
An Adversary Aware and Intrusion Detection
Aware Attack Model Ranking Scheme�

Liang Lu, Rei Safavi-Naini, Jeffrey Horton, and Willy Susilo

Centre for Computer and Information Security Research
School of Computer Science & Software Engineering

University of Wollongong, Australia
{ll97,rei,jeffh,wsusilo}@uow.edu.au

Abstract. A successful computer system intrusion is often resulted from
an attacker combining exploits of individual vulnerability. This can be
modelled by attack models and attack graphs to provide a global view
on system security against attacker’s goal. However, as the size and com-
plexity of attack models and attack graphs usually greatly exceeds human
ability to visualize, understand and analyze, a scheme is required to iden-
tify important portions of attack models and attack graphs. Mehta et al.
proposed to rank states of an attack model by the probability of an ad-
versary reaching a state by a sequence of exploiting individual vulnera-
bilities in a previous scheme. Important portions can hence be identified
by ranks of states. However, Mehta et al.’s ranking scheme is based on the
PageRank algorithm which models a web surfing scenario, but has not con-
sidered much on the dissimilarity between web surfing scenarios and com-
puter system intrusion scenarios. In this paper, we extend Mehta et al.’s
scheme by taking into consideration dissimilarity between web surfing
scenarios and computer system intrusion scenarios. We experiment with
the same network model used in Mehta et al.’s scheme and have the re-
sults compared. The experiments yielded promising results that demon-
strated consistent ranks amongst varying parameters modelled by our
ranking scheme.

1 Introduction

A large computer system often consists of multiple platforms, runs different soft-
ware packages and has complex connections to other systems. Despite the best
efforts by system designers and architects, there will still exist vulnerabilities
resulting from bugs or design flaws allowing an adversary (attacker) to gain a
level of access to systems or information not desired by the system owners. The
act of taking advantage of an individual vulnerability is referred to as an “atomic
attack” or an “exploit”. A vulnerability is often exploited by a piece of software,
a chunk of data, or sequence of commands, resulting in unintended or unantic-
ipated behavior of the system such as gaining control of a computer system or
� This work is partially supported by Cooperative Research Center - Smart Internet

Technology (CRC-SIT), Australia.

J. Katz and M. Yung (Eds.): ACNS 2007, LNCS 4521, pp. 65–86, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



66 L. Lu et al.

allowing privilege escalation. Although an exploit may have only insignificant
impact on the system by itself, an adversary may be able to construct a sys-
tem intrusion that combines several atomic attacks, each taking the adversary
from one system state to another, until he reaches the final goal. Therefore, to
evaluate the security level of a large computer system, an administrator must
not only take into account the effects of exploiting each individual vulnerability,
but also consider global intrusion scenario where an adversary combines several
exploits to compromise the system.

There has been considerable amount of work on modelling multi-stage attacks
by combination of individual vulnerabilities [7] [12] [5]. Recently, Sheyner et al.
proposed using attack models and attack graphs to provide a global view of
system security against exploiting the combination of vulnerabilities [16] [7]. An
attack model is a graph that consists of a set of nodes and edges, where each node
represents a reachable system state and each edge represents an atomic attack
that takes the system from one state to another. An attack graph is a sub-
graph of the attack model and contains only nodes in the paths that eventually
reach a state where the system is considered compromised. With attack models
and graphs, a global view on multi-stage attacks by combination of individual
vulnerabilities can be obtained by administrators to assist in the implementation
of effective security measures.

However, as the size and complexity of attack models/graphs usually greatly
exceeds human ability to visualize, understand and analyze, a scheme is required
to identify important portions of attack models/graphs. An effective method is
to rank states in attack models/graphs based on factors like the probability of
an intruder reaching the state. Important portions of attack models/graphs can
hence be identified by ranks of their states.

Mehta et al. [16] propose to rank states of an attack model by the probability
of an adversary reaching a state by a sequence of atomic attacks. The rank-
ing algorithm is based on the PageRank algorithm used by Google to measure
importance of web pages on the World Wide Web. Given a system to be ana-
lyzed, first an attack model formally describing the system is constructed. Then
the ranking algorithm is applied to rank states of the obtained attack model.
Meanwhile, an attack graph is generated using the attack graph generation tool
[10], and is “projected” on the ranked attack model to obtain a ranked attack
graph. The ranked states of an attack graph provide various security analysis for
the system, such as measuring security of the system, evaluating effectiveness of
counter-measures, and identifying important portion for visual analysis of the
system.

Despite the similarity between ranking web pages and ranking system states,
differences not considered by Mehta’s scheme exist between the two scenarios.
The World Wide Web model adopted by PageRank assumes that a random surfer
has universally equal probabilities of following one of the links in a current page
to the next page, and correspondingly Mehta’s ranking scheme assumes that an
attacker has equal probability of remaining undetected at all states of an attack
model. However, the likelihood of an attacker remaining undetected at a state



Attack Model Ranking Scheme 67

so as to exploit a vulnerability that takes the system to another state could be
considered to be influenced by the number of steps required to reach the state
from the starting position. Consider a scenario where a network has implemented
some sort of defense-in-depth as an example, the more steps an attack has taken,
the more likely that he is discovered. Therefore, we assume the probability of
an attacker remaining undetected at a state decreases with number of steps
required to reach that state. The decreasing rate is not universal amongst all
computer systems but determined by each system’s intrusion detection ability,
which affects state transitions in attack models and should be considered when
ranking system states.

Moreover, the random transition model adopted by PageRank assumed that
a WWW surfer navigates to the next page by selecting one of the available suc-
ceeding pages at random with equal probabilities. This assumption fits well with
intrusions that use a brute force probe-scan approach. However, an adversary
may exploit vulnerabilities based on metrics such as cost, age, evaluation on
probability of success and being detected. In this case, vulnerabilities are not
selected at random and different vulnerabilities have different probabilities of
being exploited. The behavior of an adversary selectively exploiting vulnerabil-
ities has considerable effect on his chance to reach the final goal, and therefore
should be considered when ranking system states of attack models and graphs.

