for example [11].

 Concepts for Incremental Method Evolution 471

With respect to the HRM case study we determine an initial set of root causes that
may lead to process improvement alternatives. This set and our RCA application are
also validated in the ERP case study.

2.2 Meta-modeling with Process-Deliverable Diagrams

For the analysis of method increments, we use process-deliverable diagrams (PDDs),
a meta-modeling technique that is based on UML activity diagrams and UML class
diagrams [25]. The resulting PDDs model the processes on the left-hand side and
deliverables on the right-hand side (see Figure 1). Examples of PDDs can be found in
Figure 5 and 6.

Fig. 1. Process-data diagram

We follow standard UML [13] conventions, but some minor adjustments have been
made for modeling development processes. Firstly, deliverables can be simple or
compound. Simple deliverables do not contain any sub deliverables and are
visualized with a rectangle. Compound deliverables contain one or more sub
deliverables. Compound deliverables can be open, visualized with an open shadow, to
indicate that it contains sub deliverables. The sub deliverables can be shown in the
same diagram, by using aggregation, or in another diagram (for example for space
saving). Closed compound deliverables, visualized with a closed shadow, indicate
that that sub deliverables exist, but are not relevant in this context. Similarly, open en
closed activities are used in the diagram. The dotted arrows indicate which
deliverables result from the activities. More details on this modeling technique can be
found in [25] and [27].

472 I. van de Weerd, S. Brinkkemper, and J. Versendaal

The PDD, visualized in Figure 1, is called a snapshot, a model of the process as it
was at a certain moment in time [27]. The evolution of a method over time exists of a
number of these snapshots. By comparing snapshots, method increments can be
analyzed. In Figure 1, we marked sub activity 4 and its corresponding concept. We
use this notation to show the method increment of this snapshot compared to a
snapshot earlier in time.

2.3 A Knowledge Infrastructure for Incremental Method Evolution

The context in which we want to support PS companies with the incremental
evolution of their processes is described in [27], where we propose the Product
Software Knowledge Infrastructure (PSKI, [27]). Several knowledge repositories for
software development methods have been proposed and developed (e.g. the OPEN
Process Framework [9]). However, the PSKI is not only a knowledge repository, but
it also analyzes the process need of a company in order to deliver meaningful advice.
In Figure 2, the PSKI is illustrated as well as the PS company that interacts with it.
The PSKI contains a method base, in which method fragments, situational factors,
maturity capabilities and assembly rules are stored.

Fig. 2. Product Software Knowledge Infrastructure

Analysis of need and situational indicators
The first step is the analysis of the process need and situational indicators. The
process need is analyzed using Root Cause Analysis, (RCA). Through RCA the root
causes of a process need are determined using the following sequence, see also [11]
and [18]: 1) which process difficulties actually occur; 2) what are the so-called causal
factors of the difficulties; and 3) what are the actual root causes per causal factor,

 Concepts for Incremental Method Evolution 473

using a root cause map designed for PS companies. We define a root cause as (one of)
the underlying reasons of a process need, solving one or more causal factors, and
relating to one or more actors, activities and deliverable concepts (referring to
figure 1). Situational indicators contain information about the process and the
company. Examples are company size, development platform and sector.

Selection of process alternatives
Once the root causes are known for a process need, directions for software process
improvement can be sought taking into account situational factors. For this, the
method base is used. Links between maturity capabilities and root causes are
available in the method base in order to identify possible process improvement
alternatives. Examples of maturity capabilities are listed in [26]. We define a process
alternative as a method fragment of a particular maturity capacity that settles one or
multiple root causes of the process need.

Embedding of process advice
The last step is embedding the process advice in the company’s existing processes. A
process advice, which contains a process description, templates and examples, is sent
back to the company. The person responsible for process improvement at the
company will then start the organizational deployment of the process advice. This
roll-out process also includes the insertion of the increment in the existing processes.

3 Definition and Formalization

This section defines and formalizes method increments and the development
problems that lead to these increments. The rationale for this formalization is twofold:
First, we use it to analyze the method increments that we found in the HRM case
study (see Section 4.4). Secondly, the formalization is used as a first step to develop a
formal structure for the method base of the PSKI in which method fragments can be
edited. Firstly, we define method evolution, snapshot and method increments. Then,
based on the meta-meta model of PDDs we present a list of all possible increment
types with some method fragment insertion rules. Thirdly, we analyze problems that
lead to the method increments and develop a root cause map for software product
management (RCM for SPM).

