
Efficient Certificateless Signature Schemes

Kyu Young Choi, Jong Hwan Park, Jung Yeon Hwang, and Dong Hoon Lee

Center for Information Security Technologies(CIST),
Korea University, Seoul, Korea

{young,decartian,videmot}@cist.korea.ac.kr
donghlee@korea.ac.kr

Abstract. Recently, in order to eliminate the use of certificates in cer-
tified public key cryptography and the key-escrow problem in identity
based cryptography, the notion of certificateless public key cryptogra-
phy was introduced. In this paper, to construct an efficient certificateless
signature (CLS) scheme, we present a new approach compactly and or-
thogonally combining short signatures using bilinear maps. Our approach
is conceptually simple but effective to improve efficiency greatly. In the
proposed CLS scheme a full private key of a user is a single group ele-
ment and signature verification requires only one pairing operation. In
addition, our CLS scheme has a flexible structure which can be easily
extended to a certificateless signature scheme with additional properties
such as certificateless ring and blind signature schemes.

1 Introduction

In a traditional public key cryptography (PKC), a random public key of a user is
associated with the user by a certificate, that is, a signature of trusted Certificate
Authority (CA) on the public key. Inevitably this feature causes CA to require
a large amount of storage and computing time managing the certificates [8]. To
simplify the certificate management process, Shamir introduced the concept of
identity based cryptography (ID-PKC) where the certificate of a random public
key does not be needed any more since publicly known information such as
e-mail address is used as user’s public key [15]. However, an inherent problem
of ID-PKC is that a Key Generation Center (KGC) generates any user’s private
key using a master-key of KGC. Obviously a malicious KGC is able to forge the
signature of any signer. This is called “key escrow” problem. In 2003, Al-Riyami
and Paterson introduced the concept of certificateless public key cryptography
(CL-PKC) which eliminates the use of certificates in PKC and solve the key
escrow problem in ID-PKC [1]. The basic idea of CL-PKC is to construct a
public/private key pair for a user by combining a master key of KGC with
a random secret value generated by the user. In this paper we concentrate on a
certificateless signature (CLS) scheme.

Despite of the usefulness of a CLS scheme, it is not easy to construct a secure
and efficient CLS scheme because the construction of a CLS scheme conceptually
involves mechanisms to authenticate an identity of a user, the public key of the

J. Katz and M. Yung (Eds.): ACNS 2007, LNCS 4521, pp. 443–458, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



444 K.Y. Choi et al.

user, and a message to be signed at the same time. For the security model
of a CLS scheme reflecting such authentication mechanisms, unlike that of an
ordinary signature scheme, we should consider two types of forgers, Type I and
Type II forgers : A Type I forger represents a normal third party attacker who
has no access to the master key but is allowed to replace public keys of users.
A Type II forger represents a malicious KGC who is equipped with the master
key but is not able to replace public keys. However, although many researches
on a CLS scheme [1,17,12,9,10,20,11,6] are performed, only few schemes [10,20]
are known to be secure against these forgers.

Naturally, such complicated authentication mechanisms should be a critical
consideration to design an efficient CLS scheme. To improve efficiency it would
be desirable to integrate the functionalities of authentication imbedded in a CLS
scheme compactly while maintaining security.

Our Results. In the paper, to construct an efficient CLS scheme, we first present
novel combinations of short signature schemes using a bilinear group: In the
key setup phase, the Boneh-Shacham-Lynn short signature [5] or Boneh-Boyen’s
short signature [2] is used for KGC to generate a signature, that is, a partial
private key corresponding to an identity of a user. The Boneh-Boyen short sig-
nature [2] is used for the user to generate a full private key, which plays a crucial
role of a private self-certificate on the public-key of his/her choice, using the
previous partial private key. In our scheme, signature verification requires only
one pairing operation, compared to at least four pairing operations in the pre-
vious works [10,12,20], and signature generation requires no pairing operation.
Moreover, a full private key for a user, which is computed by applying two short
signature schemes sequentially, is just a single group element.

The compact feature of a full private key of a user, which aggregates two
signatures, provides the minimum loss against key exposure. In other words,
even if an adversary obtains a full private key, he cannot extract the partial
private key from the full private key which is a signature on the partial private
key. Because the partial private key is used as a long-lived key this provides a
proactive property such that the user’s public key can be replaced periodically.