1.1 Our Contribution

In this paper, we propose a ranking scheme that addresses problems stated above.
The proposed ranking scheme is adjusted from Mehta et al.’s scheme, but has
the advantage of modelling variation in intrusion detection abilities amongst
computer systems, and non-uniform distribution in probability that each vul-
nerability is exploited. First, in addition to modelling vulnerabilities in a sys-
tem that could be exploited to have system states changed, our ranking scheme
also models intrusion detection ability of computer systems defined as the sys-
tem’s effort to detect and prevent such state transitions by intruders exploiting
vulnerabilities. Secondly, we provide an instantiation of the biasing idea in [1]
by modelling adversaries’ behavior in exploiting vulnerabilities probabilistically
based on certain metrics as stated above but not by brute-force probing. With
the proposed ranking scheme, evaluation on system intrusion detection ability or
adversaries’ ability in relation to probabilistically exploit vulnerabilities, when
available from for example empirical data or log statistics, can be used to obtain
more accurate ranks of computer system states modelled by attack models and
attack graphs. The proposed scheme can also be applied to other areas such as
network research or system design, e.g. determining minimum system intrusion
detection strength required to protect against best effort by an adversary.

To evaluate the effectiveness of the proposed ranking scheme, we implemented
a prototype of the scheme in Java. We experiment with the network example
used by Mehta et al. [16] and have the results compared with their scheme.
The experiments yielded promising results that demonstrated consistent ranks
amongst varying parameters modelled by the proposed ranking scheme.



68 L. Lu et al.

1.2 Related Work

Techniques for quantitative security measurement have been a strong focus in the
research community [9] [11] [4] [5]. Dacier et al. [9] model a computer system as a
Privilege Graphs exhibiting security vulnerabilities and convert it into a Markov
chain corresponding to all possible successful attack scenarios. The Markov chain
is then used to compute MTTF (mean time to failure) of the system, used as the
quantitative measure of the security level of a system. Time and effort required
by each type of attack is estimated from empirical and statistical data. Phillips
et al. [5] present a framework for evaluating the most likely attack paths in the
attack graph generated by an ad hoc algorithm. The framework requires attacker
profiles and attack templates in order to compute the likelihood of each type of
attack. Madan et al [4] proposed an approach to quantifying various security
related attributes of a computer system such as system availability, MTTF, and
probabilities of system failure. Quantification of security related attributes is by
solving the Semi-Markov Process (SMP) model describing state transitions in
the system. However, the proposed approach requires availability of a wide range
of ad hoc model parameters, restricting the approach feasible only for systems
of a small scale. Another related work presented in [11] provides a quantitative
analysis of attacker behavior based on empirical data collected from intrusion
experiments.

1.3 Paper Organisation

The rest of the paper is organized as follows. Section 2 provides a brief review
on relevant background knowledge. The proposed ranking scheme is presented
in Section 3. Section 4 provides implementation details and experimental results
demonstrating effectiveness of the proposed scheme, and Section 5 concludes the
paper.

2 Background and Preliminaries

2.1 Attack Models and Attack Graph

Sheyner et al. first formally defined the concept of Attack Model and Attack
Graph [10]. An Attack Model is a formal description of security related attributes
of the attacker, the defender and the modelled system using graph representation.
Nodes represent the states of the system, such as the attacker’s privilege level on
individual system components. Transitions correspond to actions taken by the
attacker which lead to a change in the state of the system. The starting state of
the model denotes the state of the system where no damage has occurred and
the attacker is looking for an entry point to enter the system. As an example, if
we consider the case of a computer network attack model, a state represents the
state of the attacker, the running services, access privileges, network connectivity
and trust relations. The transitions correspond to actions of the attacker such as
exploiting vulnerabilities to obtain elevated privileges on the computer system.
Formally,



Attack Model Ranking Scheme 69

Definition 1. [10] Let AP be a set of atomic propositions. An Attack Model is
a finite automaton M = (S, τ , s0, l), where S is a set of states in relation to a
computer system, τ ⊆ S ×S is the transition relation, s0 ∈ S is the initial state,
and l : S → 2AP is a labelling of states with the set of propositions true in that
state.

The negation of an attacker’s goal in relation to an attack model can be used as
security properties that the system must satisfy in a secure state. An example
of a security property in computer networks would be “the intruder cannot gain
root access on the database server”. States in an attack model where the security
properties are not satisfied are called error states. Given an attack model and
the attacker’s goal, an Attack Graph is a subgraph of the attack model which
contains only paths leading to one of the error states, and states on such paths.
Formally,

Definition 2. [10] Let AP be a set of atomic propositions. An Attack Graph is a
finite automaton G = (S, τ , s0, Ss, l), where S is a set of states in relation to a
computer system, τ ⊆ S ×S is the transition relation, s0 ∈ S is the initial state,
Ss ⊆ S is the set of error states in relation to the security properties specified for
the system, and l : S → 2AP is a labelling of states with the set of propositions
true in that state.

Given an attack model and the associated security properties, model checking
techniques can be used to generate attack graphs automatically [14].

2.2 Web Graph and PageRank

Web Graph and Notations. For a web model consisting of N nodes (pages),
notations used in the our discussion are defined in Table 1. Consider the web
graph shown in Figure 1 as an example. Node 1 has three out links (node 2, 3
and 4) and hence h1 = 3. Node 4 is pointed to by two nodes (node 1 and 3) and
hence pa[4] = {node 1, node 3}. Equation 1 represents the transition matrix W
in relation to the web graph. It is noticeable that not all nodes have out links,
and we refer to these nodes as dangling nodes. When a web surfer reaches at a
web page that has no out links, he is often assumed to select a random page
to continue surfing [13] [2]. To model this, a dangling node in a web graph is
typically assumed to be pointing to all other nodes with equal probabilities.