3.1 Definitions of Incremental Method Evolution

As the PDD technique is based on UML, we can utilize the available formalizations in
the literature. There appears to be two kinds of formalizations: those based on the
formal language Z, e.g. [5] and [20] and those using first order predicate logic, e.g.
[2], of which we chose the latter due to its concise presentation.

We start the formalization with the assumption that there is some kind of universe
of consistent methods, called M. We assume furthermore, that these methods in M can
be executed by project members, i.e. the method descriptions are available, complete,
and consistent. The evolution of the method in a particular company can then be seen

474 I. van de Weerd, S. Brinkkemper, and J. Versendaal

as a series of methods m1, m2, …, mn ∈ M . For reasoning about time we introduce the

time dimension T. The set of method fragments is called F.

Definition 3.1. The mapping method: T → M, where m = method(t) means that the

method m∈ M is the valid method at time t.

The methods change in the course of time, and this allows us to define the notion of
snapshot of a method.

Definition 3.2. A method adaptation time is a point of time where the method has
been adapted. Let T be the set of method adaptation times, i.e. T = {t1,t2,t3, …, tn}

such that ∀i ∀t: method(ti) = method(t) ≠ method(ti+1).

Definition 3.3. A method snapshot is a method m∈M that was valid at a particular
time, i.e. ∃ti ∈ T; m = method(ti).

Definition 3.4. A method evolution is a set S ⊆ M consisting of the method

snapshots, i.e. S = {method(ti)| ti ∈Ť}. So S is the set of methods that have been
valid in the course of time.

We are now able to define method increments. As in common method engineering
practices a method is seen as being composed of method fragments or method chunks
[3] [16]. Such a method is consistently created using well-formedness rules of process
composition and deliverable configuration. These rules are not elaborated here, as
they can be found in [4].

Definition 3.5. The predicate contains: F x S : contains(f,s) ≡ fragment f is
contained in snapshot s.

Then we can define an method increment as a method fragment that is part of
method(ti) but not in method(ti-1).

Definition 3.6. A method increment is a method fragment f∈F such that ∃i
contains(f,method(ti)) ∧ ¬contains(f,method(ti-1))

This means that the method increments are a collection of method fragments that have
been introduced in the method during the method adaptations between ti and ti-1. In the
following section we will then formalize the various types of increments

3.2 Formalization of Method Increments

In Figure 3 the meta-meta model of PDD is given, denoted in (again!) a UML Class
diagram.

The meta-meta model is a simplified view of the full UML definition of Class
diagrams and Activity diagrams [13] with special emphasis on the adaptations
discussed in Section 2.2 and the definitions in 3.1. Figure 3 shows that a method
consists of method fragments, that we distinguish as process fragments for the process
part of a method and deliverable fragments similarly. Note that the creation of
deliverables is modelled in the association edits between Activities and Concepts.

 Concepts for Incremental Method Evolution 475

Fig. 3. Meta-meta model of PDD

The structure of the meta-meta-model and the earlier case studies [27] to method
evolution revealed that 18 elementary increment types can be distinguished:

• insertion of a concept, property, relationship, activity node, transition, role
• modification of a concept, property, relationship, activity node, transition, role
• deletion of a concept, property, relationship, activity node, transition, role

The complete method increments from one snapshot to another can then be seen as
a composition of elementary increment types.

The UML formalization of [2] postulates the existence of unary predicates for each
class in a class diagram, e.g. concept(c) means that c is a concept in the model.
However, in our research we require evolution of methods over the various snapshots,
so we enhance these unary predicates to binary predicates with the method as an
additional parameter. So concept(c,m) means that c is a concept in the method m.
Method increments can now be defined as polymorphic mappings on the set of
method fragments and methods.

Definition 3.7. The mapping insert: F x M → M: insert(f,m1) = m2 means that the
method fragment f has been inserted in the method m1 resulting into method m2.

Definition 3.8. The mapping modify: F x F x M → M: modify(f1,f2,m1) = m2 means
that the method fragment f1 in the method m1 has been modified to the fragment f2 in
method m2.

