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Abstract. Behavioral semantics abstracts from implementation details
and allows to describe the behavior of software components in a repre-
sentation-independent way. In this paper, we develop a formal behavioral
semantics for class-based object-oriented languages with aliasing, sub-
classing, and dynamic dispatch. The code of an object-oriented compo-
nent consists of a class and the classes used by it. A component instance
is realized by a dynamically evolving set of objects with a clear boundary
to the environment. The behavioral semantics is expressed in terms of
the messages crossing the boundary. It is defined as an abstraction of an
operational semantics based on an ownership-structured heap. We show
how the semantics can be used to define substitutability in a program
independent way.

1 Introduction

The behavior of object systems is often described as a set of loosely coupled
objects with encapsulated state that communicate via messages. However, this
conceptual view is only partially reflected by existing object-oriented program-
ming languages. Most of them are trimmed for efficient implementation of local
computations. Their semantics is usually given in terms of state-transitions based
on global heaps. As they do not support clear boundaries between parts of the
heap, modular reasoning and abstraction of representation aspects is much more
difficult than in a loosely coupled setting.

If runtime components have well-defined boundaries, their behavior can be
completely defined in terms of their reaction to incoming message sequences.
Considering only the messages that a client sends to a component makes the
semantics independent from the representation of the component states. Such
behavioral semantics has three advantageous properties:

1. Different component implementations can be compared based on the mes-
sage behavior. Thus, an explicit coupling relation between the states of the
implementations as it is needed in state-based approaches (see in particular
the seminal paper [3] on representation independence for OO-programs) is
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not necessary. This simplifies the notion of behavioral substitutability for
components.

2. Behavioral semantics provides a suitable semantical basis for behavioral com-
ponent specifications, i.e. for specifications that describe component behavior
without referring to the implementation.

3. It simplifies modular analysis, because it is easier to abstract from the execu-
tion environment of the component. In particular, we can analyze component
implementations without knowing their program contexts.

In this paper, we present an approach to behavioral semantics with the above
properties for imperative object-oriented languages like Java and C# that sup-
port references, aliasing, subclassing, dynamic dispatch, and recursive types and
methods. The main technical challenges were (a) to find a simple, yet powerful
notion of runtime components, (b) to support callbacks, and (c) to use well-
established semantical techniques for the definition of the behavioral semantics.

Approach and Overview. A runtime component in our approach is called a box.
A box consists of an owner object and a set of other objects. A box is created
together with its owner by instantiating the class of its owner. Boxes are tree-
structured, that is, a box b can have so-called inner boxes. We distinguish two
kinds of classes, normal classes and box classes (annotated by the keyword box).
The instantiation of a normal class creates an object in the current box, that is,
in the box of the current this-object. The instantiation of a box class creates a
new inner box of the current box together with its owner. For simplicity, we do
not support the direct creation of objects outside the current box. Such nonlocal
creations can only be done by using a method. Note that this is similar to a
distributed setting with remote method invocation.

Our approach only uses structural aspects of ownership (similar to [5]). It does
not enforce confinement. In particular, our semantical model allows arbitrary
references going into and out of a box (In this respect, it is more flexible than
that of [3]). For type systems enforcing box confinement, we refer to [21].

The operational semantics for boxes distinguishes between local method calls
and calls on objects of other boxes (Sec. 2). From this semantics, we develop a
behavioral semantics in two steps (Sec. 3). In the first step, we abstract from box
states and consider the concrete message histories at box boundaries. In the sec-
ond step, we abstract from object identifiers and box environments, getting a se-
mantics that is independent of the program context a component is used in. The
remaining sections of the paper show how the semantics can be used to define sub-
stitutability (Sec. 4) and contain a discussion of related work and the conclusions.

2 Operational Semantics for Boxes

In this section, we present the operational semantics for our object-oriented core
language. Most parts of the semantics follow the reductional style of [13]. The
semantics has two new features: (a) It structures the heap into box-local sub-
heaps. (b) It handles non-local method invocations by call and return messages
crossing the box boundaries. It can express arbitrary sequences of callbacks.
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P ::= L programs
L ::= [box] class C extends C′ {D f ; M} classes

M ::= C m(C x){e} methods
e ::= expressions

x variables
| null null constant
| (C)e cast
| new C object/box creation
| e.f field access
| e.f = e field update
| let x = e in e variable binding
| e.m(e) method call

C, D class names

Fig. 1. Abstract syntax

2.1 Syntax and Typing

The abstract syntax of our language is shown in Fig. 1. We use similar notations
as Featherweight Java (FJ) [14]. A bar indicates a sequence: L = L1, L2, . . . , Ln,
where the length is defined as |L| = n. Similar, C f ; is equal to C1 f1; . . . ; Cn fn.
If there is some sequence x, we write xi for any element of x. We sometimes write
x·x for adding x to sequence x, and x◦x′ for the concatenation of two sequences.
The empty sequence is denoted by •. front returns a sequence without the last
element, and last returns the last element of a sequence, i.e. x = front(x)·last(x).
We often apply a function f on a sequence of elements that is only defined on
single elements. This means to apply f to each element of the sequence and
return the sequence of the results, e.g. f(x1, . . . , xn) = f(x1) · f(x2) · · · · f(xn).
We sometimes treat sequences as sets, e.g. if we write x1 ⊆ x2, both sequences
are implicitly treated as sets.