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
1
3 0 0 0 0 0 0 0 0
1
3 0 0 0 0 0 0 0 0
1
3 0 1

3 0 0 0 0 0 0
0 1 0 1

2 0 0 0 0 0
0 0 0 0 1

2 0 0 0 0
0 0 0 0 1

2 0 1 0 0
0 0 1

3
1
2 0 0 0 0 0

0 0 1
3 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)



70 L. Lu et al.

Table 1. Web Model Notations

Notation Meaning
hj Number of nodes (pages) pointed to by node (page) j
pa[j] Set of nodes (pages) pointing to node (page) j.
d Probability that a random surfer continues surfing by navigating to one of the

pages linked by the current page, usually referred to as damping factor. Cor-
respondingly, 1 − d represents the probability that a random surfer continues
surfing and navigates to a random page

W W = {wi,j} is a transition matrix such that wi,j = 1
hj

if there is a link from
node j to node i, otherwise wi,j = 0. An important property of W is that ∀j,∑N

i=1 wi,j = 1.
ΠN [1, . . ., 1]’, i.e. transpose of the N-dimension unit vector

Fig. 1. An example of web graph

PageRank Algorithm. PageRank [13] is the algorithm used by Google to de-
termine the relative importance of web pages on the World Wide Web. PageRank
is based on the behavior model of a random surfer in a web graph. It assumes
that a random surfer starts at a random page and keeps clicking on links and
eventually gets bored and starts on another random page. To capture the notion
that a random surfer might get bored and restart from another random page,
a damping factor d is introduced, where 0 < d < 1. The transition probability
from a state is divided into two parts: d and 1 - d. The d mass is divided equally
among the state’s successors. Random transitions are added from that state to
all other states with the residual probability 1 - d equally divided amongst them,
modelling that if a random surfer arrives at a dangling page where no links are
available, he is assumed to pick another page at random and continue surfing
from that page. The computed rank of a page is the probability of a random
surfer reaching that page. That is, consider a web graph with N pages linked to



Attack Model Ranking Scheme 71

each other by hyperlinks, the PageRank xp of page (node) p is defined as the
probability of the random surfer reaching p, formally

xp = d
∑

q∈pa[p]

xq

hq
+

1 − d

N
(2)

When stacking all the xp into a vector x, it can be represented as

x = dWx +
1
N

(1 − d)ΠN (3)

Using iterative expression, Equation 3 can be represented as

x(t) = dWx(t − 1) +
1
N

(1 − d)ΠN (4)

The computation of PageRank can be considered a Markov Process, as can
be seen from Equation 4. It has been proved that after multiple iterations,
Equation 4 will reach a stationary state where each xp represents the proba-
bility of the random surfer reaching page p [8].

2.3 Mehta et al’s Ranking Scheme

Given an attack model M = (S, τ , s0, l), the transition probability from each
state is divided into d and 1-d, modelling respectively that an attacker is dis-
covered and isolated from the system, or that the attacker remains undetected
and proceeds to the next state with his intrusion. Similar to PageRank, the rank
of a state in an attack model is defined to be the probability of the system be-
ing taken to that state by a sequence of exploits. The ranks of all states are
computed using the method for computing PageRank described in Section 2.2.
Breadth first search starting from the initial system state s0 is then performed
for each atomic attack in τ to construct the transition matrix W . The only
adjustment from PageRank, where a transition from each state pointing to all
other states with probability 1-d equally divided amongst all other states, is that
a transition from each state pointing back to the initial state with probability
1-d is added to model the situation where an attacker is discovered and has to
restart the intrusion from the initial state.

3 Modelling Adversary and Intrusion Detection
Capability in Ranking Attack Models

Recall the discussion in Section 1. Unlike the web graph model adopted by
PageRank where the probability that a random surfer follows a link to the next
page is state independent, the likelihood of an attacker remaining undetected at a
state so as to exploit a vulnerability that takes the system to another state could
be considered to be influenced by the number of steps required to reach the state
from the starting position. Therefore we assume the probability of an attacker



72 L. Lu et al.

remaining undetected at a state decreases with number of steps required to reach
that state. The decreasing rate is not universal amongst all computer systems
but system specific as determined by each system’s intrusion detection ability.
Another important dissimilarity between a web surfing scenario and a system
intrusion scenario is that exploits taking a computer system from one state to
another may be “selected” not at random but based on the adversary’s evaluation
on metrics such as cost, effort, probability of success and being detected, whereas
links taking a web surfer to the next page is always selected at random with equal
probabilities. These factors affect an adversary’s chance to reach his final goal,
and therefore should be considered when ranking states of attack models and
graphs.

In this section, we propose an adversary aware and intrusion detection aware
ranking scheme that addresses problems stated above. Being adversary aware,
the proposed scheme considers how an adversary selectively exploiting vulner-
abilities affect his chance to compromise the system. Being intrusion detection
aware, the proposed scheme considers system intrusion detection ability and how
it affects an adversary’s chance to reach his final goal.

3.1 Web Graph Adjustment

The transition model of web graph needs to be adjusted to provide a more
accurate simulation of computer system state transitions in relation to system
intrusion scenario. As in Mehta et al.’s ranking scheme, we add a transition from
each state pointing back to the initial state with probability 1-d, modelling the
situation where an intrusion is detected and needs to be restarted from initial
state. Furthermore, our ranking scheme differs from Mehta et al.’s scheme in
that

1. We assume that the probability of an attacker remaining undetected at a
state decreases with the number of steps required to reach that state, which
in an attack model can be represented as length of the intrusion path to
reach that state. The decreasing rate is determined by each system’s in-
trusion detection ability. In general, well-protected systems such as systems
implementing “defense-in-depth” have better ability to detect intrusions at
earlier stages and can be simulated with greater decreasing rates. As it is
difficult to predict the actual intrusion path, we simplify the situation by
assuming that at each state sj the probability of an attacker remaining un-
detected decreases at a rate proportional to l(s0, sj), length of the shortest
path between state sj and initial state s0. That is, the probability of an
attacker remaining undetected at state sj exponentially decays with length
of the shortest path from s0 to sj . Consequently, transition probability from
each state sj is divided into dj and 1-dj representing respectively the situ-
ation where an attacker remains undetected and is able to take the system
to another state, or where the attacker is discovered and has to restart the
intrusion. dj is the value of d exponentially decaying with l(s0, sj) where d
is the usual damping factor.