Definition 3.9. The mapping delete: F x M → M: delete(f,m1) = m2 means that the
method fragment f has been deleted from the method m1 resulting into method m2.

476 I. van de Weerd, S. Brinkkemper, and J. Versendaal

The rules for the elementary increments can then be formulated. For the sake of
brevity we list the rules for the insertion of concepts and properties. Both rules are
illustrated with an example that is taken from the increment example in Section 4.3.

Rule 3.1. Insertion of concepts:

insert(c,mi) = mi+1 ⇒ ¬concept(c,mi) ∧ concept(c,mi+1)

Rule 3.1 states when a concept has been inserted into method mi to get method mi+1.
So, for instance:

insert(RELEASE TABLE,BaanIncr2) = BaanIncr3 ⇒ ¬concept(RELEASE

TABLE,BaanIncr2) ∧ concept(RELEASE TABLE,BaanIncr3)

This means that when the concept RELEASE TABLE is inserted into BaanIncr2
resulting into BaanIncr3, then RELEASE TABLE is not a concept present in
BaanIncr2 and is present as concept in BaanIncr3.

Rule 3.2. Insertion of properties:

insert(p,mi) = mi+1 ∧ property(p,mi+1) ⇒ [∀c: concept(c,mi) ∧
¬contains(p,c)] ∧ [∃1c: concept(c,mi+1) ∧ contains(p,c)]

Rule 3.2 tells that when property p is inserted into snapshot mi resulting into snapshot
mi+1, then p is not a property of any concept in mi and there is just one concept in mi+1
of which p is the property. So, for instance:

insert(topic,BaanIncr2) = BaanIncr3 ∧ property(topic,BaanIncr3) ⇒ [∀c:
concept(REQUIREMENT,BaanIncr2) ∧ ¬contains(topic,REQUIREMENT)] ∧ [∃1c:
concept(REQUIREMENT,BaanIncr3) ∧ contains(topic,REQUIREMENT)]

This means that when the property topic is inserted into snapshot BaanIncr2,
resulting into BaanIncr3, then topic is not a property of any concept in BaanIncr2
and there is just one concept, namely REQUIREMENT, in BaanIncr3 of which is topic
the property.

Analogously, rules for the other 16 elementary method increments can be
formulated, while taking the method assembly rules in [4] into account. Based on our
earlier work on method assembly this formalization is extremely straightforward and
will support the construction of the PSKI currently under development.

3.3 Root Cause Analysis for Product Software

Based on the general Root Cause Map (RCM) [18], the reference framework for
software product management (SPM) [24], and the HRM case study [27], we are able
to construct an initial RCM for SPM, as is depicted in Figure 4.

During the interviews conducted in the HRM case study, two major process
difficulties for requirements management were recognized:

A. Customers do not see that their required features and software improvement
wishes are implemented in new releases.

B. The company finds its requirements gathering process for new features not
productive.

 Concepts for Incremental Method Evolution 477

Fig. 4. The explorative case root-cause map

When we apply RCA to these process difficulties, we identify a number of causal
factors: To communicate a suggestion for improvement, a customer can contact the
sales representative; in some cases the sales representative replies that suggestions
should be posted to the helpdesk; in other cases the sales representative forwards the
suggestion to the helpdesk; and some suggestions are not logged at all.

As for the second process difficulty, when a new release is defined, the helpdesk,
the development manager and the software engineers are consulted. Rather arbitrary,
but fitting a defined planning schedule, the development of a new release is triggered.
Consequently, we identify three causal factors:

C1. Customers have difficulty in making their wishes known
C2. Customer requirements are not registered effectively
C3. Scoping of releases is rather arbitrary

The following root causes can be identified (indicated are the corresponding causal
factors):

R1. Requirement logging is less than adequate (LTA) (root cause for C1 & C2)
R2. Requirements are not available (root cause for C3)
R3. Criteria for requirements prioritization are unclear (root cause for C1 & C3)
R4. Criteria for requirements selection are unclear (root cause for C3)

In [27] a threefold solution for the two major process difficulties(A & B) is
described:

S1. Introduction of a separate activity for receiving and logging new requirements;
S2. Introduction of a wish list (requirements database) with wishes (requirements)
 containing a priority attribute;
S3. Introduction of a separate activity for prioritizing wishes.