Our language supports stateful objects, aliasing, inheritance, and dynamic
dispatch. It is similar to other core formalizations of Java, namely FJ [14] and
ClassicJava [13]. The main difference is the distinction between box and nor-
mal classes that provides the structuring of the heap into boxes. A set of classes
L is called declaration complete iff all names used in L have a declaration in L. A
program in our language is a declaration complete set of classes L. The smallest
declaration complete program for a class C is called the code base of C. In this
paper, code bases for the box classes are used as a simple notion of program
components. In practice, the code base of a box class would be structured by
module systems separating the box-local part and the code bases of the inner
boxes. We consider this (interesting) aspect beyond the scope of this paper.

Contextual constraints and typing rules are essentially as in Java. The subtype
relation will be denoted by <:, i.e. C <: D means that C is a subtype of D. We
assume that the most general class Object is a normal class without fields and
methods. A subclass of a box class has to be as well a box class. We do not
support overloading of methods and require that an overriding method has the
same signature as the overridden method. We do not consider field hiding, so
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b ::= o | globox boxes
o ::= 〈j, b, C〉 objects
v ::= o | null values
O ::= v object states
B ::= 〈ES,OS, IB〉 box states

ES ::= r execution stacks
OS ::= j �→ O object stores
IB ::= j �→ B inner boxes
n ::= messages

o → o′.m(v) call message
| o ← o′.m:v return message

e ::= ... | result | o reduction expressions
t ::= n | r terms
r ::= o → o′.m{e} call
j object identifier

Fig. 2. Dynamic entities and extended expression syntax

all fields declared in a class must have names different from the inherited fields.
A method only has a single body expression which is also the return value of
the method. Expressions can be variables, the null constant, cast expressions,
new-expressions, field accesses, field updates, let-expressions, and method calls.
If the class in a new-expression is a box class, a a new box together with its
owner object is created; otherwise, a normal object is created in the current
box. Let-expressions support local variables and sequential composition.

class(〈 , , C〉) = C owner(〈 , b, 〉) = b
box class C extends C′ {. . .}

boxClass(C)

boxClass(class(o))
box(o) = o

¬boxClass(class(o))
box(o) = owner(o)

class C extends C′ { D f ; . . .}
fields(C) = D f ◦ fields(C′)

class C extends {. . . D m(D x){e} . . .}
method(C,m) = D m(D x){e}

class C extends C′{. . . M} m /∈ M

method(C,m) = method(C′, m)

owner(b) = b′

b ≺ b′
b ≺ b′ b′ ≺ b′′

b ≺ b′′
address(o → o′.m(v)) = box(o′)
address(o ← o′.m:v) = box(o)

Fig. 3. Auxiliary functions

2.2 Operational Semantics

Our operational semantics supports the structuring of the heap into boxes. Its
central feature is box locality: the rules only refer to the heap parts of the current
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box and its inner boxes. Box locality is a prerequisite for the abstraction tech-
nique in Sec. 3. The semantics is mainly given in reductional small-step style,
that is, we represent an evaluation state by a partially evaluated expression over
dynamic values and by the states of the created objects. Fig. 2 contains the
needed definitions. A box is either represented by its owner object or by the
constant globox denoting the global box that contains all other boxes. An ob-
ject is uniquely defined by an identifier j and by its box b. To avoid an extra
mapping from objects to their classes, we add the class name as a third com-
ponent to the object representation. Two objects 〈j1, b1, C1〉 and 〈j2, b2, C2〉 are
different iff j1 �= j2 or b1 �= b2. Working with identifiers that only need to be
unique within the box allows to create new objects in a box without knowing
the identifiers of outside objects or objects in inner boxes.

The state of an object is represented by the values for its fields. The state of
a box b consists of its execution state, the state of the objects with owner b and
the state of the inner boxes. The execution state is a stack of pending method
executions. It is used to handle callbacks. For example, if a method executing in
box b leads to a call on an object outside of b, this call can call back on b’s objects
and so forth. Calls to and returns from methods on non-local objects are handled
by messages. To represent partially-evaluated expression, the expression syntax
of Fig. 2 is extended. An expression can be an object or the keyword result
indicating that the expression expects the result of a pending call.

