
Policies for Context-Driven Transactional Web Services

Zakaria Maamar1, Nanjangud C. Narendra2, Djamal Benslimane3,
and Sattanathan Subramanian4

1 Zayed University, U.A.E
zakaria.maamar@zu.ac.ae
2 IBM India Research Lab, India
narendra@in.ibm.com

3 Claude Bernard University, Lyon, France
djamal.benslimane@liris.cnrs.fr

4 IMRU-FUNDP, University of Namur, Belgium
subramanian.sattanathan@fundp.ac.be

Abstract. This paper presents an approach that uses policies to manage context-
driven transactional Web services. Context feeds policies with details on Web
services like current status, which permits aligning the behavior of these Web
services to the transactional properties they need to satisfy. Context refers here to
any information on the interactions a Web service initiates with peers and exter-
nal environment. Three types of transactional properties are used namely pivot,
compensatable, and retriable. Each property satisfaction calls for a set of policies
that are specified with a policy language like WSPL. This paper also presents
the adaptation strategy that supports developing context-driven transactional Web
services. A prototype that implements this strategy is discussed in the paper, too.

Keywords: Adaptation, Context, Policy, Transaction, Web service.

1 Introduction

For the W3C, a Web service ”is a software application identified by a URI, whose in-
terfaces and binding are capable of being defined, described, and discovered by XML
artifacts and supports direct interactions with other software applications using XML-
based messages via Internet-based applications”. Though this definition highlights the
potential and multiple uses of Web services, it does not stress the obstacles that hinder
Web services execution and the way these obstacles could be first, identified prior to
execution and second, overcome as part of the exception handling strategy. Guidelines
backing the correct execution of a Web service need to be stated and checked prior ex-
ecution. To this end we suggest mapping these guidelines onto transactional properties
to be associated with a Web service. The role of a transactional property is to define the
acceptable behavior of a Web service. For example the failure of a Web service could be
tolerated in one scenario but not in another one. Different transactional properties are
reported in literature and different specifications exist (e.g., Web Services Transaction1,
Web Services Transaction Management2). In this paper the focus is on pivot, retriable,

1 dev2dev.bea.com/pub/a/2004/01/ws-transaction.html
2 developers.sun.com/techtopics/webservices/wscaf/wstxm.pdf

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 249–263, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

250 Z. Maamar et al.

and compensatable transactional properties. A Web service is defined as retriable if it
can be retried one or more times after failure. A Web service is defined as compen-
satable if it offers mechanisms to undo its effects. Finally, a Web service is defined as
pivot if once it successfully completes, its effects remain unchanged for ever and cannot
be semantically undone. Additionally, a pivot Web service cannot be retried following
failure, and thus, will need to be aborted.

Exceptions altering a Web service’s behavior need to be monitored so, appropri-
ate corrective actions for satisfying the transactional properties of this Web service are
taken. We propose to run the monitoring operation upon a structure, which receives,
refines, and stores the necessary information for this operation. We refer to this struc-
ture as context. Context ”... is not simply the state of a predefined environment with a
fixed set of interaction resources. It is part of a process of interacting with an ever-
changing environment composed of reconfigurable, migratory, distributed, and multi-
scale resources” [5]. In this paper, context not only supports the operation of monitor-
ing a Web service execution, but supports also a Web service in making decisions based
on the status of the surrounding environment [8]. The environment could be related to
users (e.g., stationary user, mobile user), computing resources (e.g., fixed device, hand-
held device), time of day (e.g., in the afternoon, in the morning), physical locations
(e.g., shopping center, movie theater), etc.

Satisfying the transactional properties of a Web service happens through mecha-
nisms, which we specify and implement as policies. In [7], we used policies to support
the behavior flexibility of a Web service, so this latter can align its capabilities to users’
requirements and resources’ constraints. In this paper we motivate behavior flexibility
because of the multiple execution situations a Web service encounters. Indeed a Web
service has to consider its internal execution status, has to know how to perform excep-
tion handling in case it gets disrupted, etc. In this paper as well, policies not only permit
checking the satisfaction of the transactional properties of a Web service, but permit
also a clear separation between the functionality of a Web service and the different
cases that make up the acceptable behavior of a Web service.

In this paper we discuss our approach for using policies to develop context-driven
transactional Web services. Context feeds policies with details required for their execu-
tion prior to claiming the satisfaction of the transactional property of a Web service in
that specific context. Section 2 presents an illustrative scenario and some related works.
Section 3 discusses the approach to develop context-driven transactional Web services
using policies. Section 4 presents the adaptation strategy that accommodates these Web
services’ features and requirements. Prior to concluding and highlighting future work
in Section 6, prototype of the approach is presented in Section 5.

