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Abstract. With the rapid development of e-commerce over Internet,
web services have attracted much attention in recent years. Nowadays,
enterprises are able to outsource their internal business processes as ser-
vices and make them accessible via the Web. Then they can dynami-
cally combine individual services to provide new value-added services. A
main problem that remains is how to discover desired web services. In
this paper, we propose WSXplorer, a novel scheme for identifying po-
tentially relevant web services given a textual description of services. In
particular, we propose a new schema matching algorithm for supporting
web-service operations matching. The matching algorithm catches not
only structures, but even better semantic information of schemas. Based
on service operations matching, the concept of attribute closure is intro-
duced to identify associations between web-service operations. We also
propose a ranking strategy to satisfy a user’s top-k requirements. Exper-
imental evaluation shows that our approach can achieve high precision
and recall ratio.

1 Introduction

A web service is programmatically available application logic exposed over
Internet. It has a set of operations and data types. The current set of web ser-
vice specifications defines how to specify reusable operations through the Web-
Service Description Language(WSDL), how these operations can be discovered
and reused through the Universal Description, Discovery, and Integration(UDDI)
API, and how the requests to and responses from web-service operations can be
transmitted through the Simple Object Access Protocol API(SOAP).

With the rapid development of e-commerce over Internet, web services have
attracted much attention in recent years. Nowadays, enterprises are able to out-
source their internal business processes as services and make them accessible
via the Web (see, e.g.,[1,2,3,4,5]). Then they can combine individual services
into more complex, orchestrated services. A main problem that remains is how
to discover desired web services. To find a service in UDDI, a user needs to
input some keywords about the required service and then to browse the rele-
vant UDDI category to locate relevant web services. Considering a large amount
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of service entries, this process is time consuming and frustrating. Furthermore,
this method does not provide a mechanism assisting users in selecting relevant
services and composing with them. Since a web service is usually used as part
of an application, users often would like to know relevant services as much as
possible. For example, consider the examples shown in Fig. 1. A user searching
for a CreateOrder service may also be interested in a TransportOrder service.
There is an association between these two services, in which the output of Cre-
ateOrderService, Order, is also the input of TransportOrderService. This form of
association potentially involves more web services. It is particularly useful and
challenging in service composition.

WS1: Web Service: CreateOrderService
Operation: OrderBuilder
Input: UserID DataType: int
Output: ProductsList DataType: Order

WS2: Web Service: OrderGeneration
Operation: GetOrder
Input: UserName DataType: String
Output: MyProducts DataType: PurchaseOrder

WS3: Web Service: TransportOrderService
Operation: ShippingOrder
Input: Cargo DataType: Order
Output: PickupTime DataType: TimeLimit

Fig. 1. Sample web-service operations
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Fig. 2. XML schema tree of Order type

To address the problems above in searching for web services, we propose
WSXplorer (Web Services eXplorer), a novel scheme for identifying potentially
relevant web services given a textual description of services. The contribution of
the work reported here is summarized as follows:

1. We propose algorithms for supporting web-service operations matching. The
key part of our algorithms is a schema tree matching algorithm, which em-
ploys a new cost model to compute tree edit distances. Our new schema tree
matching algorithm can not only catch structures, but also the semantic
information of schemas.

2. Based on service operations matching, an approach to identify associations
between web-service operations is presented. This approach uses the concept
of attribute closure to obtain sets of operations. Each set is composed of
associated web-service operations.

3. We also introduce a ranking strategy to satisfy a user’s top-k requirements.
Experimental evaluation shows that WSXplorer can achieve acceptable re-
sult with high performance.

The rest of this paper is organized as follows. Section 2 reviews the related
work. Section 3 gives an overview of WSXplorer. Section 4 describes a web-
service operation matching algorithm, in which a new cost model and some XML
schema transformation rules are defined. In section 5 we present how to cluster
web-service operations and how to find associations between them. Section 6
describes our experimental evaluation. Section 7 gives some concluding remarks.
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2 Related Work

Finding similar web-service is closely related to software components matching.
In [6], signatures are used to describe a component’s type information (which is
usually statically checkable), and formal specifications are defined to describe the
component’s dynamic behaviour. Two components match if their signatures and
specifications match. However, the formal specifications used there are function’s
post conditions, which are not available in web services.