Figure 3 shows auxiliary functions needed by our semantics. The box function
returns the box of an object o. Objects o of box classes represent their own
box. Otherwise the box is represented by the object’s owner. The relation b ≺ b′

expresses that b is a direct or indirect inner box of b′. The reflexive closure of
≺ is denoted by �. An object o is called box-local to box b iff box(o) = b. In
particular, the owner of a box b is box-local to b (see fourth rule in Fig. 3). It is
in box b iff box(o) � b. Otherwise, o is outside of b.

Messages. A message o → o′.m(v) contains the sender, o, the receiver, o′, the
method name m, and the method parameters v. We distinguish between call
messages (→) and return messages (←). Note that for return messages the
sender of the message is the object which originally called the message, and the
receiver is the receiver of that call, because the original receiver sends the answer
back to the original sender. The explicit representation of the sender allows to
avoid a stack mechanism. Stacks in combination with callbacks would breach
box locality and cause a problem for the abstraction in Sec. 3.

The address a of a message n is the box of the object to which the arrow
points. A message n that has either the sender or the receiver in a box b is
called an ingoing message for b if a is in b. and an outgoing message otherwise.
The receiver object and the method parameters of a message n are called the
parameters, params(n), of n. Non-null parameters that are in b are called inner
parameters of n, the others are called outer parameters, denoted by inner(b, n)
and outer(b, n) respectively. We say that a return message matches a call message
if the method names, the sender objects and the receiver objects are the same.
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Judgements and Rules. To achieve box locality, we seperate the state of a box
from the state of the enclosing boxes and guarantee that execution in a box b
only modifies objects in b. The semantical rules specify two different judgements.
The outside view to a box is represented by the judgement

b � (B, n) ⇓ (B′, n′)

expressing the fact that sending message n to box b in box state B leads to a
terminating execution in b with a reply message n′ that has an address outside
b. B′ is the state of b when n′ is sent. For example, the message n could be
a call and n′ the corresponding return or an intermediate call to an outside
object. Analogous to a judgement of big-step operational, the judgement allows
to abstract from the execution steps within boxes.

Execution within a box is formalized by a reduction semantics. A triple b:B, t is
called a configuration consisting of a box b, its state B, and a term t representing
an execution to be performed in b. A single execution step has the form:

b:B, t � b:B′, t′

We write �∗ for the transitive, reflexive closure of �. Note that a reduction
step only modifies the state of box b. States of other boxes remain unchanged.
In the semantics, so-called evaluation contexts represent partially evaluated ex-
pressions. An evaluation context E is an expression with a “hole” [ ] somewhere
inside the expression. We write E [e] to mean that the hole in E is replaced by
expression e. A hole in E can only appear in certain positions defined as follows:

E ::= [ ] | (T )E | E .f | E .f = e | v.f = E | let x = E in e | E .m(e) | v.m(v, E , e)

Similar to the evaluation context E , we define a context R as a call with a
hole, and we write R�e� to replace that hole by an expression e.

R ::= o → o′.m{E}

The rules for the reduction relation are given in Fig. 4. The upper part de-
scribes the evaluation of expressions, the lower part the handling of calls, returns,
and messages. Casts are only allowed for box-local objects (r-cast-obj). Thus,
casts cannot be used to distinguish outside objects. This property will be used
in Sec. 3 for the abstraction of outside objects (cf. the proof of the Abstraction
Lemma). A more flexible cast rule would complicate the abstraction. Instantiat-
ing a normal class (r-new-obj) adds a new object to the object state of the box.
Instantiating a box class adds a new box and object with an initial box state to
the inner boxes. The new object identifier has to be unique with respect to all
objects having the same owner. Note that in both cases a new object identifier
can be determined based on box-local information. Rules r-field-read and r-

field-write only allow field access on box-local objects. Thus, object creations
and field updates only need box-local information and only affect box-local state.
All other effects have to achieved via method calls.
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r-cast-null

b:B, R�(C)null� � b:B, R�null�

r-cast-obj

box(o) = b class(o) <: C

b:B, R�(C)o� � b:B, R�o�

r-new-obj

¬boxClass(C) j /∈ (dom(OS) ∪ dom(IB))
fields(C) = D f |null| = |f | o = 〈j, b, C〉

b:〈ES, OS, IB〉, R�new C� � b:〈ES, OS[j �→ null], IB〉, R�o�

r-new-box

boxClass(C) j /∈ (dom(OS) ∪ dom(IB))
fields(C) = D f |null| = |f | o = 〈j, b, C〉 B = 〈•, {j �→ null}, ∅〉