2 Background

Illustrative scenario. It is about Amin who travels to Trondheim in Norway to meet
his friend Melissa. One day they agree to meet in a coffee shop, not far from Melissa’s
office. Amin has two options to reach the meeting place: by taxi or by bus. A speci-
fication of Amin scenario using state chart diagrams and service chart diagrams [9] is
illustrated with Fig. 1. The component Web services of this specification are: trip (TP),

Policies for Context-Driven Transactional Web Services 251

SCD-BS-WS
(Bus Schedule)SCD-LO-WS

(LOcation)

SCD-IT-WS
(ITinerary)

SCD-WE-WS
(WEather)

SCD-TA-WS
(TAxi)

SCD-TC-WS
(TraffiC)

ye
s

no

[confirmed (bad weather)]

(SCD: Service Chart Diagram, WS: Web Service, : Abortion dependency)

Fig. 1. Specification of Amin scenario

weather (WE), location (LO), taxi (TA), bus schedule (BS), and traffic (TC). Amin sce-
nario specification could be done with BPEL for example, without any changes in the
various policies and strategies that will be defined later.

At his hotel, Amin browses some Web sites about transportation in Trondheim. A
site has Itinerary WS that proposes routes between two specific places like Amin’s hotel
and the coffee shop. The proposed routes are subject to weather forecasts: cold weather
results in recommending taxis, otherwise public transportation like tramways and buses
are recommended. Parallel to checking weather forecasts with Weather WS, Itinerary
WS requests details about the origin and destination places using Location WS. Amin
appreciates using Location WS as he is not familiar with the city.

In case Weather WS forecasts bad weather, a taxi booking is made using Taxi WS
upon Amin’s approval. Otherwise, i.e., pleasant day, Amin uses public transportation.
The location of both Amin’s hotel and coffee shop are submitted to Bus Schedule WS,
which returns for example the bus numbers Amin has to take. Potential traffic jams
force Bus Schedule WS to regularly interact with Traffic WS that monitors the status
of the traffic network. This status is fed into Bus Schedule WS so adjustments to bus
numbers and correspondences between buses can occur.

From a transactional perspective the designer of Amin scenario needs to pay atten-
tion among other things to (i) the Web services that are critical to the successful com-
pleteness of this scenario, (ii) the failure details that hinder Web services execution, and
(iii) how much these failures impact Web services’ and composite Web service’s com-
pleteness. Hereafter, we list some cases the designer will look into: (i) ensure that either
Taxi WS or Bus Schedule WS completes their execution; (ii) ensure that Weather WS
successfully completes its execution; and (iii) compensate Taxi WS in case the meeting
is canceled so the taxi booking is canceled, too.

Related Work. Compared to traditional transactions that comply with the Atomicity,
Consistency, Isolation, and Durability (ACID) model, Verma and Deswal discuss the
non-suitability of this model for Web services because of the following reasons [14]:
transactions may be of a long duration (sometimes lasting hours, days, or more), par-
ticipants may not allow their resources to be locked for long durations, some of the
ACID properties are not mandatory, a transaction may succeed even if only some of
the participants choose to confirm and others choose to cancel, transactions that have to
be rolled back have the concept of compensation, etc. Interesting to emphasize here the
overall success of a transaction despite the failure of some of this transaction’s portions.

252 Z. Maamar et al.

Bhiri et al. propose a transactional approach to guarantee the failure atomicity of
a composite Web service [4]. They use the accepted termination states property as a
means for guaranteeing this atomicity. The correctness criterion associated with a com-
posite Web service execution varies from one designer to another. Bhiri et al. claim that
this criterion defines the transactional behavior of a composite Web service. This be-
havior needs to be consistent with the transactional properties that are associated with
the component Web services of this composite Web service.

For Younas et al., specifications and protocols developed for Web services trans-
actions such as WS-Transactions, OASIS Business Transaction Protocol (BTP), and
Business Transaction Framework are mainly based on the database transaction models
such as ACID and extended/advanced transaction models [15]. Although these specifi-
cations and protocols have been useful in various domains, they are inappropriate for
long running business activities like the ones involving Web services. Younas et al. sug-
gest a new set of transactional properties that are specifically devoted to Web services
namely Semantic Atomicity, Consistency, Resiliency, and Durability (SACReD) and
are extensively explained in [16]. For instance, semantic atomicity allows the unilateral
commit of component service transactions regardless of the commits of their sibling
component service transactions.

Pires et al. discuss how to build reliable Web services compositions [10]. Unlike
components in traditional business processes, the building task of these compositions
is much more difficult due to Web services heterogeneity and autonomy. To face both
obstacles, Pires et al. suggest WebTransact framework, which is implemented with
a multi-layered architecture associated with an XML-based language named Web Ser-
vices Transaction Language (WSTL) and a transaction model. Some components that
populate this architecture include composite mediator services and remote services.