We show that our CLS schemes are provably secure in the random oracle
model. For security model we consider a realistic model where a Type I forger is
not allowed to obtain a valid signature for the public key replaced by the forger.
In practical environments, it is too strong to assume that the signer knows the
private key associated with the replaced public key (by others). This model was
already developed in several recent works [11,20].

Finally our method provides flexibility for extending to CLS schemes with
additional properties such as certificateless blind and ring signature schemes.
In fact, applying a similar method in [18,19,7] to our schemes we can directly
construct certificateless ring and blind signature schemes.

Related Works. The first CLS scheme was proposed by Al-Riyami and Pater-
son [1]. Unfortunately, it was found insecure against a Type I forger by Huang
et al. [10]. They also proposed a CLS scheme and proved its security in the



Efficient Certificateless Signature Schemes 445

random oracle model. In [17], Yum and Lee proposed a generic construction of
CLS. However, Hu et al. presented that their construction is insecure against a
Type I forger and improved it. Gorantla and Saxena [9] proposed an efficient
CLS scheme. However, it was also found insecure against a Type I forger by Cao
et al. [6]. In [12], Li et al. proposed a CLS scheme. It seems to be secure but a
security analysis for the scheme was not formalized. Recently, Zhang et al. [20]
proposed a CLS scheme and showed its security in the random oracle model.

Organization. The rest of this paper is organized as follows. In Section 2, we
describe some fundamental backgrounds and define our security model for a CLS
scheme. In Section 3 we propose an efficient CLS scheme and its security proofs.
In Section 4 we propose a CLS scheme with a pairing operation and its security
proofs. In Section 5, we analyze the performances of the proposed CLS schemes.
In Section 6, we present extension of our CLS schemes. We conclude the paper
in Section 7.

2 Preliminaries

We review some fundamental backgrounds required in this paper, namely bilinear
pairing, certificateless signature scheme.

2.1 Bilinear Pairings and Some Problems

Let G1 be a cyclic additive group of prime order q and G2 be a cyclic multi-
plicative group of same order q. We assume that the discrete logarithm problems
(DLP) in both G1 and G2 are intractable.

Admissible Bilinear Map. We call e : G1 × G1 → G2 an admissible bilinear
map if it satisfies the following properties:

– Bilinearity: e(aP, bQ) = e(P, Q)ab for all P, Q ∈ G1 and a, b ∈ Z∗
q .

– Non-degenerancy: There exists P ∈ G1 such that e(P, P ) �= 1.
– Computability: There exists an efficient algorithm to compute e(P, Q) for all

P, Q ∈ G1.

The modified Weil and Tate pairings in elliptic curve are examples of the admis-
sible bilinear maps. We consider following problems in the group G1.

Computational Diffie-Hellman (CDH) problem: The CDH problem is to
compute abP when given P , aP and bP for some a, b ∈ Z∗

q .

Inverse Computational Diffie-Hellman (ICDH) problem: The ICDH
problem is to compute a−1P when given P and aP for some a ∈ Z∗

q .

Modified Inverse Computational Diffie-Hellman (mICDH) problem:
The mICDH problem is to compute (a + b)−1P when given b, P and aP for
some a, b ∈ Z∗

q .



446 K.Y. Choi et al.

The CDH, ICDH and mICDH problems are polynomial time equivalent [16].
We assume that the CDH, ICDH and mICDH problems in G1 are intractable.
That is, there is no polynomial time algorithm solving these problems with non-
negligible probability.

2.2 Certificateless Signature Scheme

We briefly recall a formal definition of a certificateless signature scheme [10].
The CLS scheme is specified by seven polynomial time algorithms.

Setup: This algorithm takes a security parameter k as input and returns the
system parameters params and a secret master key master-key.

Partial-Private-Key-Extract: This algorithm takes params, master-key and
a user’s identity ID as input. It returns a partial private key DID correspond-
ing to the user.

Set-Secret-Value: This algorithm takes the security parameter k and a user’s
identity ID as input. It returns the user’s secret value xID.

Set-Public-Key: This algorithm takes a user’s secret value xID as input. It
returns the user’s public key PKID.

Set-Private-Key: This algorithm takes a user’s partial private key DID and
public key PKID, and his secret value xID as input. It returns the user’s
full private key SKID.