b:〈ES, OS, IB〉, R�new C� � b:〈ES, OS, IB [j �→ B]〉, R�o�

r-field-read

o = 〈j, , C〉 box(o) = b fields(C) = D f OS(j) = v

b:〈ES, OS, IB〉, R�o.fi� � b:〈ES, OS, IB〉, R�vi�

r-field-write

o = 〈j, , C〉 box(o) = b fields(C) = D f OS(j) = v

b:〈ES,OS, IB〉, R�o.fi = v� � b:〈ES, OS[j �→ [v/vi]v], IB〉, R�v�

r-let

b:B, R�let x = v in e� � b:B, R�[v/x]e�

r-send-call-msg

ES′ = o′′ → o.m{E [result]} · ES

b:〈ES,OS, IB〉, o′′ → o.m{E [o′.m′(v)]} � b:〈ES′, OS, IB〉, o → o′.m′(v)

r-send-rtrn-msg

b:B, o → o′.m{v} � b:B, o ← o′.m:v

r-exec-call-msg

box(o) = b method(class(o),m) = m( x){e}
b:B, o′ → o.m(v) � b:B, o′ → o.m{[o/this, v/x]e}

r-exec-rtrn-msg

box(o) = b ES = (o′′ → o.m{e}) · ES′

b:〈ES, OS, IB〉, o ← o′.m′:v � b:〈ES′, OS, IB〉, o′′ → o.m{[v/result]e}

r-forward-inner

address(n) � b′ b′ = 〈j, b, 〉 b′ � (IB(b′), n) ⇓ (B′, n′)
b:〈ES, OS, IB〉, n � b:〈ES,OS, IB [j �→ B′]〉, n′

r-box-big-step

b:B, n �∗ b:B′, n′ address(n′) �� b

b � (B, n) ⇓ (B′, n′)

Fig. 4. Rules of the operational semantics
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A method call is treated by sending a message with the current receiver as
sender (r-send-call-msg). The evaluation state o′′→ o.m{E [result]} of the cur-
rent method exection is recorded on the box-local execution stack. The place-
holder result marks the position for the result. If the body of a method is fully
evaluated, a return message is sent (r-send-rtrn-msg). If the receiver of a call
message is in box b (r-exec-call-msg), the method is executed with the actual
parameters. A return message with address in b pops the pending call from the
execution stack, substitutes the result, and continues evaluation (r-exec-rtrn-

msg). According to rule r-forward-inner, a message n with an address in an
inner box b′ of b is forwarded to b′. If it terminates with a reply message n′,
the state of b′ is updated and n′ is handled in b. The last three rules cannot
be applied if the address of a message n′ is outside b. This is the case in which
box-local execution terminates with reply method n′ (r-box-big-step).

A program is called executable iff it contains a class of the form: class
Main extends Object { D main(C p){e}}. It is executed with start configu-
ration globox:〈•, {jp 
→ input, . . . , j0 
→ •}, ∅〉, o0 → o0.main(op) where o0 =
〈j0, globox,Main〉, op = 〈jp, globox, C〉, and j0 and jp are distinct object identi-
fiers. “input” denotes the field values of the parameter object op, and the dots
indicate the possibility to have additional objects in the start configuration that
are referenced by op. This allows to encode interesting input in the absence of
primitive data types. Program execution can have three outcomes :

1. It can terminate normally in a configuration globox:B′, o0 ← o0.main:v, i.e.
with terminated method main and return value v.

2. It can end up in some configuration different from the above such that no
rule is applicable (e.g. a field access on a nonlocal object). We consider this
as abortion. For space limitation, we do not handle such exceptional cases
explicitly.

3. It can diverge.

It is easy to verify that in any configuration at most one rule is applicable. Thus,
the semantics is deterministic. Although determinism is not needed in principle
for our approach, having a deterministic language simplifies the presentation in
the following sections.

3 Behavioral Semantics for Boxes

In the following, we assume that an executable program P is given containing a
box class C with code base K. We define a behavioral semantics for C and K,
which is independent of the representation of the box states and independent of
the environment in which C is used. The latter is not yet achieved because in
general the box state encoding still uses identifiers of objects from classes not
belonging to C. We reach this goal in three steps. First, we define a so-called in-
terface semantics which takes a box, a box state, and a message for the box and
results in the next state of the box and its answer message. This semantics is di-
rectly based on our big-step judgement from above. In a second step we abstract
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from the state of the box by using so-called concrete message histories. A his-
tory represents the state of a box without referring to the objects of the box and
their field values. The history semantics defines how a message n is executed in
a box b with a history H . Histories still refer to box and object identifiers. Third,
we abstract from boxes, their execution environments, and object identifiers by
defining abstract histories. An abstract history is essentially an equivalence class
of concrete histories of boxes with the same box class. Abstract histories are
used to define a precise behavioral semantics: Given an abstract history and an
abstracted message, it yields the abstract answer of a box class.