An interesting perspective on exception handling during process activity failures is
built upon forward recovery strategies. This is reported in [3] where Bassil et al. claim
that not all failures can be dealt with using roll-back mechanisms such as undoing or
compensating activities. Examples of such failures include an already accomplished
surgery or a vehicle transporting containers that breaks down. Bassil et al.’s solution
suggests a set of factors that may influence the right choice of a forward recovery solu-
tion. Two of these factors include knowing the current data context of a failed activity
and knowing how far process execution has progressed.

3 Context and Transactional Web Services

3.1 Design and Operation

Achieving transactional Web services using the information that context provides led
us to identify the following four levels: composition, component, instance, and state
([9] explains how these levels get deployed). The composition level shows the com-
posite Web services that are developed according to users’ needs. The component level
shows the Web services that providers develop and advertise so, users’ needs are sat-
isfied. The participation of Web services in composite Web services occurs thanks to
the instance level [9]. This level shows the Web service instances that are created upon
composition participation acceptance. Finally the state level shows the behavior of a

Policies for Context-Driven Transactional Web Services 253

Web service instance using an UML state chart diagram. Each level is associated with
a specific type of context: C-context for Composite Web service, W-context for Web
service, I-context for Web service Instance, and S-context for State chart diagram
of a Web service instance. The W-context of a Web service returns information on
the participations of this Web service in different compositions. These participations
happen according to the Web services instantiation principle [9]. The C-context of a
composite Web service is built upon the W-contexts of its component Web services
and permits overseeing the progress of a composition. The I-context of a Web service
instance records the progress of the execution of this instance, including the states it
takes on during execution. Details on the state information of a Web service instance
are later recorded in its S-context. Fig. 2 illustrates our proposed context-driven three-
level approach for transactional Web services. Not represented in this figure are the
composition level and its respective C-context. Interesting to note the S-context of a
state chart diagram. S-context tracks the states that permit claiming the satisfaction of
the transactional properties of a Web service instance. We recall that composite Web
services are made up of Web service instances and not of Web services. In Fig. 2, active
means the state that a Web service instance takes now on. Passive means the opposite.

State chart diagram

W-context

Web service

I -context

Web service
instance 1

Web service
instance 2

I -context

State chart diagram 1 State chart diagram 2

Instantiation

S -context S -context

Legend

Passive state

Active state

Fig. 2. Context-driven approach for transactional Web services

The operation of this approach concerns Web services of type instance. This opera-
tion is about first, context assessment and policy triggering and second, the way context
and policy permit meeting the transactional properties of a Web service instance. In this
paper context assessment is excluded. Initially the designer associates a Web service, to
be deployed later as a Web service instance, with a set of transactional properties like
pivot and compensatable. This association per Web service depends on the business
logic that underpins the composition scenario. As discussed earlier, the failure of a Web
service can be tolerated in one scenario but not in another one.

At run-time, the Web service instance gets triggered according to the specification
of the composite Web service. The Web service instance takes on various states like
activated, failed, and suspended, which form its state chart diagram. This diagram is
context-aware since it has an S-context. As a result tracking the various states that a
Web service instance binds to, is now possible. Fig. 3 shows that the monitoring of a

254 Z. Maamar et al.

Web service
(instance)

3. Execution
output Policy engine

Repository
of policies

2. Triggering

Context
1. Extratction0. Monitoring

Fig. 3. Operation of the approach

Web service instance is continuous so, relevant details are collected and fed into the
context. Additional details are collected as well from the respective contexts of the Web
service and composite Web service. All these details are submitted to the policy engine
that next, consults the repository of policies. Currently we only assume that one policy
executes so conflicts between policies’ outcomes are avoided. Execution means making
the Web service instance transitions to a new state (active as in Fig. 2), which could
allow this Web service instance to satisfy its transactional property. For example if a
Web service instance is declared as pivot, then the various policies have to guarantee
that this Web service instance only gets aborted in case of execution failure, i.e., no
compensation actions are tolerated. We assume in this paper that a Web service does not
take on any state that is not included in the acceptable states of its state chart diagram.

We recall that three types of context were defined: S-context, I-context, and W-
context. For this paper’s requirements the emphasis is on the contexts of state and
Web service instance. Each context type has a set of arguments that permit feeding
the policy engine with the necessary details for triggering the appropriate policies as
depicted in Fig. 3. S-context’s arguments include: StateIdentifier: Identifier of current
state; StateLabel: not-activated, activated, suspended, done, compensated, aborted; Pre-
viousState: name of previous state from which the Web service instance has transitioned
to current state; NextEffectiveState: name of next state that the Web service instance has
effectively transitioned to; TransitionIn: name of transition that permitted transiting the
Web service instance to current state; and TransitionOut: name of transition that permit-
ted transiting the Web service instance to next effective state; I-context’s arguments
include: WSIdentifier: name of Web service instance; CurrentState: not-activated, acti-
vated, suspended, done, compensated, aborted; TransactionalProperty: null, pivot, re-
triable, compensatable; MaximumNumberOfRetries: maximum number of times that
the failed execution is authorized to be retried; and CurrentNumberOfRetries: current
number of times that the Web service instance execution has been retried.