Several approaches use text or structural matching to find similar web services
for a given web service. The earlier technique tModel presents an abstract inter-
face to enhance service matching process. But the tModel needs to be defined
while authors publishing in UDDI [7]. In [8], the authors propose a SVD-Based
algorithm to locate matched services for a given service. This algorithm uses
characteristics of singular value decomposition to find relationships among ser-
vices. But it only considers textual descriptions and can not reveal the semantic
relationship between web services. Wang etc. [9] discover similar web services
based on structure matching of data types in WSDL. The drawback is that sim-
ple structural matching may be invalid when two web-service operations have
many similar substructures on data types.

Recently, some methods have been proposed to annotate web services with
additional semantic information. These annotations are used to match and com-
pose services. For example, in [10] the authors extended DAML-S to support
service specifications, including behavior specifications of operations; The Web
Service Modeling Ontology (WSMO) [11] is a conceptual model for describing
Web services semantically, and defines the four main aspects of semantic Web
service, namely Ontologies, Web services, Goals and Mediators. However, cur-
rently, most of existing web services use WSDL specifications, which do not
contain semantics. Annotating the collection of services requires much effort,
and it is infeasible in our case. [12] formally defines a behaviour model for web
service by automata and logic formalisms. However, the behaviour signature and
query statements need to be constructed manually, which can be very hard for
common users.

Woogle [13] develops a clustering algorithm to group names of parameters of
web-service operations into semantically meaningful concepts. Then these con-
cepts are used to measure similarity of web-service operations. It relies too much
on names of parameters and does not deal with composition problem however. In
our previous work [14] we use schema to find web services, but the associations
between services are not considered. In [15] the authors propose a syntactic ap-
proach to web service composition, given only the input-output types of web ser-
vices available in their WSDL descriptions. Discover [16,17] and DBXplore [18]
operate on relational databases and facilitates information discovery on them by
allowing users to issue keyword queries without any knowledge of the database
schema. They return sets of tuples that are associated by joining on their pri-
mary and foreign keys. Inspired by these methods, we model each web-service
operation as a dependency (schema) according to its data types (attributes),
and then find associations between web-service operations.
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3 Overview of WSXplorer

The goal of WSXplorer is to find relevant web-service operations given a nat-
ural language description of desired web services and WSDL specifications of all
available services published through UDDI. The WSDL files consist of textual
description of web-service operations. Thus, firstly we use traditional IR tech-
nique TF (term frequency) and IDF (inverse document frequency) [19] to find
service operations that are most similar to the given description. We call these
operations candidate operations. To do this, we extract words from web-service
operation descriptions in WSDL. These words are pre-processed and assigned
weight based on IDF. According to these weights, the similarity between the
given description and a web-service operation description can be measured. A
higher score indicates a closer similarity. For more details on measuring similar-
ity among documents interested readers are referred to see [20]. After obtaining
candidate operations, we employ a schema-match based method to measure sim-
ilarity among them. Then based on the matching result the candidate operations
are clustered into some operation sets. Each operation set contains a group of
similar operations. Finally, all associations between operation sets are generated
using the concept of type closure. Operations involved in one association are
considered as a search result. Since each candidate operation has a score, we can
rank search results simply by accumulating the score of operations. In the fol-
lowing sections we describe the models and algorithms underlying WSXplorer,
in particular we show how to measure similarity between web-service operations
based on schema matching.

4 Web-Service Operation Matching

4.1 Web-Service Operation Modelling

Definition 1. A web service is a triple ws = (TpSet, MsgSet, OpSet), where
TpSet is a set of data types; MsgSet is a set of messages(parameters) conforming
to the data types defined in TpSet; OpSet = {opi(inputi, outputi)|i = 1, 2, ..., n}
is a set of operations, where inputi and outputi are parameters(messages) for
exchanging data between web-service operations.

Figure 1 gives three web-service operations used as examples in this paper.
According to definition 1, a web service can be briefly described as a set of
operations.

Definition 2. Each web-service operation is a multi-input-multi-output func-
tion of the form f : s1, s2, ..., sn → t1, t2, ..., tm, where si and tj are data types
in according with XML schema specification. We call f a dependency and si/tj
a dependency attribute.