The interface semantics isem for boxes is defined as a partial function from
boxes, box states, and messages to outcomes, oc, where the outcome is either
a pair consisting of a box state and a reply message or one of the constants
ABORT or DIVERGE. More precisely:

Definition 1 (Interface Semantics). Let b be a box, B a state of b and n an
ingoing message for b. We define the interface semantics, isem, as

isem(b, B, n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B′, n′ if b � (B, n) ⇓ (B′, n′)
ABORT if b:B, n �∗ b:B′, n′ and there are

no B′′, n′′ with b:B′, n′ � b:B′′, n′′

DIVERGE otherwise

3.1 History-Based Semantics

To become representation-independent we define a semantics that does not di-
rectly refer to the state of a box. The idea is to reconstruct the state from the
incoming messages of a box by starting with an empty state and sequentially
applying the isem semantics:

state(b, •) = 〈∅, ∅, ∅〉
state(b, n · n) = B′ if state(b, n) = B and isem(b, B, n) = B′, n′

state(b, n · n) = undefined otherwise

It is clear that not every arbitrary sequence of incoming messages for a box, leads
to a valid state. In particular, only objects that have been earlier exposed by a
method call or return are permitted as parameters and a return message has to
match the last callback from the box. Valid sequences of incoming messages are
called concrete histories.

Definition 2 (Concrete History, Admissible Message). A concrete his-
tory H is a quadruple consisting of a box b, denoted by box(H), a sequence of
incoming messages, ims(H), a sequence of pending calls, pcs(H), and a sequence
of exposed objects, exp(H). Every concrete history H with box(H) = b satisfies
the following conditions:

– If ims(H) = •, then pcs(H) = • and exp(H) = {b}.
– If ims(H) = n1, . . . , nz, then
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1. there is a concrete history H ′ with box(H ′) = b and
ims(H ′) = n1, ..., nz−1.

2. nz is admissible for H ′, which means that
(a) nz is an ingoing message for b
(b) inner(b, nz) ⊆ exp(H ′)
(c) if nz is a return message then nz matches last(pcs(H ′))

3. isem(b, state(b, ims(H ′)), nz) = (B, n)
4. exp(H) = exp(H ′) ◦ inner(b, n)

5. pcs(H) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pcs(H ′) if nz is a call, and n is a return
pcs(H ′) · n if nz is a call, and n is a call
front(pcs(H ′)) if nz is a return and n is a return
front(pcs(H ′)) · n if nz is a return, and n is a call

Based on the notions of concrete histories, we define a representation-indepen-
dent semantics for boxes. The big advantage of a representation independency
is that it allows to compare two boxes with different representations without the
need to relate their representations (see [3]).

Definition 3 (History-Based Semantics). Let H be a concrete history with
box(H) = b. Let n be an admissible message for H. We define the history-based
semantics, hsem, as

hsem(H, n) =

{
n′ if oc = (B, n′)
oc otherwise

where oc = isem(b, state(b, ims(H)), n)

3.2 Behavioral Semantics

The incoming message sequence of a concrete history still contains objects and
types that depend on the execution environment. In order to abstract from con-
crete objects we introduce abstract objects õ. An abstract object is represented
by a natural number i, and a subscript indicating whether it is an inner or outer
object with respect to a certain box.

õ ::= iin | iout

The precise types of the objects are not recorded, as we want to compare
histories for implementations with different types. The needed type information
can be derived from the method signature in an abstract message, which is
defined as follows. Let C be a box class with code base K, and let D be a class
in K; abstract messages ñ of C have the form

ñ ::= õ.D::m(ṽ) | D::m:ṽ

The left one is a call message and the right one is a return message. A message
ñ is an ingoing call if õ is an inner object, otherwise it is an outgoing call. The
method parameters ṽ are abstract objects or null (abstract values). The function
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inner on abstract messages returns the set of abstract inner objects occurring
as parameters of the message. params return the message parameters, i.e. õ · ṽ.
D::m denotes method m in class D. This class qualification of method names
is needed because the receiver type is no longer represented and methods in
incomparable classes may have the same name.

Let η be a bijection from concrete objects to abstract objects. We say that a
concrete message n corresponds to an abstract message ñ, denoted by n �η ñ, if
and only if the method names and message kinds are the same, the class qualifi-
cation of ñ is the largest supertype of the receiver in which the method is defined,
and the parameters are the same under η, i.e. η(params(n)) = params(ñ).