3.2 Transactional Properties and Web Services Modeling

As per Bhiri et al.’s transactional properties namely pivot, compensatable, and retriable
(that could be combined as well) [4], we bind to the same properties. We show in the rest
of this section how a Web service’s behavior is continuously aligned, by using policies,
in order to meet the requirements of its associated transactional property. To represent a
Web service’s behavior we use UML state chart diagram. Since we selected three trans-
actional properties we developed three separate state chart diagrams for clarity reasons.
In addition for each state chart diagram we provide a discussion on the role of context

Policies for Context-Driven Transactional Web Services 255

Not activated ActivatedStart
S -context S -context

Commit Done
S -context

Failure Aborted
S -context

Fig. 4. State chart diagram for a pivot Web service

in feeding the policies with the information that permits achieving the associated trans-
actional property. We recall that the following description applies to Web services of
type instance. For illustration purposes we show how a rule is mapped onto WSPL (its
syntax is based on the OASIS eXtensible Access Control Markup Language) [2]. The
selection of this policy specification language is based on our previous research [7]. In
addition, we only detail the pivot transactional property. Fig. 4 shows the acceptable
state chart diagram of a pivot Web-service. The key state in this diagram is activated
from which the Web service could transition to either done or aborted. We present here-
after the policies that describe the acceptable behavior of a pivot Web service. All the
necessary details for policy specification exist in S/I-contexts.
WS-Pivot.Policydone states that a pivot Web service transitions from activated

state to done state if-and-only-if the transactional property is pivot, the current state is
activated, the previous state is not activated, and the transition name that was success-
fully fired is commit. This policy is shown below in WSPL.

Policy (Aspect="PivotPolicyDone") {
<Rule xmlns="urn:oasis:names:tc:xacml:3.0:generalization:policy:schema:wd:01"
RuleId="PivotPolicyDoneWS">
<Condition>
<Apply FunctionId="and">
<Apply FunctionId="equal" DataType="boolean">
<SubjectAttributeDesignator AttributeId="TransactionalProperty" DataType="string"/>
<AttributeValue DataType="string"/> "pivot" </AttributeValue> </Apply>
<Apply FunctionId="equal" DataType="boolean">
<SubjectAttributeDesignator AttributeId="CurrentState" DataType="string"/>
<AttributeValue DataType="string"/> "activated" </AttributeValue> </Apply>
<Apply FunctionId="equal" DataType="boolean">
<SubjectAttributeDesignator AttributeId="PreviousState" DataType="string"/>
<AttributeValue DataType="string"/> "notactivated" </AttributeValue></Apply>
<Apply FunctionId="equal" DataType="boolean">
<SubjectAttributeDesignator AttributeId="TransitionOut" DataType="string"/>
<AttributeValue DataType="string"/> "commit" </AttributeValue></Apply>

</Apply>
</Condition>
<Conclusions> <TrueConclusion PivotPolicyDone = "Permit"/> </Conclusions>

</Rule>}

WS-Pivot.Policyaborted states that a Web service transitions from activated
state to aborted state if-and-only-if the transactional property is pivot, the current state
is activated, the previous state is not activated, and the transition name that was suc-
cessfully fired is failure.

Similar state chart diagrams and their related policies are defined for the retriable
and compensatable cases. The retriable case will contain an additional Suspended state
between Activated and Aborted states. The compensatable case will extend the retri-
able case with an additional Compensated state between Done and Not-Activated states.

256 Z. Maamar et al.

In addition, the compensatable case will not contain the Aborted state; rather, it will
contain a transition from Suspended to the Compensated state.