A dependency attribute can be a complex data type or a primitive data type.
Complex data types, such as Order and PurchaseOrder in Fig. 1, define the
structure, content, and semantics of parameters, whereas primitive data types,
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like int and string, are typically too coarse to reflect semantic information. Since
parameters usually can be regarded as data types, we can convert primitive
data types to complex data types by replacing them with their corresponding
parameters. For example, in Fig. 1 string is converted into UserName type while
int is converted into UserID type. Both UserName and UserID are considered
as complex data types with semantics. Thus, each data type defined in a web-
service operation carries semantic meaning. An XML schema can be modelled
as a tree of labelled nodes. We categorize a node n by its label:

1. Tag node: Each tag node n is associated with an element type T. T is also
the tag name of node n.

2. Constraint node:
- Sequence node: A sequence node indicates its children are an ordered

set of element types. We use [ , ] to denote a sequence node.
- Union node: A union node represents a choice complex-type, that is,

the instance of which can only be one of the children types in accordance
with the XML Schema specification. We use [ | ] to denote a union node.

- Multiplicity node: Each node may optionally have a multiplicity mod-
ifier [m, n] indicating that in the instance, its occurrence is between m
and n. This corresponds to the minOccurs and maxOccurs constraints
in XML Schema. We use [m, n] to denote a multiplicity node.

As an example, the schema tree of data type Order is shown in Fig. 2.
As we can see, data types defined in web-service operations carry semantic

information. Intuitively, we consider two web-service operations similar if they
have similar input/output data types. Thus the problem of web-service operation
matching is converted to the problem of schema tree matching.

4.2 Tree Edit Distance

Many works have been done on the similarity computation on trees. Among
them tree edit distance is one of the efficient approaches to describe difference
between two trees. We introduce tree edit operations first. Generally, the tree
edit distance operations include: (a) node removal, (b) node insertion, and (c)
node relabelling. Such a set of operations can be represented by a mapping with
minimum cost between the two trees. The concept of mapping is formally defined
as follows [21]:

Definition 3. Let Tx be a tree and let Tx[i] be the ith node of tree Tx in a pre-
order traverse of the tree. A mapping between a tree T1 and a tree T2 is a set M of
ordered pairs (i, j), satisfying the following conditions for all (i1, j1),(i2, j2) ∈ M

1. i1 = i2 iff j1 = j2;
2. T1[i1] is on the left of T1[i2] iff T2[j1] is on the left of T2[j2];
3. T1[i1] is an ancestor of T1[i2] iff T2[j1] is an ancestor of T2[j2].

Figure 3 gives an example of tree mapping. This mapping also shows the way of
transforming the left tree to the right one. A dotted line from a node of T1 to a
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Fig. 3. Example of tree mapping

node of T2 indicates that the node of T1 should be changed if the corresponding
nodes are different, remaining unchanged otherwise. Nodes of T1 not connected
by dotted lines are deleted, and nodes of T2 not connected are inserted. Each of
these operations is assigned a cost. The tree edit distance between two trees is
defined as the minimal set of operations to transform one tree into the other.

Our schema matching algorithm is based on tree edit distance. However, the
problem in our case is more complex than the traditional tree edit distance for
the following reasons:

1. The labels of an XML Schema tree can carry complex type information (e.g.,
union, multiplicity) which makes simple relabelling operations inapplicable.
For instance, let T1 and T2 be the schema trees of Order and PurchaseOrder
respectively. Let us imagine there exits a mapping M between T1 and T2,
and there are two node-mapping pairs (i1, j1),(i2, j2) ∈ M , where T1[i1]
=[telephone|email ], T2[j1] =email, T1[i2]=price, and T2[j2]=quantity. The
edit operation of (i1, j1) should have less cost than that of (i2, j2). But the
existing work consider all tree edit operations to have same unit distance.

2. The labels of nodes carry semantic information. So a relabelling from one
node to another unrelated node will have more cost than to a semantic
related node. For example, relabelling part to item is less costing than rela-
belling price to email.

3. We argue that tree edit operations on low-level nodes of a tree should have
more influence than operations on high-level nodes. For example, in Fig. 2,
node Order is more important than node PartPrice, because Order denotes
broader semantics information than PartPrice. So, if a PartPrice node of the
first tree is mapped into an Order node of the second tree, the edit operation
cost should not be zero. But the traditional works on tree edit distance do
not consider the difference and assign each edit operation unit cost.

In the next section, we present a new cost model to compute the cost of tree
edit operation, as a consequence, the tree edit distance of two schema trees.