When we map this process on the PSKI, this threefold solution would be described
in a process advice, containing process descriptions, templates and examples. Note
that RCA was not the basis for the solution finding at the HRM case study. However,
if we do take into account the RCA and the resulting root causes we find that solution
S1 addresses R1 and R2, solution S2 addresses R2 and partly R3, solution S3
addresses R3. Note that R4 has not been properly addressed in the solution. We

478 I. van de Weerd, S. Brinkkemper, and J. Versendaal

conclude that in the HRM case study, RCA was a useful approach for finding process
improvements alternatives. This will be further validated in Section 4.

4 ERP Case Study

We carried out a case study at Infor Global Solutions (specifically the former Baan
company business unit), a vendor of ERP (Enterprise Resource Planning) software
(see for example [12]). The goal of the ERP case study is to validate the increment
types defined in Section 3.3 and the root-cause map in Section 3.4. In 1978, Baan was
established as a book-keeping consulting company. Over the years, the company
changed from a consultant company to a software developer for businesses. Baan was
quoted on the Nasdaq stock exchange as an independent company from 1995 to 2000.

4.1 Case Study Design

Different sources are used to collect information. Firstly, several interviews have been
conducted with six former employees of Baan. Two explorative 3-hour interviews
were conducted with the Process Engineer of Baan. Based on this interview, the
method evolution between 1997 and 2002 was modeled. This information was cross-
checked by conducting 2-hour follow-up interviews with five other employees of
Baan, consisting of two former (Senior) Product Managers, a Director ERP
Development, a Manager ERP Product Ownership and a Software Engineering
Process Group Manager for Baan Development. In these interviews, also the
snapshots of 1994, 1996, 2003, 2004 and 2006 were identified and modeled.

Secondly, a document study was carried out. Documentation provided by the
Process Engineer was used to complement and validate the results from the
interviews. This documentation consisted of process descriptions, templates and
examples of methods and work products used at Baan in the period 1997 until 2006.
From the period before 1997 no documentation was available. We focused on the
following case study questions, related to software product management:

− Which snapshots can you identify in the method evolution?
− Which methods were used per stage? Which activities can be distinguished?
− Which deliverables resulted from these methods?
− Which process difficulties arose in this stage? Why was an increment needed?

With the information gathered in the case study, we modeled 14 snapshots in
PDDs, each representing a method that was used in a particular moment in time [26].

4.2 Method Snapshots

We analyzed 14 snapshots of the evolution of the software development process at
Baan, with emphasis on product management activities. The time period that is
covered in the ERP case study ranges from 1994 to 2006.

Note that, although some method increments entail the removal of a method
fragment, we still describe them as increments, as described in Section 2.1. In the

 Concepts for Incremental Method Evolution 479

Table 1. Overview of method increments at Baan

Increment Date
0 Introduction requirements document 1994
1 Introduction design document 1996
2 Introduction version definition 1998, May
3 Introduction conceptual solution 1998, November
4 Introduction requirements database, division market and

business requirements, and introduction of product families
1999, May

5 Introduction tracing sheet 1999, July
6 Introduction product definition 2000, March
7 Introduction customer commitment process 2000, April
8 Introduction enhancement request process 2000, May
9 Introduction roadmap process 2000, September
10 Introduction process metrics 2002, August
11 Removal of product families & customer commitment 2003, May
12 Introduction customer voting process 2004, November
13 Introduction master planning 2006, October

following section, one of these increments, namely the increment between snapshot 2
and 3, is further elaborated on. The other increments are described in [26].

4.3 Increment Example: Introduction of the Conceptual Solution

In Figure 5, increment # 2 of the ERP case study is visualized. Looking at the process-
side of the diagram, we can distinguish one main activity, i.e. ‘Requirements’, and
three sub-activities.

Fig. 5. Snapshot of increment #2

480 I. van de Weerd, S. Brinkkemper, and J. Versendaal

The first sub-activity, ‘Write draft version definition’, results in the concepts
VERSION DEFINITION and REQUIREMENT. The latter is connected to VERSION DEFINITION by
means of aggregation. Both have a number of attributes, and finally, a REQUIREMENT is
owned by a GROUP, that has the responsibility for this REQUIREMENT. The next sub-
activity is to review the VERSION DEFINITION. If the approval is obtained, the next
activity can be started; otherwise the VERSION DEFINITION has to be reviewed again.