We discuss hereafter the dependencies among transactional Web services. In partic-
ular, we comply with the dependencies suggested by Bhiri et al. in [4], namely ac-
tivation, abortion, and compensation. We recall that dependencies become effective
at the Web service instance level. It is expected that the multiple policies that imple-
ment the dependencies will feed also the repository of policies of Fig. 3. Later we will
show how these dependencies are used during adaptation (Section 4). In this paper,
we expose the transactional properties of the peers of a Web service using two argu-
ments available in I-context: TransactionalPropertyPerPreviousWebServiceInstance(s)
and TransactionalPropertyPerNextWebServiceInstance(s). For illustration purposes, we
present only the compensation dependency. There is a compensation dependency from
WSx to WSy if the compensation of WSx fires the compensation of WSy (or abor-
tion of WSy , in case WSy is retriable or pivot). This dependency is reported using
WSx.PolicyCompensation(WSy) and is defined as follows:

If WSx .I-context.CurrentState(Aborted⊕Compensated) &
WSy .I-Context.CurrentState(Done⊕Suspended) &
WSy .S-context.TransitionOut(CompensateAfterCommit⊕AbortAfterFailedRetries)

Then WSy .S-context.NextEffectiveState=Aborted⊕Compensated &
WSy .I-context.CurrentState=WSy.S-Context.NextEffectiveState&
WSy .I-context.CurrentPolicyForNextState=WSx.PolicyCompensation(W Sy)

Note:⊕ stands for exclusive or.

4 Context-Driven Transactional Web Services Adaptation

In this section, we discuss the adaptation of context-driven transactional Web services
during exception handling. Our strategy is to modify the composition specification with
minimal disruption to the previously run or already running Web service instances. An
exception occurs if a Web service instance execution fails due for example to lack of
resources [12]. Exception handling for the Web service instance, called WS.Ifailed,
tightly depends on its transactional property. If it is pivot, then the entire composite
Web service will fail, since the effects of the Web service instance cannot be undone.
If it is retriable or compensatable, its failure needs to be propagated to the affected
Web service instances because of the failure’s side effects. These affected Web service
instances are defined later, but are classified into two types according to their execution
order to WS.Ifailed:

1. Post-affected Web service instances are yet to be performed. This requires a for-
ward adaptation strategy.

2. Pre-affected Web service instances are either concurrently executing (perhaps there
exists an abortion or compensation dependency from WS.Ifailed to some of these
Web service instance) or have already executed. This requires a backward adapta-
tion strategy. This strategy is not discussed in this paper.

4.1 Some Definitions

From now on, we assume that the failed Web service instance WS.Ifailed is either retri-
able or compensatable. Before we describe our forward adaptation strategy, some basic

Policies for Context-Driven Transactional Web Services 257

definitions are needed. We first, assume that the composition specification like the one
in Fig. 1 is mapped onto a graph. The graph’s nodes and edges correspond to the Web
service instances and the dependencies between these Web service instances, respec-
tively. The dependencies, derived from workflow models [11], are modeled as follows:

– We define the graph of the composition specification as G = (V,E), where V is the
set of nodes representing Web service instances, and E is the set of edges depicting
dependencies between the Web service instances. Each edge is a tuple of the form
¡WSi,WSj¿, where the edge is directed from WSi to WSj . The graph also has two
unique nodes: START (has no predecessors) and END (has no successors). The
graph is supposed to meet two basic conditions: (a) every node in the graph is
directly or indirectly reachable from START node, and (b) END node is reachable
from every node in the graph.

– Forward edge ¡WSi→WSj¿ depicts the activation dependency between a Web ser-
vice instance and one of its direct, successor Web service instances in the graph.

– Backward edge ¡WSi←WSj¿ depicts an edge from a Web service instance to one
of its direct, predecessor Web service instances in the graph. This edge depicts
repeated execution within a loop, and represents a backward activation dependency.

– Abortion/compensation dependency edges - as described earlier in Section 3.2.

4.2 Forward Adaptation Strategy

In any exception situation, forward adaptation is always preferable, due to its minimal
impact on the already executed or currently running Web service instances. The for-
ward adaptation strategy consists of two main steps: (1) determination of the set of the
affected Web service instances, and (2) forward adaptation itself.

Determination of the affected Web service instances. Two types of Web service
instances are affected by the failed Web service instance WS.Ifailed: currently execut-
ing Web service instances that have an abortion or compensation dependency starting
from WS.Ifailed, and yet to start executing Web service instances that are connected
to WS.Ifailed with forward edges. We extend the former category to include those
Web service instances that have abortion/compensation dependencies pointing to the
currently executing Web service instances, and so on, in a recursive manner. In other
words, the former category of Web service instances includes now all those Web ser-
vice instances that are directly or indirectly dependent on WS.Ifailed. The determina-
tion algorithm of the set of affected Web service instances is given in Fig. 5 and can be
described as follows:

1. Mark all Web service instances that are either currently executing or are yet to
execute, in the graph of the composition specification, as ”not-visited”.

2. For each abortion/compensation dependency pointing from WS.Ifailed, perform a
backward traversal marking all visited Web service instances as ”visited”, until a
Web service instance is reached to which no abortion/compensation dependency
edge points.