4.3 Cost Model

Measuring similarity between two XML schema trees equals to finding a mapping
with minimum cost. So, the cost of each edit operation involved in the mapping
needs to be computed first. [22] proposed a algorithm for fast computing tree



WSXplorer: Searching for Desired Web Services 179

edit distance, but it assigned the same cost for each unit edit operations on all
nodes and overlooked nodes difference. Authors in [23] introduced a summary
structure for computing structural distance and took weight information into
account for nodes in distance computation, but it did not consider the semantic
difference or similarity. In this section we introduce a new cost mode based on
tree edit distance presented in [22,23]. The new cost model integrates weights of
nodes and semantic connections between nodes. Let T1,T2 be two schema trees
and let n, node1 and node2 be tree nodes. Formally, the cost model is defined as

cost(ρ) =

⎧
⎪⎪⎨

⎪⎪⎩

weight(n)/W (T1, T2), ifρ = insert(n)
weight(n)/W (T1, T2), ifρ = delete(n)
α × wd(node1, node2) ifρ relabels
+β × sd(node1, node2) node1 to node2

(1)

where ρ indicates a tree edit operation. weight(n) shows the weight of node n,
which is defined in definition 6. wd(node1, node2) and sd(node1, node2) give the
weight and semantic difference of node1 and node2, respectively. α and β are
weights of wd and sd, satisfying α + β = 1. W (T1, T2) is defined as W (T1, T2) =
weight(T1)+weight(T2), where weight(Ti) is the sum of all node weights of tree
Ti(i = 1, 2). wd(node1, node2) is defined as

wd(node1, node2) =
‖weight(node1) − weight(node2)‖

W (T1, T2)
(2)

where node1 ∈ T1 and node2 ∈ T2 .
In equation 1, weight(n)/W (T1, T2) explains the cost of inserting or deleting

node n. For the relabel operation, both weight and semantics of node1 and node2
can be different, so we use the combination of weight and semantic difference as
the relabel cost. All the costs are normalized by W (T1, T2), i.e. the sum of all
nodes weights of tree T1 and T2.

In the next two sections, we propose a set of schema-tree transformation rules
and a semantic similarity measure to compute wd and sd, i.e. the weight and
semantic difference of nodes.

4.4 XML Schema Tree Transformation

Definition 4. The tag name of a node is typically a sequence of concatenated
words, with the first letter of every word capitalized (e.g., ExpectedShipDate).
Such a set of words is referred to as a word bag. We use π(n) to denote the
word bag of node n.

Definition 5. Two word bags π(n1) and π(n2) are said to be equal, only if they
have same words.

Two nodes are considered different if they have different word bags. The word
bag reflects semantic meaning of a node. As we shall see later, using word bags
we can measure the semantic similarity between two schema-tree nodes.
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Definition 6. Let level(n) denote the level of node n in schema tree T . The
weight of node n is defined by a weight function:

weight(n) = 2depth(T )−level(n)(∀n ∈ T ) (3)

The weights of all nodes fall in the range of [2, 2depth(T )]. Each weight reflects
the importance of a node in schema tree T .

From section 4.2, it can be seen that traditional tree-edit-distance algorithm
is not suitable for XML schema trees. It does not deal with constraint nodes. We
propose three transformation rules to solve this problem. These rules are used to
transform constraint nodes, specifically, sequence nodes, union nodes and multi-
plicity nodes to tag nodes. At the same time, the weights of nodes are reassigned.

O rd er

[,  ]

P ro d u ctParts

C u s to merN ame

[m, n ]

PartC u s to merC o n tacts Telep h o n e

[ | ]

C u s to merC o n tacts

email

25

23

24

23

25

24

Pro d u ctParts

PartTelep h o n e, email

C u s to merC o n tacts

(a )  Se que nc e  node  tra nsform a tion (c )  M ultiplic ity  node  tra nsform a tion(b)  U nion node  tra nsform a tion

24

24

23

22

24

23

22

2 2

23

23C u s to merN ame C u s to merC o n tacts

O rd er

23*(m + n)/2

Fig. 4. XML Schema tree transformation

1. split : This rule is applied to sequence nodes. A sequence node l = [l1, l2, ..., ls]
is split into an ordered list of nodes l1, l2, ..., ls, where li(i = 1, 2, ..., s) is a
child node of the sequence node l. After the split process, each sequence node
is replaced by its child nodes. Each child node li inherits the weight of its
parent node l as a new weight. Figure 4(a) gives an example of the split rule.