Attack Model Ranking Scheme 73

2. In a system intrusion scenario, it is more likely that an adversary has the
ability to prioritize and exploit “promising” vulnerabilities based on his past
experience and knowledge, other than probing the target network with brute-
force attack. This is modelled in our ranking scheme by assigning a separate
probability to each type of exploit. We divide each dj among state sj ’s
successors according to the probability that each type of exploit is selected to
take sj to one of its successors. The probability distribution can be obtained
from empirical data or other sources [12]. By doing so, that the adversary
probes the system with brute-force attack can be modelled by assigning equal
probabilities to all exploits. Similarly, intrusions by an experienced attacker
who exploits vulnerabilities selectively to maximize his chance of success can
be modelled by assigning higher probabilities to critical exploits.

3. We add a transition from each dangling state pointing back to the initial
state s0 with probability 1, modelling the situation that an adversary has
come to a state where he cannot proceed with the intrusion and has to restart
from initial state.

Fig. 2. Transitions in attack models

Consider the graph illustrated in Figure 1 as an example. Assume we have
some empirical data that enables us to estimate that whenever the system is in s1,
on average it will take the transition to s2, s3 and s4 2, 5 and 3 times, respectively,
out of ten. We can then place probabilities 0.2, 0.5 and 0.3 on these transitions.
Similarly, assume that the empirical data enables us to place probability 0.3, 0.4
and 0.3 to the transitions taking s3 to s4, s8 and s9 respectively, probability 0.8
and 0.2 to the transitions taking s4 to s5 and s8 respectively, and probability
probability 0.4 and 0.6 to the transitions taking s5 to s6 and s7 respectively.
Figure 2 illustrates the graph with adjusted transition model from web graphs,
which is a more accurate simulation of computer system state transition in an
intrusion scenario. The intensity of color for each state sj visualize the probability
dj that an intrusion is not detected at that state.



74 L. Lu et al.

3.2 Transition Matrix Construction

To rank an attack model M = (S, τ , s0, l), we need to construct the transition
matrix W = wij , the matrix representation of state transitions in an attack
model, where wij is the probability of the system being taken to state sj from
state si. Let τ(sj → si) denote the proportion between the number of exploits
that take the system from si to sj and the total number of exploits applicable
to si and l(si, sj) denote the length of the shortest path between si and sj, a
concrete algorithm for constructing W is presented in Algorithm 1. Depth-first-
search or model checker such as NuSMV [1] is first used to construct the N ×N
adjacency matrix AM where N is the number of reachable states in M , such
that AM [i, j] = 1 if state sj is one of the successor states of state si, otherwise
AM [i, j] = 0. Then the transition matrix W is constructed following the above
stated adjustment to state transitions in web graphs.

Reconsider the web graph illustrated in Figure 1 as a example. We now
construct the transition matrix W according to the adjustment illustrated in
Figure 2 using Algorithm 1. The generated W is shown in Equation 5 where
each di = d × e−λl(s1,si), d being the usual damping factor used in PageRank.

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 − d2 1 − d3 1 − d4 1 − d5 1 1 − d7 1 1
0.2 0 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0
0.3 0 0.3d3 0 0 0 0 0 0
0 d2 0 0.8d4 0 0 0 0 0
0 0 0 0 0.4d5 0 0 0 0
0 0 0 0 0.6d5 0 d7 0 0
0 0 0.4d3 0.2d4 0 0 0 0 0
0 0 0.3d3 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

3.3 Ranking Attack Models

Following Mehta et al.’s definition, we define the rank for each state sj in an
attack model as the probability that sj is reached from the initial state s0. This
can be recursively represented as

xp =
∑

q∈pa[p]

wqp × xq (6)

When stacking all xp into one vector x, Equation 6 can be represented as

x = Wx (7)

x in Equation 7 can be computed by multiple iterations through the following
equation until a stationary state is reached.

x(t) = Wx(t-1) (8)



Attack Model Ranking Scheme 75

Algorithm 1: GenerateW (M)

/* The function generates the adjusted transition matrix W from the
given attack model M. */

/* Input: M = (S, τ, s1, L): the attack model where s1 is the initial
state of M. */

/* Output: W = wij, where wij represents the probability of an
adversary exploiting the vulnerability that takes the system from
state sj to state si. */

begin

AM = Construct Adjacency Matrix From Model(M)

/* Set the probabilities of transitions to and from the initial
state */

for i = 1 to N do
if AM [1, i] = 1 then

wi1 = τ (s1 → si)
else

wi1 = 0
if ∀j, AM [i, j] = 0 then

w1i = 1
else

w1i = 1 − d × e−λl(s1,si)

/* Set the probabilities of transitions to and from other states
*/

for i = 2 to N do
for j = 2 to N do

if AM [j, i] = 0 then
wij = 0

else
wij = d × τ (sj → si) × e−λl(s1,sj)

end

If Equation 8 reaches a stationary state, i.e. x(t) = x(t−1), after a long run of
computation, all states in attack graph can be ranked. However, Equation 8 may
or may not reach a stationary state after a long run of computation. Moreover,
the result after multiple iterations may not be interesting (for example, the
stationary state limt→∞ x(t) may be a vector of all 0s). A detailed proof of
Theorem 1 is provided in Appendix A to justify that Equation 8 constructed
as above can always reach a non-trivial stationary state after multiple iterations.

Theorem 1. Equation 8 converges at a non-trivial vector x∗ where
∑

i x∗
i = 1

after multiple iterations.