Sign: This algorithm takes params, a message m, and a user’s full private key
SKID as input. It returns a signature σ.

Verify: This algorithm takes params, a message m, a user’s identity ID, a
public key PKID, and a signature σ as input. It returns 0 or 1. With output
value 1, we say that σ is a valid signature of a message m.

The Setup and Partial-Private-Key-Extract algorithms are performed by a
Key Generation Center (KGC). Once a partial private key is given to a user via
secure channel, the user runs the Set-Secret-Value algorithm and chooses a
secret value to generate its own public/private key pair.

The security model of CLS is different from that of a normal signature scheme.
As defined in [1,10,20], we should consider two types of forger for a CLS scheme,
a Type I forger FI and a Type II forger FII . The forger FI represents a nor-
mal third party attacker against the CLS scheme. That is, FI is not allowed
to access to the master-key but FI may request public keys and replace public
keys with values of its choice. The forger FII represents a malicious KGC who
generates partial private key of users. The forger FII is allowed to have access
to the master-key but not replace a public key. We consider two games against
the Type I and Type II forgers as follows.

Game I. The first game is performed between a challenger C and the Type I
forger FI for a certificateless signature scheme Π as follows.



Efficient Certificateless Signature Schemes 447

– Initialization: C runs Setup algorithm and generates a master secret key
master-key, public system parameters params. C keeps master-key secret
and then gives params to FI . Note that FI does not know the master key
master-key.

– Queries: FI may adaptively issue the following queries to C.
• ExtrPartSK(ID): When FI requests the partial private key for a user

with identity ID, C responds the user’s partial private key DID running
Partial-Private-Key-Extract algorithm.

• ExtrFullSK(ID): When FI requests the full private key for a user with
identity ID, C responds the user’s full private key SKID running
Partial-Private-Key-Extract, Set-Secret-Value and Set-Private-
Key algorithms.

• ReqestPK(ID): When FI requests the public key for a user with identity
ID, the challenger C responds the user’s public key PKID running Set-
Secret-Value and Set-Public-Key algorithms.

• RepalcePK(ID): FI can replace the original public key PKID to a new
public key PK ′

ID chosen by him.
• SIGN(m, ID): When FI requests a signature on a message m for a user

with identity ID, the challenger C responds a valid signature σ for m
running Sign algorithm with the matching public key PKID for ID. If
the public key PKID has been replaced earlier by FI , then C cannot know
the corresponding private key SKID and thus the signing oracle’s answer
may not be correct. In such case, to correctness of the signing oracle’s
answer, we assume that FI additionally submits the corresponding secret
information to the signing oracle.

– Output: Eventually, FI outputs (IDt, mt, σt), where IDt is the identity of
a target user, mt is a message, and σt is a signature for mt. FI wins the
game if
1. ExtrPartSK(IDt), ExtrFullSK(IDt), and SIGN(mt, IDt) queries have

never been queried.
2. Verify(params, mt, IDt, PKt, σt) outputs 1, that is, the signature σt for

a message mt is valid under PKt which may be replaced by FI .

We define SuccΠFI
to be the success probability that FI wins in the above game.

Game II. The second game is performed between a challenger C and the Type
II forger FII for a certificateless signature scheme Π as follows.

– Initialization: C runs Setup algorithm and generates a master secret key
master-key, public system parameters params. The challenger C gives public
params and secret master-key to FII .

– Queries: FII may adaptively issue the following queries to C.
• ExtrFullSK(ID): When FII requests the full private key for a user with

identity ID, C responds the user’s full private key SKID running
Partial-Private-Key-Extract, Set-Secret-Value and Set-Private-
Key algorithms.



448 K.Y. Choi et al.

• RequestPK(ID): When FII requests the public key for a user with iden-
tity ID, the challenger C responds the user’s public key PKID running
Set-Secret-Value and Set-Public-Key algorithms.

• SIGN(m, ID): When FII requests a signature on a message m for a user
with identity ID, the challenger C responds a valid signature σ for m
running Sign algorithm with matching public key PKID for ID.

– Output: Eventually, FII outputs (IDt, mt, σt), where IDt is the identity of
a target user, mt is a message, and σt is a signature for mt. FII wins the
game if
1. ExtrFullSK(IDt) and SIGN(mt, IDt) queries have never been issued.