2. merge: This rule is applied to union nodes. After the merge process, each
union node is replaced by all its option nodes, i.e. all its child nodes. All
child nodes of the union node l = [l1|l2|...|ls] are merged into a new node l∗,
while the union node l is deleted. The weight of node l∗ is s times the weight
of l. Each li’s(i = 1, 2, ..., s) word bag is also merged into a new word bag.
Formally, we have weight(l∗) = weight(l) × s. Figure 4(b) gives an example
of the merge rule.

3. delete: This rule is applied to multiplicity nodes. We delete a multiplicity
node l = [m, n](m, n ∈ N) and scale up the weight of each of its child nodes
li. After the deletion process, each multiplicity node is replaced by its child
nodes. We have weight(li) = weight(l) × (m + n)/2. Figure 4(c) gives an
example of the delete rule.

Note that the definition of complex types can be nested according to XML
schema specification. Thus, given a schema tree, we apply the three transfor-
mation rules to its nodes level by level, from bottom to top. This process is
formally
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input : schema tree T
output: transformed schema tree T∗

d = GetDepth(T );1

for i ← d to 0 do2

foreach node p ∈ leveli do3

if p is a sequence node then4

weight(each of p’s child nodes)=weight(p);5

add p’s child nodes to p’s parent’s child list;6

delete p;7

end8

if p is a union node with s options {li|i = 1, ..s} then9

merge p’s child nodes into a new node q;10

add q to p’s parent’s child list;11

weight(q) = weight(p) × s;12

π(q) =
s�

i=1
π(li) ;

13

delete p;14

end15

if p is a multiplicity node [m, n] then16

add p’s child node to p’s parent’s child list;17

weight(p’s child node)=weight(p) × (m + n)/2;18

delete p;19

end20

end21

end22

Algorithm 1. Bottom-up-transformation

described as the bottom-up-transformation algorithm (see Algorithm 1). The
time complexity of Bottom-up-transformation is O(n), where n is the number of
nodes in the XML schema tree.

4.5 Semantic Measurement Between Schema-Tree Nodes

After the bottom-up transformation, schema tree T is converted into a new
schema tree T∗. Each node n of T∗ is a tag node, whose word bag may come
from two or more word tags because of nodes merge by the merge rule. Formally,
node n can be regarded as a vector (W, B), where W is the weight of node
n and B is the word bag of node n. As we can see, after transformation the
weight difference between two nodes can be computed by the new cost model.
In this section, we present a strategy to determine the semantic similarity of two
schema-tree nodes, i.e. the semantic distance between two word bags.

WSXplorer relies on a hypothesis that two co-occurrence words in a WSDL
description tend to have same semantics. We exploit the co-occurrence of words
in word bags to cluster them into meaningful concepts. To improve accuracy of
semantic measurement, a pre-processing step is carried out first before words
clustering. Pre-processing includes word stemming, removing stop words and
expanding abbreviations and acronyms into the original forms.
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Let I = {w1, w2, ..., wm} be a set of words. These words come from word bags
of all schema-tree nodes to which similarity measurement is applied. Let D be
a set of candidate web-service operation descriptions available in WSDL files.
We introduce association rules to reflect the notion of word co-occurrence. An
association rule is an implication of the form wi → wj , where wi, wj ∈ I. The
rule wi → wj holds in the descriptions set D with support s and confidence c,
where s is the probability that wi occurs in an web-service operation description;
c is the probability that wj occurs in an operation description, given wi is known
to occur in it. All association rules can be found by the A-Priori algorithm [24].
We are only interested in rules that have confidence above a certain threshold t.

We use the agglomeration algorithm [24] to cluster words set I = {w1, w2, ...,
wm} into concept set C = {C1, C2, ...}. There are three steps in the clustering
process. It begins with each word forming its own cluster and gradually merges
similar clusters.

1. Set up a confidence matrix Mm×m. Mij is a two-dimensional vector (sij , cij),
where sij and cij are the support and confidence of association rule wi → wj ,
respectively.

2. Find the two-dimensional vector Mij = (sij , cij) with the largest cij in the
confidence matrix M . If, for both of them, cij > t and sij > t then merge
these two clusters and update M by replacing the two rows with a new row
that describes the association between the merged cluster and the remaining
clusters. The distance between two clusters is given by the distance between
their closest members. There are now m − 1 clusters and m − 1 rows in M .