Definition 4 (History Abstraction). Let H be a concrete history. An ab-
straction G of H consists of a sequence of incoming abstract messages imsa(G),
a sequence of pending abstract calls pcsa(G), and a sequence of exposed abstract
objects expa (G) such that the following conditions are satisfied:

– There exists a bijection η from concrete objects occurring in H as parameters
of messages or as exposed objects, and abstract objects occurring in G, such
that

η(o) =

{
iin if o � b

iout otherwise

– η(exp(H)) = expa (G)
– ims(H) �η imsa(G)
– pcs(H) �η pcsa(G)

We call G an abstract history for a box class C iff G is an abstraction of some
concrete history H with class(box(H)) = C.

In general, there are many different abstractions of a concrete history, as the
object numbers of abstract messages can be arbitrarily chosen. To give every
concrete history a unique abstraction, we define a normalization of abstract
histories. To normalize an abstract history G we rename all message numbers
appearing in G in such a way that the first occurring number is 1 and all following
numbers are always advanced by 1. By absHis(H) we denote the normalized
abstraction of concrete history H and call the resulting history a normalized
abstract history.

Given a concrete history H and a concrete message n, where all parameters of
n already occur in H , we define the function absMsg(H, n) to result in abstract
message ñ as follows: let G = absHis(H) and let η be the bijection of Def. 4;
then ñ is an abstract message that corresponds to n, and the parameters in n are
equal to the abstract parameters in ñ under bijection η. If there are new objects
in n which are not in the domain of η, η is extended in a normalized way.

Given a concrete history H and an admissible message n for H . Let oc =
hsem(H, n). We denote the abstraction of outcome oc by absOutcome(oc, H, n).
If oc ∈ {ABORT ,DIVERGE}, then absOutcome(oc, H, n) = oc. Otherwise, we
abstract the message oc w.r.t. H and n in the same way as we defined absMsg .

The central property of our abstraction is formulated by the following lemma.
It states that abstract histories can express the behavior of a box class and its
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code base independent of the box instances and of the program in which the box
is used. More precisely:

Lemma 1 (Abstraction). Let C be a box class with code base K, and P1 and
P2 be two programs containing K. Let b1 and b2 be boxes of C in executions of
P1 and P2 resp.; furthermore let H1 and H2 be concrete histories for b1 and b2
such that absHis(H1) = absHis(H2). If n1 and n2 are admissible messages for
H1 and H2 resp. with absMsg(H1, n1) = absMsg(H2, n2), then

absOutcome(hsem(H1, n1), H1, n1) = absOutcome(hsem(H2, n2), H2, n2) .

Proof. A detailed formal proof is beyond the scope of this paper. Here, we give
an outline of the central ideas. The proof runs by induction on the length of H1
(note |ims(H1)| = |ims(H2)|). Let Hk

i denote the prefix of Hi containing the
first k messages.

Induction invariant: For all k ∈ {0, . . . , |ims(H1)|} there exists a bijection βk

from the objects and boxes occurring in state(b1, ims(Hk
1 )) to the objects and

boxes occurring in state(b2, ims(Hk
2 )) such that

class(o) = class(βk(o)) for the objects in state(b1, ims(Hk
1 ))

state(b1, ims(Hk
1 )) = state(b2, ims(Hk

2 )) ↓ βk

where state(b2, ims(Hk
2 )) ↓ βk denotes the box state that is obtained from

state(b2, ims(Hk
2 )) by replacing all objects o and boxes b by βk(o) and βk(b).

The induction basis follows from rule r-new-box. Induction step: Because
of absMsg(Hk

1 , nk
1) = absMsg(Hk

2 , nk
2), both messages are of the same kind.

If they are call messages the receiver has to be an object oi in bi. Because
the messages nk

i are admissible, oi is in exp(Hk
i ), thus, o1 is in the domain

of βk so that class(o1) = class(o2). Thus, absHis(Hk
1 ) = absHis(Hk

2 ) yields
that the methods are the same, in particular, they have the same signature.
Thus, the parameter lists have the same length. For parameter objects p1 of n1
that already occur in Hk

1 , absHis(Hk
1 ) = absHis(Hk

2 ) yields that βk(p1) = p2.
Parameter objects not occurring in Hk

1 or Hk
2 are outside objects (otherwise

they are present in exp(Hk
i )). Note that they may have different dynamic types.

Because of absHis(Hk
1 ) = absHis(Hk

2 ), there is a bijection from the parameter
objects not occurring in Hk

1 to those not occurring in Hk
2 that is consistent with

the position in the parameter list of nk
i . By βk

+ we denote the extension of βk to
the object not occurring in Hk

1 . A similar construction has to be done, if nk
i are

return messages. In that case, the pending call sequence is used to identify the
addressees of the messages.