Given an attack model and empirical data that enables us to evaluate probabil-
ities of different vulnerabilities being exploited, we first construct the transition



76 L. Lu et al.

matrix W as presented in Algorithm 1. We then assign random initial value to
the rank of each state, and run Equation 8 for multiple iterations until it reaches
the stationary state, guaranteed to exist by Theorem 1.

4 Implementation and Experiments

To evaluate the effectiveness of the proposed ranking scheme, we developed a
toolkit in Java that ranks attack models with the proposed scheme. We ran the
toolkit on the network example used by Mehta et al [16] and have the results
compared with their ranking scheme. In this section, we first provide implementa-
tion details of the toolkit, then present the network model and the experimental
results.

4.1 Implementation

The implementation toolkit is developed in Java but relies on NuSMV [1] for
model checking functionalities, such as generating the complete set of reachable
states given an initial state and the set of allowed state transitions. We made a
minor modification to the source code of NuSMV (see below) to achieve inter-
action with our Java-based implementation toolkit. In the following, we provide
details on the architecture of our implementation toolkit and its interaction with
the modified NuSMV.

Fig. 3. Toolkit Architecture

Toolkit Architecture. The architecture of our Java-based attack model rank-
ing toolkit is illustrated in Figure 3. A network model along with the security
specification written in NuSMV modelling language are fed to NuSMV. NuSMV
then generates the complete set of reachable states S in the given model. We also
modified NuSMV so that for each state s ∈ S it generates the set of successors.
The results generated as above are then saved as files, and feeded to the im-
plementation toolkit to construct the adjacency matrix for states in the model.
Combining the adjacency matrix, the empirical evaluation on the probability



Attack Model Ranking Scheme 77

that each type of vulnerability is exploited, and the evaluation on the system’s
intrusion detection ability, the implementation toolkit generates the transition
matrix W and ranks the states in the attack model as described in Section 3.

Toolkit Components

State Builder. With the NuSMV command print reachable states -v, we gen-
erate the set of reachable states from the specified system initial state which
are saved to a text file. The State Builder then reads the set of reachable
states into Java-specific representation from the generated text file.

Adjacency Matrix Builder. We modified NuSMV such that it generates and
saves into a text file the successor states of a given state with the -st com-
mand line option. Iteratively using the -st option for each reachable state,
the Adjacency Matrix Builder generates an N × N adjacency matrix AM
where N is the number of states in the attack model such that AM [i, j] = 1
if state j is one of the successor states of state i, otherwise AM [i, j] = 0.

Transition Matrix Builder. Combining the adjacency matrix, the empirical
evaluation on the probability that each type of vulnerability is exploited,
and the evaluation on the system’s intrusion detection ability, the Transition
Matrix Builder follows Algorithm 1 to generate the transition matrix W .

Attack Model Ranker. Given the transition matrix W , the Attack Model
Ranker computes the ranks for all reachable states in the attack model using
Equation 8 iteratively until the stationary is reached. A non-trivial stationary
state is guaranteed to exist after multiple iterations by Theorem 1.

4.2 The Network Model for Experiments

The network model used for our experiments is illustrated in Figure 4. There
are two target hosts ip1 and ip2, and a firewall separating them from the rest of
the Internet. As shown each host is running two of three possible services (ftp,
sshd, database). We model the same 4 types of atomic attacks summarized in
Table 2 as in [15] [16] for comparable results. A detailed explanation of each
attack follows.

The intruder launches his attack starting from an external machine ipa that
lies outside the firewall. His eventual goal is to gain access to the database. For
that, he needs root access on the database server ip2.

Table 2. Atomic Attacks Modelled in the Sample Network

Attack Vulnerability Exploited
� sshd buffer overflow Some versions of ssh are vulnerable to buffer overflow
� ftp.rhosts Exploiting the vulnerability resulting from a writable ftp

home directory
� remote login Remote trust relation between machines
� local buffer overflow Some setuid root executables are vulnerable to buffer over-

flow



78 L. Lu et al.

We construct a finite state model of the network such that each state rep-
resents the system state including trust relation, connectivity, and adversary
privilege on each machine, and each state transition corresponds to a single
atomic attack which takes the system from one state to another.

Fig. 4. Network

Connectivity and Trust Relation. Connectivity models the connection be-
tween two machines. We denote the connectivity by a binary relation Reachable
⊆ Host × Host, where Reachable(h1, h2) = 1 if h1 can connect to h2, otherwise
Reachable(h1, h2) = 0, i.e. either there is no physical link between h1 and h2,
or the link is blocked by the firewall. Assuming the firewall policy is that the
ftp server (ip1) is publicly accessible while the database server (ip2) can only be
accessed internally, the connectivity relation is shown in Table 3. Similarly, we de-
note trust relation between machines by a binary relation Trust ⊆ Host×Host,
where Trust(h1, h2) = 1 if a user on h1 can login to h2 remotely without speci-
fying a password, Trust(h1, h2) = 0 otherwise. The trust relation is summarized
in Table 4.

The Adversary and Privilege. Privileges are {none, user, root}. There is
an ordering of privileges: none < user < root. The adversary has root on ipa

and no privileges on other machines initially. We use the function plvlA(H) :
Hosts → {none, user, root} to denote the level of privilege that intruder A has
on machine H .

Vulnerabilities and Atomic Attacks. We model the same 4 types of attacks
as in [15] [16], each taking the modelled network from one state to another as
described by the “effect” section of the attack. An attack is only applicable
when both the network precondition and intruder precondition are satisfied.
Throughout the following description, we denote source and target machine by
S and T . To simplify the notations, we use sshH , ftpH and localH to denote
the presence of a vulnerability by running ssh service, ftp service and a setuid
root executable respectively on host H .