In Figure 6, increment #3 is visualized. In this snapshot, one extra activity is
included. Note, however, that this activity is open, i.e. this activity contains further
sub activities that are elaborated elsewhere. Due to space limitations, the elaboration
on this activity is not included in this paper.

owns
1..*

1..*

Requirements

Write draft version definition

Review version definition

Get version definition approval

[approved]

[else]

Program Manager

REQUIREMENT

BR number
topic
description
functional deficiency
priority
development theme
source
objectives
scope
dependencies
contact person

name
manager
location

GROUP

0..1

0..*

release name
total nr requirements
total workload
owner

RELEASE TABLE

1

1

refers to0..1
1..*

document number
document group
document title
author
status
product group
location
month modified
purpose
motivation

CONCEPTUAL SOLUTION

0..1

1 is elaborated in

CAPACITY

mandays1..*

1..*

1

1
requires

document number
date
state
release name
release project name
document purpose
scope
overview
release purpose

VERSION DEFINITION

has

Create conceptual solutionsCreate conceptual solution

Fig. 6. Snapshot of increment #3

 4.4 Root Cause Analysis of Method Increments

In increment 3 (Figure 6) we distinguish the following increment types, based on the
formalization in Section 3.2:

I1. Insertion of an activity node, i.e. ‘Create conceptual solution’
I2. Insertion of a concept, i.e. RELEASE TABLE, CONCEPTUAL SOLUTION and CAPACITY
I3. Insertion of a property, i.e. the properties added to REQUIREMENT
I4. Insertion of a relationship, i.e. the relationships connecting the introduced

concepts to the existing concepts

Now we focus on RCA. The increments are included to solve one or more
problems. Based on the interviews, several process needs were identified in the
snapshot of increment #2. The most important ones were:

 Concepts for Incremental Method Evolution 481

A. Development managers find it hard if not impossible to determine a VERSION

DEFINITION that is feasible with available resources, and consequently makes sub-
optimal scoping decisions. In detail: signals from the market, as well as from
internal stakeholders, indicate that a new release should be developed. The
development managers ask the program managers and architects to establish the
version definition for the different software modules. The program managers and
architects collect, with some difficulty, the features and requirement from different
sources. They select a set of features to be developed according to their own
opinions. The program managers and architects discuss the draft version definition
with the development managers, and make changes to the selection of features.

B. Software engineers find it hard to read the VERSION DEFINITION in order to built what
is requested, and consequently do not build the precise features that were intended
to be build. In detail: in the version definition each new software product
REQUIREMENT is elaborated by the program manager and/or product architect. They
describe dependencies with other REQUIREMENTS in the text associated with a
requirement. The software engineers read the (often badly written) requirements,
interpret requirement texts, possibly asking their program managers and architects
for explanations. Subsequently, the requirements are built in the software product.

We identify the following causal factors:

C1. Requirement collection is difficult
C2. Text elaborations of requirements have different authors
C3. Requirements dependency descriptions are unstructured
C4. Interpretation of requirement is ambiguous

If we apply the earlier constructed root cause map for product software to this
particular increment we choose to extend it accordingly in order to address all
identified causal factors (see Figure 7). Note that, although we had to extend the root
cause map with the (bold) root causes, it fits the constructed structure as derived in
Section 3 very well.
The root causes of the four identified causal factors are fourfold:

R1. Requirements are scattered throughout the company in different documents (root
cause for C1 & C2)

Fig. 7. Baan increment extended root cause map for product software

482 I. van de Weerd, S. Brinkkemper, and J. Versendaal

R2. Some requirements are written in a solution-oriented way (root cause for C2 &
C4)

R3. Requirements are too complex (root cause for C4)
R4. Requirements are written in unstructured text (root cause for C3 & C4)

R2 and R3 led to the introduction of the CONCEPTUAL SOLUTION in increment #3.
This document was used to write a solution on conceptual level for the particular
REQUIREMENT. In this way, solution-oriented texts are also kept out the requirements
themselves. R4 partly led to the decomposition of the VERSION DEFINITION and
REQUIREMENTS. A RELEASE TABLE is used, in which information on the separate
REQUIREMENTS is summarized. No (full) solution is implemented for R1 and R4. These
are taken into account in the subsequent increment, which is described in [26].