Now, we have corresponding start states state(b1, ims(Hk
1 )) and state(b2,

ims(Hk
2 )) with corresponding incoming messages. The rules of Fig. 4 keep the

correspondence, because none of the rules depend on the concrete object or box
identifiers or on the concrete type of outside objects (that is the reason why we
do not allow to cast outside objects). Thus, either both executions abort, diverge,
or produce corresponding replies, that is replies with the same abstraction. ��
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Based on the Abstraction Lemma we formulate a behavioral semantics for box
classes. Let G be an abstract history. An abstract message ñ is called admissible
for G if and only if

– ñ is an ingoing abstract message, and
– inner(ñ) ⊆ expa(G), and
– if ñ is a return, i.e. ñ = D::m:ṽ, then it matches the last pending call, i.e.

last(pcsa (G)) = iout.D::m(ṽ), for some abstract values ṽ.

Definition 5 (Behavioral Semantics). Let G be a normalized abstract history
and let ñ be an admissible message for G. We define the behavioral semantics,
bsem, as

bsem(G, ñ) = absOutcome(hsem(H, n), H, n)

where H is any concrete history for a box b with G = absHis(H), and n is any
admissible concrete message for H with ñ = absMsg(H, n).

Lemma 2. bsem is well-defined.

Proof. Let G be a normalized abstract history and ñ be an abstract admissi-
ble message for G. By definition there exists a concrete history H with G =
absHis(H). If we can show that it is possible to choose an admissible message n
for H with ñ = absMsg(H, n), the Abstraction Lemma provides well-definedness,
because it guarantees that the abstract outcome does not depend on the choice
of H and n.

Let ηG be the bijection of G. If ñ is an ingoing call, then choose an arbitrary
outside sender, and choose arbitrary outside objects for outer parameters not
handled by ηG. Use all other objects according to η−1

G given by imsa (G). Oth-
erwise if ñ is an ingoing return D::m:ṽ, then let o → o′.m(v) = last(pcs(H))
and let last(imsa (G)) = iout.D::m(ṽ). The compatibility of pcs(G) yields that
o ← o′.m:v is an admissible message where v = η−1

G (ṽ) if v ∈ dom(ηG ) or v is
some correctly typed object not in dom(ηG) otherwise. ��

4 Substitutability

In this section, we discuss how our behavioral semantics can be exploited to
handle substitutability in object-oriented programming. Central for the exploita-
tion is the representation independency of the semantics based on a well-defined
boundary of the runtime components.

A program component K1 can be substituted by another component K2 in a
program context P if both components have the same behavior in all executions
of P . The application of this notion of substitutability to existing OO-languages
faces two problems: 1. Beyond classes, there is no suitable standard concept
of a program component; and considering only single classes does not scale. 2.
Defining “same behavior” without a sufficiently abstract notion of behavior is
doable but complex (see [3] and the discussion in Sec. 5).
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Our approach gives answers to both problems. A code base of a box class C
is a well-defined notion for flexible program components. Having an explicit be-
havioral semantics makes it straightforward to define substitutability and equiv-
alence for box classes:

Definition 6 (Substitutability, Equivalence). Let C1 and C2 be two box
classes with code bases K1 and K2 such that C1 = C2 or C2 is a subclass of C1.
(C2, K2) is called a behavioral substitute of (C1, K1) iff

– every abstract history G of C1 is an abstract history of C2 and
– bsem(C1, G, ñ) = bsem(C2, G, ñ) for every abstract history G of C1 and

every admissible abstract message ñ of G.

Two code bases K1 and K2 for a class C are called equivalent iff (C, K1) is a
behavioral substitute of (C, K2) and vice versa.

Of course, a behavioral substitute can have more behavior. For example, class
C2 or objects exposed by C2 can have more methods. Thus, they have more ad-
missible messages. However, these messages cannot be used in program contexts
in which C1 is eligible.

Intuitively, a software component SC2 is substitutable for a component SC1
if replacing a usage of SC1 in a program by a usage of SC2 yields an equivalent
program. As we only have a notion of equivalence for box classes, this intuitive
meaning gets the following formulation in our setting:

Lemma 3 (Substitution). Let D, C1, and C2 be box classes with code bases
K, K1, and K2 such that C1 is used in K and C2 is a subclass of C1. Let K ′

be the code base for D obtained by replacing a creation expression new C1() by
new C2() in K (as K ′ is declaration complete it includes K2). If (C2, K2) is a
behavioral substitute of (C1, K1), then (D, K) and (D, K ′) are equivalent.