258 Z. Maamar et al.

PROC FS(wsif,G)
Input: wsif WebServiceInstanceFailed, G graph
Output: fs SetOfWebServiceInstances
Auxiliary: S, T, K, L
Begin

� fs represent the Web service instances that are directly or indirectly dependent on wsif
fs← ∅
WSI← WEBSERVINST(G)
� WebServInst(G) is a function which returns the whole Web service instances of the graph G
for wsi∈WSI do

if CURRENTSTATE(wsi) ∈ {activated, not− activated} then
wsi.tag← not visited

end if
end for
� abortion(x) and completion(x) are two functions which return the set of Web service instances
� that have an abortion (respectively a completion) dependency with a Web service instance x.
S← ABORTION(wsif)

�
COMPLETION(wsif)

T← ∅
while S�= ∅ do

for wsx∈S do
wsx.tag← visited
T←T

�
ABORTION(wsx)

�
COMPLETION(wsx)

S←S−{wsx}
fs←fs

�{wsx}
end for
S←T
T← ∅

end while
K← FORWARD ALL(wsif)
� forward all is a function which returns the set of all Web service instances directly connected to
� wsif by a forward edge leading out of wsif and its successors.
L← ∅
while K �= ∅ do

for wsx∈K do
wsx.tag← visited
L←L

�
ABORTION(wsx)

�
COMPLETION(wsx)

K←K−{wsx}
fs←fs

�{wsx}
end for
K←L
L← ∅
M← IN-LOOP(wsif)
� if wsif belongs to a loop, this returns the set of instances in the loop. Otherwise, it returns an empty set.
if M �= ∅ then

wsx←wsif
while M �= ∅andwsx�=M.first do

� M.first is the beginning instance in the loop
wsx← PREDECESSOR(wsx)
wsx.tag← visited
fs←fs

�{wsx}
M←M−{wsx}

end while
wsx.tag← visited

end if
end while
return fs

End

Fig. 5. Forward sphere calculation

3. Starting at WS.Ifailed, move to each Web service instance along individual forward
edges from WS.Ifailed by marking it as ”visited”. Continue doing this until the
end of the composition specification graph is reached, i.e., END node. In case of
multiple forward edges leading out of WS.Ifailed, this step should be implemented
in parallel for each forward edge.

Policies for Context-Driven Transactional Web Services 259

4. If WS.Ifailed belongs to a loop, then traverse the composition specification graph
backward from WS.Ifailed, until the beginning of the loop is reached, marking all
the visited Web service instances as ”visited”. The semantics of the loop dictates
that such a case needs to be considered, since control flow in a loop could flow via
backward edges also.

5. The collection of Web service instances labeled ”visited” constitute now the for-
ward sphere for WS.Ifailed.

PROC FA(wsif,G)
Input: wsif WebServiceInstanceFailed, G graph
Output: -
Begin

for wsx∈ fs(wsif,G) do
� suspend all the Web service instances that are in the forward sphere
if TransactionalProperty(wsx) = retriable then

executeWS − Retriable.Policysuspended(wsx)
else executeWS − Compensatable.Policysuspended(wsx)
end if

end for
while CurrentNumberOfRetries(wsif) < MaximumNumberOfRetries(wsif)orCurrentState(wsfi) �= done do

Retryexecutionofwsif
IncrementationofCurrentNumberOfRetriesofwsif
� The CurrentState of wsif is automatically updated after each execution

end while
if CurrentState(wsif) = done then

resumetheexecutionofeachwsxfs(wsif,G)
else if TransactionalProperty(wsif) = Retriable then

executeWS − Retriable.Policyaborted(wsif)
else if TransactionalProperty(wsif) = Compensatable then

executeWS − Compensatable.Policycompensated(wsif)
end if
for wsx∈ fs(wsif,G) do

if TransactionalProperty(wsx) = retriable then
executeWS − Retriable.Policyaborted (wsx)

end if
if TransactionalProperty(wsx) = compensatable then

executeWS − Compensated.Policycompensated(wsx)
end if

end for
end if

end if
End

Fig. 6. Forward strategy algorithm

Forward adaptation. Once the forward sphere for WS.Ifailed is calculated, the for-
ward adaptation algorithm given in Fig. 6 is executed. It consists of the following:

1. While WS.Ifailed is being retried, all currently, running Web service instances in
the forward sphere are to be suspended using either WS-Retriable.Policysuspended

or WS-Compensatable.Policysuspended, as the case maybe.
2. Retry executing WS.Ifailed until one of the following happens: (i) maximum num-

ber of retries is reached without success, or (ii) one of the retries succeeds.
3. If one of the retries of WS.Ifailed succeeds, then WS.Ifailed execution will be re-

sumed as well as the execution of the currently running Web service instances in
the forward sphere.

4. In case the retry of WS.Ifailed fails, or the maximum number of retries without suc-
cess is reached, WS.Ifailed will be either aborted via WS-Retriable.Policyaborted,
or compensated via WS-Compensatable.Policycompensated followed by WS-
Compensatable.Policynot−activated, as per its transactional property.