Attack Model Ranking Scheme 79

Table 3. Connectivity

Reachable ipa ip1 ip2

ipa 1 1 0
ip1 1 1 1
ip2 1 1 1

Table 4. Trust Relation

Trust ipa ip1 ip2

ipa 1 0 0
ip1 0 1 1
ip2 0 1 1

1. sshd buffer overflow: Some versions of ssh services are vulnerable to a buffer
overflow attack that allows an intruder to obtain a root shell on the target
machine. Formally,
attack sshd-buffer-overflow is

intruder preconditions
[User-level privileges on host S]
plvlA(S) ≥ user

network preconditions
[Host T is running a vulnerable version of ssh service]
sshT

[Host T is reachable from S]
Reachable(S, T ) = 1

intruder effects
[Root-level privileges on host T]
plvlA(T ) = root

end
2. ftp .rhosts: With a writable home directory and an executable command

shell assigned to anonymous ftp users, an intruder can modify the .rhosts
file in the ftp home directory, so as to create a remote login trust relationship
between his machine and the target machine. Formally,
attack ftp-rhosts is

intruder preconditions
[User-level privileges on host S]
plvlA(S) ≥ user

network preconditions
[Host T is running a ftp service in a writable directory,
which gives a user shell to ftp users]
ftpT

[Host T is reachable from S]
Reachable(S, T ) = 1



80 L. Lu et al.

network effects
[Trust relation between the intruder’s machine and the target]
Trust(S, T ) = 1

end
3. remote login: Using an existing remote login trust relationship between two

machines, the intruder can login from his machine to the target and obtain
a user shell without supplying a password. Although remote login is usually
considered a legitimate operation by regular users, it is however an atomic
attack from an intruder’s viewpoint. Formally,
attack remote-login is

intruder preconditions
[User-level privileges on host S]
plvlA(S) ≥ user

network preconditions
[Host T trusts S]
Trust(S, T ) = 1
[Host T is reachable from S]
Reachable(S, T ) = 1

intruder effects
[User-level privileges on host T]
plvlA(T ) = user

end
4. local buffer overflow: The attacker exploits a buffer overflow vulnerability in

a setuid root executable to gain root access. Formally,
attack local-buffer-overflow is

intruder preconditions
[User-level privileges on host T]
plvlA(T ) ≥ user

network preconditions
[Host T runs a vulnerable version of a setuid root executable]
localT

intruder effects
[Root-level privileges on host T]
plvlA(T ) = root

end

4.3 Experimental Results Analysis and Evaluation

Let the security property be “intruder cannot gain root access on ip2”. We ran
our attack model ranking toolkit presented in Section 4.1, and visualized the
results with the graphViz package [3]. Figure 5 illustrates the result obtained
as such. For each state, the intensity of color is proportional to the rank of
that state. Any path in the graph from the root node to a leaf node represents
a sequence of exploits with which the intruder can achieve his final goal. It
can be seen that local buffer overflow and remote login are critical exploits as
each path from the root node to a leaf node has exploited them at least once.



Attack Model Ranking Scheme 81

After fixing either local buffer overflow or remote login, NuSMV asserts security
property “intruder cannot gain root access on ip2” to be true. On the other
hand, ftp.rhost and ssh buffer over flow are non-critical exploits as an intruder
can still reach his final goal without either of them.

S0

S8

IP1_ssh

S31

IP1_ftp

S9

IP2_ftp

S10

IP2_remote

S14

IP1_ftp IP1_ssh

S37

IP1_remote

S2

S3

IP2_ftp

S4

IP2_remote

S22

IP1_ssh

S5

IP2_remote

S24

IP1_ssh IP2_ftp

S26

IP1_ssh

S30

IP2_localIP2_ftpIP2_remote

S1

IP2_local

S28

IP1_sshIP2_remoteIP2_ftp

S18

IP2_local

S20

IP2_local

S11

IP2_remote

S15

IP1_ftpIP2_ftp

S6

IP2_local

S16

IP1_ftp IP2_ftpIP2_remote

S36

IP1_remote

S7

IP2_local

S17

IP1_ftp IP2_remote

S38

IP1_remoteIP2_ftp

S12

IP2_local

S40

IP1_remote

S13

IP2_local

S42

IP1_remote

IP1_localIP2_ftpIP2_remote

IP1_localIP2_remoteIP1_localIP2_ftp

S32

IP2_local

IP1_local

S34

IP2_local

S23

S25

IP2_ftp

S27

IP2_remote

S29

IP2_remote IP2_ftp

S19

IP2_local

S21

IP2_local

IP1_local IP1_ssh

S39

IP2_ftp

S41

IP2_remote

IP1_local IP1_ssh

S43

IP2_remote IP1_local IP1_sshIP2_ftp

S33

IP2_local

IP1_local IP1_ssh

S35

IP2_local

S0

S7

IP1_ftp

S10

IP1_remote

S2

S3

IP2_ftp

S4

IP2_remote

S5

IP2_remote IP2_ftp

S6

IP2_local

S1

IP2_local

IP1_local

S11

IP2_ftp

S12

IP2_remote

IP1_local

S13

IP2_remote IP1_local IP2_ftp

S8

IP2_local

IP1_local

S9

IP2_local

S0

S1

IP1_ssh

S2

IP2_remote

S3

IP2_local

Fig. 5. Comparison of Ranked Attack Models. (a) The complete ranked attack model
(b) Attack Model after fixing up the SSH vulnerability (c) Attack Model after fixing
FTP vulnerability.

To investigate how an attacker selectively exploiting vulnerabilities affects his
chance of compromising the system, we vary the probability assigned to each
type of exploit and have other exploits divide the remaining probability equally.
Changes to the ranks of states resulting from varying the probabilities of the
exploits reflects how an attacker selectively exploiting vulnerabilities affects his
chance to compromise the system. We also set the rate by which probability of
an intrusion remaining undetected decays with the shortest path to 0, so that
changes to the rank of a state are the result only of varying the probabilities of
the exploits. The experimental result is plotted in Figure 6 where the Y-axis rep-
resents the total rank of error states, i.e. the probability of an adversary reaching
his goal. It can be seen that the total rank of error states increases as the at-
tacker prioritize critical exploits local buffer overflow and remote login, modelled
by assigning higher probabilities to the two attacks. Similarly, the adversary’s



82 L. Lu et al.

chance to succeed decreases as he prioritize non-critical exploits ftp.rhosts and
sshd buffer overflow. In general, our scheme produces a higher rank when the
attacker prioritize critical exploits and hence has better chance to succeed. The
rank produced by our scheme joins the rank by Mehta’s scheme at the equal
probability point, i.e. where all exploits are assigned equal probabilities.