3. Repeat the merge step until no more clusters can be merged.

Finally, we get a set of concepts C. Each concept Ci consists a set of words
{w1, w2, ...}. To compute semantic similarity between schema-tree nodes, we re-
place each word in word bags with its corresponding concept, and then use
the TF/IDF measure. After schema-tree transformation and semantic similarity
measure, the tree edit distance can be applied to match two XML schema trees
by the new cost model.

4.6 Web-Service Operations Matching

As it has been mentioned before, we use tree edit distance to match two schema
trees. It is equivalent to finding the minimum cost mapping. Let M be a mapping
between schema tree T1 and T2, let S be a subset of pairs (i, j) ∈ M with distinct
word bags. Let D be the set of nodes in T1 that are not mapped by M , and I be
the set of nodes in T2 that are not mapped by M . The mapping cost is given by
C = Sp+Iq+Dr, where p, q and r are the costs assigned to the relabel, insertion,
and removal operations according to the cost model proposed in section 4.3. We
call C the match distance between T1 and T2, denoted as C = ED(T1, T2).
Match distance reflects semantic similarity of two schema trees.

Now let us see how to match web-service operations. Given two web-service op-
erations op1 : s1, s2, ..., sn → t1, t2, ..., tm and op2 : x1, x2, ..., xl → y1, y2, ..., yk,
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for each schema tree of op1, we find its corresponding schema tree of op2 with the
minimum match distance. We simply identify all possible matches between two
lists of schema trees, and return the source-target correspondence that minimizes
the overall match distance between the two lists. It does not depends on whether
the number of parameters in the same or not between the two operations. We
omit the algorithm details because of space limit.

5 Finding Associated Web-Service Operations

5.1 Clustering Web-Service Operations

Suppose OP = {op1, op2, ..., opq} is a set of web-service operations and each
pair of operations opi and opj (i, j = 1, 2, ..., q) match with the distance of zij .
We classify OP into a set of clusters {opc1, opc2, ...}. The clustering algorithm is
described as below. It begins with each operation forming its own cluster and
gradually merges similar clusters.

1. Set up a match matrix Mq×q. Mij is the match distance of operation opi

and opj .
2. Find the smallest Mij in the match matrix M . If Mij < threshold δ then

merge these two clusters and update M by replacing the two rows with
a new row that describes the association between the merged cluster and
the remaining clusters. The distance between two clusters is given by the
distance between their closest members. There are now q − 1 clusters and
q − 1 rows in M .

3. Repeat the merge step until no more clusters can be merged.

Finally, a set of clusters {OPC1, OPC2, ...} is obtained. Given a cluster OPCi

and an operation OPCik ∈ OPCi, OPCik is called a pivot of OPCi if i t min-
imizes the sum of match distances to all the other operations in OPCi. We
consider all operations in OPCi as instances of OPCik.

For example, in Fig. 1 we give a clustering result. There are two clusters of
web-service operations. One is {WS1, WS2}, and the other is {WS3}. In cluster
{WS1, WS2} the pivot is GetOrder and the instrances of GetOrder are GetOrder
and OrderBuilder. In cluster {WS3} the pivot is ShippingOrder, which is also
an instance of itself.

5.2 Identifying Associations

A set of web-service operations is said to be associated if they potentially con-
tribute to a user’s web-service composition. Clearly, given two web-service op-
erations op1 and op2, if the output attributes of op1 are similar to the input
attributes of op2 then op1 and op2 may participate in a user’s service compo-
sition together. The objective of this step is to find all associations between
web-service operations. To do this, we first find associations among clusters
{OPC1, OPC2, ...}. Let OPCik, say x1, x2, ..., xk → y1, y2, ..., yj be a pivot of
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OPCi. Let X = {x1, x2, ..., xk} and Y = {y1, y2, ..., yj}.We first compute the
attribute closure X+ with respect to X , which is the set of attributes A such
that X → A can be inferred by transitivity. At the same time, a pivot set PS
associated with OPCik is computed. The overall process is shown as algorithm 2.
We perform a worst case time analysis of algorithm 2. The repeat loop is exe-
cuted as most |S| times, where |S| is the total number of pivots corresponding
to all clusters. The calculation of q takes time |S| − |T |, where T is the number
of pivots in the pivot set PS. Hence the total execution time takes in the worst
case time O(S2).

input : A pivot p : x1, x2, ..., xk → y1, y2, ..., yj

output: A pivot set PS containing associated pivots

X = {x1, x2, ..., xk}; Y = {y1, y2, ..., yj};1

Closure = X;2

PS = {X → Y };3

repeat4

if there is a pivot q : U → V such that the match distance of U and5

Closure is less than threshold δ then
set Closure = Closure

�
V ;6

set PS = PS
�

q;7

end8

until there is no change ;9

Algorithm 2. Algorithm for computing attribute closure and pivot set

We first choose a pivot OPCik for each cluster OPCi. For each pivot, we
compute a pivot set. We eliminate duplicate pivot sets. If two pivots are in a
same pivot set, then their corresponding instances are associated.