260 Z. Maamar et al.

4.(a) If WS.Ifailed is either aborted or compensated, the Web service instances in
the forward sphere are then aborted (respectively, compensated) if they are
retriable (respectively, compensatable) in the reverse order in which they were
executed. This is implemented via the pairwise abortion (respectively, compen-
sation) dependency between consecutively aborted (respectively, compensated)
Web service instances, as listed in Section 3.2.

4.(b) Execution control now returns to the state before the occurrence of the excep-
tion. The composite Web service designer can redesign the rest of the speci-
fication composition by taking into account the changed situation after all the
aborts and compensations.

4.3 Illustration of the Forward Strategy Using Amin Scenario

Let us assume that Location WS has failed, so its forward sphere consists of {Bus Sched-
ule WS, Traffic WS, Taxi WS, Weather WS}.

If Location WS can be retried successfully, the execution will then proceed nor-
mally. If not, Location WS needs to be aborted. While it is being retried, Weather WS is
kept suspended, until Location WS either succeeds or fails. In case Location WS fails,
Weather WS should also be aborted, as per the abortion dependency between Loca-
tion WS and Weather WS (Section. 3.2). This will lead to a redesign of the composition
specification starting from Itinerary WS. Perhaps, during redesign, Location WS is as-
sociated with another Web service to be offered from within the hotel itself. This extra
Web service will be triggered as per an alternate dependency policy.

5 Implementation

Our prototype is developed with the use of JDK1.4.2 as a high level language, W3C DOM
for processing XML information, XACML for transactional policies, SWT for GUI, and
Eclipse 3.2 as a development environment. Fig. 7 shows the initial I-context and
S-context values of Weather-Instance1 and Location-Instance1 when Itinerary WS gets
requested. In Fig. 7 (a), it can be seen that Weather-Instance1 has got retriable as transac-
tional property with 2 as MaximumNumberOfRetries, and its successor Web services are
Taxi WS or Bus Schedule WS whose transactional properties are compensatable and re-
triable, respectively. In Fig. 7-(c) details on the state chart diagram of Weather-Instance1
are given. For instance, the current state is activated while the transition in is start. Fi-
nally, Fig. 7-(b,d) show the initial I-context and S-context values of Location-Instance1.
In Fig. 7-(c,d) it is shown the same S-context for both Weather-Instance1 and Location-
Instance1. This is due to the following reasons: both have got the same transactional
property namely retriable; both are getting activated at the same time since they are to
be executed in parallel.

For prototyping purposes, we assume that Location-Instance1 gets failed in the
middle of execution. As a result, S/I-context’s arguments get updated as per WS-
Retriable.Policysuspended. i.e., S-context.NextEffectiveState gets changed to suspended
and I-context.CurrentState gets changed to suspended, too. Following the failure
of Location-Instance1, Weather-Instance1 gets also suspended as per the adaptation
strategy of Section 4.2. Since Location-Instance1 has got retriable as transactional

Policies for Context-Driven Transactional Web Services 261

 (a) (b)

(c) (d)

Fig. 7. I/S-contexts of Weather-Instance1 and Location-Instance1

 (a) (b)

Fig. 8. Updated I/S-contexts of Location-Instance1 after successful retry

property, it gets retried with WS-Retriable.Policyactivated transactional policy. Luckily
the first attempt of retry itself is successful. Fig. 8 shows Location-Instance1’s I/S-
contexts with focus on NextEffectiveState, CurrentState, and CurrentNumberOfRetries
arguments.

Next, Fig. 9 shows the further updated I/S-contexts of Location-Instance1. For S-
context (Fig. 9-(a)), the state identifier, state label, previous state, next expected state,
and transition out values are modified with respect to the current state, i.e., Activated.
Same comment is made for I-context’s arguments (Fig. 9-(b)).

Once Location-Instance1 gets activated, Weather-Instance1 is also retried and
successfully activated. Its respective I/S-contexts are updated with respect to its
WS-Retriable.Policyactivated policy. Eventually, both Weather-Instance1 and Location-
Instance1 successfully complete execution. Finally, after the completion of Weather-
Instance1, Bus-Schedule-Instance1 invoked, which in turn invokes Traffic-Instance1
for obtaining traffic information. Eventually, both Bus-Schedule-Instance1 and Traffic-
Instance1 successfully complete execution.

262 Z. Maamar et al.

(a)

(b)

Fig. 9. Further updated (as per Activated state) I/S-contexts of Location-Instance1

6 Conclusion

In this paper, we presented an approach to develop context-driven transactional Web
services. We defined transactional properties on Web services that permit them to be
composed together, and their joint execution managed, via policies. We also discussed
how this approach helps handle exceptions, via the application of an adaptation strategy.