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Probability that each type of attack is exploited

T
o

ta
l 
R

a
n

k
 o

f 
E

rr
o

r 
S

ta
te

s

Mehta's Ranking Scheme

SSHd

FTP.rhost

Remote Login

Local Buffer Overflow

Fig. 6. Rank varies with attack probabilities

To investigate the effect that probability of an intrusion remaining undetected
decays at a rate proportional to length of the shortest path from initial state,
we vary the decaying rate λ while assigning equal probabilities to all exploits.
The experimental result is plotted in Figure 7. It can be seen that the total rank
of error states increases as the decaying rate decreases. This corresponds to the
fact that an attacker has less chance of success on well-protected systems such
as systems implementing “defense-in-depth” which at each step of the intrusion
and thus on the whole has a higher probability of being able to discover and
thwart the intrusion. The ranks produced by our ranking scheme consistently
remain lower than the rank by Mehta’s scheme, resulting from the decaying of
probability that an adversary remains undetected and is able to proceed.

Figure 8 plots the experimental result by the overall effect of various decaying
rates and varying probability assigned to each type of exploit (still other exploits
divide remaining probability equally). It can be seen that ranking of system
states is dominated by decaying of probability that intrusion remains undetected.
Variation in probability assigned to each type of exploit only affects ranking
of states to a minor extent. It can also be see that, the greater the decaying
rate is, the less variation in probability assigned to each type of exploit affects
ranking of states. The result reveals that deployment of well-protected system
offsets experienced intruder’s strategy in selectively exploiting vulnerabilities to
maximize his chance of success, lowering his chance of success to no more than
that of brute-force type of attack.



Attack Model Ranking Scheme 83

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Decaying Rate

T
o

ta
l 
R

a
n

k
 o

f 
E

rr
o

r 
S

ta
te

s

Our Ranking Scheme

Mehta's Ranking Scheme

Fig. 7. Rank varies with decaying rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Probability that sshd is exploited

T
o

ta
l 

R
a

n
k

 o
f 

E
rr

o
r 

S
ta

te
s

Decaying Rate = 0.01

Decaying Rate = 0.05

Decaying Rate = 0.1

Decaying Rate = 0.5

Decaying Rate = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Probability that ftp.rhost is exploited

T
o

ta
l 

R
a

n
k

 o
f 

E
rr

o
r 

S
ta

te
s

Decaying Rate = 0.01

Decaying Rate = 0.05

Decaying Rate = 0.1

Decaying Rate = 0.5

Decaying Rate = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Probability that remote login is exploited

T
o

ta
l 

R
a

n
k

 o
f 

E
rr

o
r 

S
ta

te
s

Decaying Rate = 0.01

Decaying Rate = 0.05

Decaying Rate = 0.1

Decaying Rate = 0.5

Decaying Rate = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Probability that local buffer overflow is exploited

T
o

ta
l 

R
a

n
k

 o
f 

E
rr

o
r 

S
ta

te
s

Decaying Rate = 0.01

Decaying Rate = 0.05

Decaying Rate = 0.1

Decaying Rate = 1

Decaying Rate = 0.5

Fig. 8. Rank varies with decaying rate and attack probabilities

The experimental results and analysis presented above demonstrates the ad-
vantage and application of the proposed ranking scheme. Firstly, it considers
the effect on ranking of system states by an intruder selectively exploiting vul-
nerabilities to maximize his chance of success. Secondly, it is able to model the
effect on ranking of system states by system intrusion detection ability that
aims at thwarting exploits of vulnerabilities that take the system to another
state where the intruder gains an elevated privilege. Therefore, the proposed
ranking scheme can rank attack models more accurately, and provide more re-
alistic evaluation on the probability that a system is in a compromised state.



84 L. Lu et al.

Intuitively, the probability of a system being in a compromised state increases
with the probability that an intruder is able to prioritize critical exploits, and
with weakening system intrusion detection ability; however, our ranking scheme
provides a quantitative measure for the increase. The proposed scheme can also
assist network researchers and architects in network design and analysis, e.g.
determining the minimum intrusion detection strength required to thwart the
best effort in selectively exploiting vulnerabilities by intruders.

5 Conclusion

As the size and complexity of attack models/graphs usually greatly exceed
human ability to visualize, understand and analyze, ranking of states is often
required to identify important portions of attack models/graphs. Mehta et al
proposed a ranking scheme based on the PageRank algorithm used by Google to
measure importance of web pages on World Wide Web. We extend their scheme
by modelling an attacker selectively exploiting vulnerabilities to maximize his
chance of compromising the system, and intrusion detection ability of computer
systems detecting and preventing attackers to exploit system vulnerabilities.
With the proposed ranking scheme, evaluation on system intrusion detection
ability or attackers’ ability in relation to probabilistically exploit vulnerabilities,
when available from for example empirical data or log statistics, can be used
to obtain more accurate ranks of computer system states modelled by attack
models and attack graphs.

References

1. NuSMV: a new symbolic model checker. http://nusmv.irst.itc.it/.
2. A. Y. NG, A. X. Zheng, and M. I. Jordan. Link analysis, eigenvectors and stabil-

ity. In Proceedings of International Conference on Research and Development in
Information Retrieval (SIGIR 2001), New York, 2001. ACM.

3. AT&T Research. http://www.graphviz.org/.
4. B. B. Madan, K. G. Popstojanova, K. Vaidyanathan, and K. S. Trivedi. A method

for modeling and quantifying the security attributes of intrusion tolerant systems.
In Dependable Systems and Networks-Performance and Dependability Symposium,
number 167-186, 2004.