Each pivot set PS = {p1, p2, ..., pk, ...} can generate a set of operation groups
in the form of {p′1, p

′
2, ..., p

′
k, ...}, where p′i is an instance of pi. Operations in a

same group are associated. To obtain an operation group, we simply replace each
pivot pi in PS with one of its corresponding instances. All possible operation
groups are outputted as search results.

For example, a pivot set for the clusters given in Fig. 1 is {GetOrder, Shippin-
gOrder}. It can generate two search results, one is {GetOrder, ShippingOrder}
and the other is {OrderBuilder, ShippingOrder}.

Recall that each candidate web-service operation is assigned a score indicating
similarity to the given description. Thus, each operation group acquires a group
score by counting the sum of operation scores in it. A higher group score indicates
a more desirable search result, so the user’s top-k requirements can be satisfied.

6 Experiments and Evaluations

We have implemented a prototype system, called WSXplorer, and conducted
some experiments to evaluate the effectiveness and efficiency. The data set used
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in our tests is a group of web services collected from [25,26,27]. Their WSDL
specifications are available so we can obtain the textual descriptions and XML
schemas of input/output data types. The data contains 223 web services includ-
ing 930 web-service operations. We chose 7 web-service operations from three
domains: order(3), travel(2) and finance(2). Each operation description was used
as the basis for desired operations.

We used recall and precision ratio to evaluate the effectiveness of our ap-
proach. The precision(p) and recall(r) are defined as p = A

A+B , r = A
A+C where

A stands for the number of returned relevant operations, B stands for the num-
ber of returned irrelevant operations, C stands for the number of missing rele-
vant operations, A + C stands for the total number of relevant operations, and
A+B stands for the total number of returned operations. Specially, the top 100
search results were considered in our experiments for each web-service operation
search.

We first evaluated the efficiency of WSXplorer by comparing the recall and
precision of operation search with three other methods: keyword searching
method, structure matching [9] and Woogle [13]. We computed the recall/
precision ratio manully and plotted them in Fig. 5(a) and Fig. 5(b), respectively.
As can be seen, the precisions of WSXplorer are 92%, 87% and 78% respectively,
almost always outperforming that of keyword, structrure and Woogle. The preci-
sion is higher on order operations but lower in finance operations because order
operations have more complex structures and richer semantics in input/output
data types. This indicates that, by combining structural and semantic informa-
tion, the precision of WSXplorer improves significantly, compared to the results
obtained with structural or semantic information only. It is also can be seen
that by keyword method the precision is rather low whereas the recall is rather
high. This demonstrates textual description of operations contain much useful
information but also much noise at the same time.

Then, we labeled the associated web-service operations in data set manually.
The average recall/precision curve is used in Fig. 5(c) to evaluate the perfor-
mance of WSXplorer on identifying associated operations. This figure illustrates
that WSXplorer can achieve good recall and precision by integrating structural
and semantic measurements.
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Fig. 5. Performance of WSXplorer
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7 Conclusions

In this paper we have presented WSXplorer, a novel method to retrieve de-
sired web-service operations of a given textual description. The concept of tree
edit distance is employed to match web-service operations. Meanwhile, some
algorithms are proposed for measuring and grouping similar operations. The
proposed matching algorithm catches not only structures, but even better se-
mantic information of schemas. We also introduced attribute closure for iden-
tifying associations between web-service operations. Our approach can be used
for web-service searching tasks with top-k requirements.

As part of on-going work, we are interested in improving efficiency of the
web-service operation matching algorithm in terms of running time, since the
computation of extended tree edit distance is costly. Our proposed technique
assumes structures of XML schema are trees. However, their structures may also
be graphs and contain cycles. In the future, we plan to extend our algorithm to
support graph matching. In order to further understand the semantics of web
services descriptions and integrate more semantic information to our system, we
also plan to use WordNet to handle word stems and synonyms to improve the
precision of our algorithm.
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