We note that the RCM for SPM has been extended on the lowest level, but that
higher levels were untouched, indicating that for two different companies, the RCM
for SPM is a useful tool. We conclude that RCA can be used in software development
improvements (as in [8]) and more specifically software product management. The
root causes showed in the RCM for SPM provide means for the PSKI to determine
process improvement alternatives.

4.5 Validity Threats

In exploratory research, three types of validity are important [29]. Firstly, construct
validity concerns the validity of the research method. We satisfy this type of validity
by using multiple sources of data (interviewees and documents) and by maintaining a
chain of evidence. Furthermore, we had key informants review the draft case study
report. Secondly, the external validity concerns the domain to which the results can be
generalized. We carried out the case study in the software product management
domain in PS companies. The same protocol is followed as in earlier case studies in
PS companies. Finally, to guarantee the reliability of the case study, all information
should be recorded. This is done by maintaining a case study database which contains
all relevant information used in the case study. This case study database consists of
interview notes, documentation and process-data diagrams of all modelled methods.

5 Conclusion

By presenting a formal approach to incremental process improvement, we provided
PS companies with an instrument to improve their software product management
methods in an evolutionary way. Firstly, we formalized the method increments that
occur during method evolution. Doing this provided insight in the evolution process,
which can be used when assembling a method advice. Secondly, we presented an
approach for the structural analysis of process needs, by using root cause analysis. By
applying this analysis in a case study, we found that this approach and the
corresponding root cause map can be of great value in the support of incremental
method evolution.

Currently, we are working on the realization of the PSKI. We aim to further
integrate the root cause analysis approach in the PSKI in order to map root causes to
maturity capabilities and method fragments. The formalization of method increments

 Concepts for Incremental Method Evolution 483

is used to implement assembly rules. In the future, we plan to fill the method base
with situational factors, method fragments and assembly rules. Finally, we plan to test
the PSKI at PS companies of different sizes and in different sectors, in order to test
the mapping between situational factors, maturity capabilities and method fragments.

References

1. Aydin, M.N., Harmsen, F.: Making a Method Work for a Project Situation in the Context
of CMM. In: Proceedings of the 14th International Conference on Product Focused
Software Process Improvement, Rovaniemi, Finland, pp. 158–171 (2002)

2. Berardi, D., Cali, A., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artificial Intelligence 168, 70–118 (2005)

3. Brinkkemper, S.: Method Engineering: Engineering of Information Systems Development
Methods and Tools. In: Information and Software Techn, vol. 38, pp. 275–280. Elsevier,
Amsterdam (1996)

4. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-modelling Based Assembly Techniques
for Situational Method Engineering. Information Systems 24(3), 209–228 (1999)

5. Clark, T., Evans, A., Kent, S.: The Metamodelling Language Calculus: Foundation
Semantics for UML. In: LNCS, vol. 2029, pp. 17 –31Springer, Heidelberg (2001)

6. Conradi, R., Fernström, C., Fuggetta, A.: A Conceptual Framework for Evolving Software
Processes. In: ACM SIGSOFT Software Eng. Notes 18(4), 26–35 (1993)

7. Cronholm, S., Ågerfalk, P.J.: On the Concept of Method in Information Systems
Development. In: Proceedings of the 22nd Information Systems Research Seminar in
Scandinavia 1, 229–236 (1999)

8. El, E.K., Melo, W., Drouin, J.-N. (eds.): SPICE: The Theory and Practice of Software
Process Improvement and Capability Determination. IEEE Computer Soc. Press, Los
Alamitos (1997)

9. Henderson-Sellers, B.: Process Metamodelling and Process Construction: Examples Using
the OPEN Process Framework (OPF). Annals of Software Eng. 14, 341–362 (2002)

10. Krzanik, L., Simila, J.: Is my Software Process Improvement Suitable for Incremental
Deployment? 8th International Workshop on Software Technology and Engineering
Practice (STEP’97) p. 76 (1997)