A proof of the lemma is beyond the scope of this paper. It basically shows that
in any context of an executable program an instance of D with code base K can
simulate an instance of D with code base K ′ and vice versa. As in the proof of
the Abstraction Lemma, it is crucial that we permit downcasts of an object o
only in o’s box and that we do not provide an instance-of operator. Consider
for example a program context in which (D, K) exposes an owned C1-object o1
and (D, K ′) exposes an owned C2-object o2 instead. Casting o1 and o2 in this
context to C2 would yield different outcomes and the simulation would fail.

Discussion. The main point of our notion of behavior and substitutability is
that the abstraction needed to compare different implementations is given by
the behavioral semantics and is independent of the components to be compared
and the contexts in which they should execute. Thus, one can do the comparison
without component specific coupling relations or specifications.

In one respect, our notion is less flexible than notions of substitutability that
are based on classical component specifications. Whereas in our setting admis-
sibility of messages is defined only in terms of the operational semantics, com-
ponent specifications can and usually do restrict the set of admissible messages
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by preconditions. Looking at it the other way round, by refining the notion of
admissible message, our approach could be used as a semantics for behavioral
specifications of program components where a specification defines:

1. The set of possible abstract component states.
2. The admissible messages in a state (using preconditions).
3. The reply to messages and the abstract state in which the reply is sent.

Abstract components states represent and possibly further abstract histories. As
a specification can exclude some messages by preconditions, a specification al-
lows less histories than the semantics. The central difference between the classical
pre-postcondition approach for behavioral subtyping (see [18]) and a specifica-
tion technique based on our approach is the treatment of callbacks and effects
to the environment. The extensions to the classical approach treat callbacks by
supporting controlled dependencies across abstraction boundaries (see e.g. [4]).
Our approach suggests to focus on the messages crossing the component bound-
ary. This will simplify the verification of the component and shift part of the
burden to the program that connects the components under consideration.

5 Related Work

In [3], Banerjee and Naumann show how confinement properties based on owner-
ship-structures can be exploited to define and verify the equivalence of program
components. Like in our approach, they use a semantics-based notion of own-
ership. Different is the technique to establish the equivalence result. They use
relations for coupling execution states and a simulation-based proof technique
whereas we abstract the implementations separately and compare the abstrac-
tions. The work in [3] and our approach both aim at substitutability for compo-
nents of scalable size. Other work investigate refinement and inheritance relations
on the level of classes (see in particular [2]).

Using message sequences to characterize state and behavior of software com-
ponents is not a new idea (see e.g. [12] and later [10]). Nierstrasz defines the
notion of request substitutability based on request sequences [20]. Broy uses call
and return messages to characterize the behavior of methods in a component
specification framework ([8]). Abraham et al. investigate interface behavior for
a concurrent object calculus in [1]. Like we do, they use call and return mes-
sages crossing component boundaries and stacks to handle callback scenarios,
but object identifiers are only abstracted with respect to alpha-conversion.

A large core of literature explores behavioral subtyping for object-oriented
programming based on class and method specifications. That is, the behavioral
subtype relation is not defined in terms of the semantics of the given classes,
but in terms of programmer defined specifications that abstract class behavior
(see [18]). These techniques build on specification languages for object-oriented
programs (e.g. JML for Java [16], Spec# for C# [6]). Leavens and Naumann de-
scribe the relation between specification, semantics, and behavioral subtyping in
a very concise way [15]. A specification technique with refinement that explicitly
handles outgoing messages is developed in [9].
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Ownership concepts were originally developed to check confinement properties
by type systems: see [11] for an introduction and overview; [7] for a system
to check concurrency properties; and [24, 21] for a type system and an type
inference technique to check boxes. Boogie [5] and other approaches to modular
reasoning (see e.g. [19, 17] use ownership structures to define the semantics of
object invariants, to control the dependencies of specification statements, and to
partition the heap. The importance to modularize reasoning and analysis based
on heap structuring is shown as well by [22], which develops a logic for partial
heaps, and by [23] which presents a modular static analysis to identify structural
invariants of heap-manipulation programs.

6 Conclusions

We presented a behavioral semantics for flexible object-oriented components
with multiple ingoing and outgoing read-write references. The semantics is ob-
tained by a two step abstraction from an extended operational semantics. The
semantics formalizes the behavioral aspects that are relevant to a user of the
component. We discussed the relation to substitutability and specification-based
behavioral subtyping.

A semantics based notion of component behavior has the advantage that it can
be used by all language-processing tools and techniques. The abstraction from
the execution environment is important for modular static analysis techniques.
It guarantees that a “most general client” that generates all admissible message
sequences for the component can be used for static analysis. Future work in-
clude the refinement of the component model, in particular the transfer of inner
boxes from one box to another, the enhancement of our specification and check-
ing techniques, and an extension of the approach to concurrent object-oriented
programming.

Acknowledgments. We thank Peter Müller and the anonymous reviewers for their
helpful comments.
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