Our future work concerns a more thorough experimentation and evaluation activ-
ity to compare our approach against some other approaches presented in the litera-
ture [1,3,4,6,14,15]. In particular, we plan to demonstrate the feasibility of our approach
on larger examples. Another interesting future work concerns the definition of a com-
posite Web services framework that can manage transactional properties and ensure
substitution mechanisms. This substitution can play an important role, mainly for pivot
Web services. Some preliminary results are already reported in [13]. Finally, we plan to
study how some fault tolerance concepts of distributed systems can be adapted to the
requirements of transactional Web services.

References

1. Alrifai, M., Dolog, P., Nejdl, W.: Transactions Concurrency Control in Web Service
Environment. In: Proceedings of The 4th IEEE European Conference on Web Ser-
vices (ECOWS’2006), Zurich, Switzerland (2006)

2. Anderson, A.H.: An Introduction to The Web Services Policy Language (WSPL). In: Pro-
ceedings of The 5th IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY’2004), New-York, USA (2004)

3. Bassil, S., Rinderle, S., Keller, R., Kropf, P., Reichert, M.: Preserving the Context of Inter-
rupted Business Process. In: Proceedings of The 7th International Conference on Enterprise
Information Systems (ICEIS’2005), Miami, USA (2005)

4. Bhiri, S., Perrin, O., Godart, C.: Ensuring Required Failure Atomicity of Composite
Web Services. In: Proceedings of The Fourteenth International World Wide Web Confer-
ence (WWW’2005), Chiba, Japan (2005)

5. Coutaz, J., Crowley, J.L., Dobson, S., Garlan, D.: Context is Key. Communications of the
ACM, 48(3) (March 2005)

6. Fauvet, M.-C., Duarte, H., Dumas, M., Benatallah, B.: Handling Transactional Properties
in Web Service Composition. In: Proceedings of The 6th International Conference on Web
Information Systems Engineering, (WISE’2005), New-York, USA (2005)

7. Maamar, Z., Benslimane, D., Anderson, A.: Using Policies to Manage Composite Web Ser-
vices. IEEE IT Professional, 8(5) (September/October 2006)

Policies for Context-Driven Transactional Web Services 263

8. Maamar, Z., Benslimane, D., Narendra, N.C.: What Can Context do for Web Services? Com-
munications of the ACM, 49(12) (December 2006)

9. Maamar, Z., Mostéfaoui, S.K., Yahyaoui, H.: Towards an Agent-based and Context-oriented
Approach for Web Services Composition. IEEE Transactions on Knowledge and Data Engi-
neering, 17(5) (May 2005)

10. Pires, P.F., Benevides, M.R.F., Mattoso, M.: Building Reliable Web Services Compositions.
In: Proceedings of The International Workshop on Web Services Research, Standardization,
and Deployment (WS-RSD’2002), Erfurt, Germany (2002)

11. Reichert, M., Dadam, P.: ADEPTflex - Supporting Dynamic Changes of Workflows without
Losing Control. Journal of Intelligent Information Systems, 10(2) (1998)

12. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Exception Handling Patterns.
In: Process-Aware Information Systems. Technical report, BPM Center Report BPM-06-04,
BPMcenter.org. (2006)

13. Taher, Y., Benslimane, D., Fauvet, M.-C., Maamar, Z.: Towards an Approach for Web Ser-
vices Substitution. In: Proceedings of The 10th International Database Engineering & Appli-
cations Symposium (IDEAS’2006), Delhi, India (2006)

14. Verma, M., Deswal, P.: Approaching Web Services Transactions. Technical report, Sec-
ond Foundation Inc., February 2003. Visited (February 2005) http://www-128.ibm.com/
developerworks/webservices/library/ws-tranart

15. Younas, M., Chao, K.M., Lo, C.C., Li, Y.: An Efficient Transaction Commit Protocol for
Composite Web Services. In: Proceedings of The IEEE 20th International Conference on
Advanced Information Networking and Applications (AINA’2006), Vienna, Austria (2006)

16. Younas, M., Eaglestone, B., Chao, K.M.: A Low Latency Resilient Protocol for E-Business
Transactions. International Journal of Web Engineering and Technology, 1(3) (2004)

http://www-128.ibm.com/developerworks/webservices/library/ws-tranart
http://www-128.ibm.com/developerworks/webservices/library/ws-tranart

	Introduction
	Background
	Context and Transactional Web Services
	Design and Operation
	Transactional Properties and Web Services Modeling

	Context-Driven Transactional Web Services Adaptation
	Some Definitions
	Forward Adaptation Strategy
	Illustration of the Forward Strategy Using Amin Scenario

	Implementation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