5. C.A. Phillips and L. P. Swiler. A graph based system for network vulnerability
analysis. In Proceedings of the DARPA Information Survivability Conference and
Exposition, 2000.

6. G. H. Golub and V. Loan. Matrix computation. The Johns Hopkins University
Press, 1993.

7. J. Dawkins and J. Hale. A systematic approach to multi-stage network attack
analysis. In Proceedings of the Second IEEE International Information Assurance
Workshop, 2004.

8. M. Bianchini, M. Gori, and F. Scarsell. Inside PageRank. ACM Transactions on
Internet Technology, 5(1):92–118, Feb 2001.

9. M. Dacier, Y. Deswarte, and M. Kaaniche. Quantitative assessment of operational
security: Models and tools. Technical Report 96493, LAAS, May 1996.



Attack Model Ranking Scheme 85

10. O. Sheyner, J. Haines S. Jha, R. Lippmann, and J. Wing. Automated generation
and analysis of attack graphs. In Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA, May 2002.

11. Y. Deswarte R. Ortalo and M. Kaaniche. Experimenting with quantitative evalua-
tion tools for monitoring operational security. Software Engineering, 25(5):633–650,
1999.

12. R. Ortalo, Y. Deshwarte, and M. Kaaniche. Experimenting with quantitative eval-
uation tools for monitoring operational security. In IEEE Transactions on Software
Engineering, pages 71–79, 1999.

13. S. Brin, L. Page, R. Motwani, and T. Winograd. The PageRank citation ranking:
Bringing order to the Web. Technical Report 1999-66, Standford University, 1999.

14. S. Jha and J. Wing. Survivability analysis of networked systems. In 23rd Interna-
tional Conference on Software Engineering(ICSE01), number 03-07, 2001.

15. S. Jha, O. Sheyner, J. Wing. Two Formal Analysis of Attack Graphs. In 15th IEEE
Computer Security Foundations Workshop (CSFW’02), page 49. IEEE, 2002.

16. V. Mehta, C. Bartzis, H. Zhu, E. Clarke and J. Wing. Ranking Attack Graphs. In
Proceeding of the 9th International Symposium On Recent Advances In Intrusion
Detection, Hamburg, Germany, September 2006. Springer.

A Proof of Theorem 1

Lemma 1. Each column of the transition matrix W constructed by Algorithm
1 sums to 1, i.e.

∑N
i=1 wi,j = 1.

Proof of the above lemma follows directly the way by which W is constructed.

Theorem 1. Equation 8 converges at a non-trivial vector x∗ where
∑

i x∗
i = 1

after multiple iterations.

Proof: Consider a linear transformation of xp defined in Equation 2. Let

x′
p = c1 × xp + c2 = c1 ×

∑
q∈pa[p]

xq × wpq + c2 (9)

where c2 = 1−c1
N . Stacking all x′

p into one vector x′ and using iterative expression,
Equation 9 is represented as

x(t)’ = c1Wx(t-1)’ + c2ΠN (10)

A well-known theory states that the condition that MX(K +1) = NX(K)+b
converges at (M − N)−1b is ρ(M−1N) < 1 [6].

Here we have M = I and N = c1W . Therefore ρ(M−1N) = ρ(c1W ) =
c1ρ(W ). Assume x is an eigenvector of W and λ is the associated eigenvalue,
then Wx = λx, i.e. ∀i,

∑N
j=1 wi,jxi = λxi. Extracting the common factor xi, this

can be written as xi(
∑N

j=1 wi,jxi − λ) = 0. As x is an eigenvector, there exist
non-zero xi. Therefore, λ =

∑N
j=1 wi,jxi. Following lemma 1,

∑N
i=1 wi,j = 1,

we know that λ =
∑N

j=1 wi,jxi = 1. Therefore, ρ(W ) = 1. On the other hand,



86 L. Lu et al.

0 < c1 < 1. As a result, ρ(M−1N) = c1ρ(W ) < 1, and hence Equation 10
converges at a stationary state limt→∞ x(t)’.

We then prove by induction on t that the stationary state ‖ limt→∞ x(t)’‖1
of Equation 10 is a unit vector, i.e. ‖ limt→∞ x(t)’‖1 = 1.

1. For t = 0, Let x(0)’ = 1
N ΠN ; hence ‖x(0)’‖1 = 1.

2. Let t > 0 and assume by induction that ‖x(t)’‖1 = 1. Then, based on the
definition of stochastic matrices,

‖x(t+1)’‖ = Π ′
Nx(t+1)’ = c1Π

′
NWx(t)’ + c2Π

′
NΠN

= c1Π
′
Nx(t)’ + (1 − c1) = 1 (11)

We hence proved that with the initial unit vector x(0)’ = 1
N ΠN , ‖ limt→∞

x(t)’‖1 = 1. As stationary solution of Equation 10 is independent of the
initial value x(0)’ [6], it can be concluded immediately that ‖ limt→∞ x(t)’‖1
= 1 with any initial vector x(0)’. Note that it can be seen from Equation 9
that x′

p > 0; hence ‖x(t)’‖1 =
∑N

p=1 x′
p = 1

The stationary state x(t) of Equation 2 can be retrieved from x(t)’ with
linear conversion x(t) = (x(t)’−c2)

c1
. x(t) is not trivial, because

N∑
p=1

xp =
N∑

p=1

x′
p − c2

c1
=

∑N
p=1 x′

p − N × c2

c1
=

1 − N × c2

c1
= 1 (12)

That is, the stationary state x(t) is a unit vector. �


	Introduction
	Our Contribution
	Related Work
	Paper Organisation

	Background and Preliminaries
	Attack Models and Attack Graph
	Web Graph and PageRank
	Mehta et al's Ranking Scheme

	Modelling Adversary and Intrusion Detection Capability in Ranking Attack Models
	Web Graph Adjustment
	Transition Matrix Construction
	Ranking Attack Models

	Implementation and Experiments
	Implementation
	The Network Model for Experiments
	Experimental Results Analysis and Evaluation

	Conclusion
	Proof of Theorem 1