11. Leszak, M., Perry, D.E., Stoll, D.: A Case Study in Root Cause Defect Analysis, ICSE
p. 428 (2000)

12. Natt och Dag, J., Gervasi, V., Brinkkemper, S., Regnell, B.: Speeding up Requirements
Management in a Product Software Company: Linking Customer Wishes to Product
Requirements through Linguistic Engineering. In: Proceedings of the 12th IEEE
International Requirements Engineering Conference pp. 283–294 (2004)

13. Object Management Group: UML 2.0 Superstructure Specification. Technical Report
ptc/04-10-02 (2004)

14. Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V.: Capability Maturity Model for
Software (Version 1.1) (SEI/CMU-93-TR-24, ADA263403). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University (1993)

15. Rainer, A., Hall, T.: Key Success Factors for Implementing Software Process
Improvement: a Maturity-Based Analysis. Journal of Systems and Software 62(2), 71–84
(2002)

484 I. van de Weerd, S. Brinkkemper, and J. Versendaal

16. Ralyté, J., Rolland, C.: An Assembly Process Model for Method Engineering. In:
Advanced Information Systems Engineering. In: CAiSE 2001. LNCS, vol. 2068, pp.
267–283. Springer, Heidelberg (2001)

17. Richardson, I., Ryan, K.: Software Process Improvements in a Very Small Company.
Software Quality Professional 3(2), 23–35 (2001)

18. Root Cause Analysis Handbook: A Guide to Effective Incident Investigation, ABS Group
Consulting, Inc, Houston, TX (1999)

19. Rossi, M., Ramesh, B., Lyytinen, K., Tolvanen, J.-P.: Managing evolutionary method
engineering by method rationale. Journal of the Association for Information Systems 5(9),
356–391 (2004)

20. Saeki, M.: Toward Formal Semantics of Meta Models. In: International Workshop on
Model Engineering, Nice, France (2000)

21. SEI: Process maturity profile of the software community. Software Engineering Institute,
Carnegie Mellon University (2002)

22. Stelzer, D., Mellis, W.: Success Factors of Organizational Change in Software Process
Improvement. In: Software Process: Improvement and Practice, vol. 4(4), pp. 227–250.
John Wiley & Sons, New York (1998)

23. Tolvanen, J.-P.: Incremental method engineering with modeling tools: theoretical
principles and empirical evidence. Jyväskylä Studies in Computer Science, Economics and
Statistics 47, University of Jyväskylä, PhD Dissertation thesis (1998)

24. Weerd, I., van de Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., Bijlsma, L.: Towards
a Reference Framework for Software Product Management. In: Proc. of the 14th
International Requirements Engineering Conference, Minneapolis, Minnesota, USA
pp. 312-315 (2006)

25. Weerd, I., van de Brinkkemper, S., Souer, J., Versendaal, J.: A Situational Implementation
Method for Web-based Content Management System-applications. In: Software Process:
Improvement and Practice. Vol. 11(5), pp. 521–538. John Wiley & Sons, New York
(2006)

26. Weerd, I., van de Brinkkemper, S., Versendaal, J.: Incremental Method Evolution in
Requirements Management: A Case Study at Baan 1994-2006. Institute of Computing and
Information Sciences, Utrecht University. Technical report UU-CS-2006-057 (2006)

27. Weerd, I., van de Versendaal, J., Brinkkemper, S.: A Product Software Knowledge
Infrastructure for Situational Capability Maturation: Vision and Case Studies in Product
Management. In: Proceedings of the 12th Working Conference on Requirements
Engineering: Foundation for Software Quality (REFSQ’06), Luxembourg (2006)

28. Xu, L., Brinkkemper, S.: Concepts for Product Software. To appear in: European Journal
of Information Systems (2007)

29. Yin, R.K.: Case study research: Design and methods (3rd edn.). Beverly Hills, CA: Sage
Publishing (2003)

	Introduction: Incremental Method Evolution
	Research Approach
	Research Question and Methodology Outline
	Meta-modeling with Process-Deliverable Diagrams
	A Knowledge Infrastructure for Incremental Method Evolution

	Definition and Formalization
	Definitions of Incremental Method Evolution
	Formalization of Method Increments
	Root Cause Analysis for Product Software

	ERP Case Study
	Case Study Design
	Method Snapshots
	Increment Example: Introduction of the Conceptual Solution
	Root Cause Analysis of Method Increments
	Validity Threats

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