2. Verify(params, mt, IDt, σt) outputs 1, that is, the signature σt for a
message mt is valid under PKt.

We define SuccΠFII
to be the success probability that FII wins in the above game.

Note that FII does not need additional extraction query to obtain partial private
keys since the master key master-key is given to FII .

Definition 1. We say that a certificateless signature scheme Π is existentially
unforgeable against chosen message attacks, if for any polynomially bounded forg-
ers FI and FII, the success probabilities of both FI and FII are negligible. In
other words,

SuccΠFI
(k) < ε and SuccΠFII

(k) < ε

where k is the security parameter.

3 New Certificateless Signature Scheme

In this section, we propose a new efficient CLS scheme and prove the security of
the proposed scheme. We denote this CLS scheme by eCLS.

3.1 Our Construction

Setup. To generate system parameters and master key, run as follows:
1. Generate (G1, G2, e) where G1 and G2 are cyclic groups of prime order

q and e is an admissible bilinear map.
2. Choose a random s ∈ Z∗

q and a generator P of G1. Compute Ppub = sP .
3. Choose three cryptographic hash functions H1 : {0, 1}∗ → G1, H2 :

G1 → Z
∗
q , and H3 : {0, 1}∗ → Z

∗
q .

Return the private master-key= s and the system parameters params=
{e, G1, G2, q, P, Ppub, H1, H2, H3}. We assume that params is available to all
users.

Partial-Private-Key-Extract. On input params, master-key, and identity
IDA of user A. Compute QA = H1(IDA) and return a partial private key
DA = sQA for user A.



Efficient Certificateless Signature Schemes 449

Set-Secret-Value. On input k and IDA, choose a random value xA ∈ Z∗
q and

return xA as A’s secret value.
Set-Public-Key. On input params and xA, compute RA = xAP and return

the public key PKA = RA.
Set-Private-Key. On input xA, RA, and DA. Compute yA = H2(RA) and

SA = 1
xA+yA

DA. Return the (full) private key SKA = SA.
Sign. On input params, IDA, SA, and a message m, perform the following steps:

1. Choose a random r ∈ Z∗
q .

2. Compute U = rQA = rH1(IDA).
3. Set h = H3(m, U).
4. Compute V = (r + h)SA.
5. Return σ = (U, V ) as the signature on the message m.

Verify. On input params, IDA, RA, m, and σ = (U, V ). Compute QA =
H1(IDA), yA = H2(RA), and h = H3(m, U). Check if e(V, RA + yAP ) =
e(U + hQA, Ppub) holds. If the equation holds, it outputs 1, otherwise 0.

We can easily show that our CLS scheme satisfies completeness property as
follows:

e(V, RA + yAP ) = e((r + h)SA, xAP + yAP )
= e((r + h)(xA + yA)−1sQA, (xA + yA)P )
= e((r + h)sQA, P )
= e((rQA + hQA, sP ) = e(U + hQA, Ppub).

3.2 Security Analysis

Theorem 1. Our certificateless signature scheme eCLS is existentially
unforgeable against a Type I forger in random oracle model under the CDH
assumption.

Proof. Suppose there exists a forger FI which has advantage in attacking our CLS
scheme eCLS. We want to build an algorithm C that uses FI to solve the CDH
problem. C receives a CDH instance (P, aP, bP ) for randomly chosen a, b ∈ Z∗

q

and P ∈ G1. Its goal is to compute abP . C runs FI as a subroutine and simulates
its attack environment. C sets Ppub = aP where a is the master key, which is
unknown to C, and gives system parameters to FI . Without loss of generality, we
assume that any extraction (ExtrPartSK, RequestPK, ExtrFullSK) and signature
(SIGN) queries are preceded by H1 query, and the SIGN and ExtrFullSK queries
are preceded by RequestPK query. To avoid collision and consistently respond to
these queries, C maintains four lists LH1 , LH2 , LH3 , LK = {〈ID, PKID, xID, c(=
0 or 1)〉} which are initially empty. C then simulates the oracle queries of FI as
follows:

– H1 query: Suppose FI makes at most qH1 queries to H1 oracle. First, C
chooses j ∈ [1, qH1 ] randomly. When FI makes an H1 query on IDi where
1 ≤ i ≤ qH1 , if i = j (we let IDi = ID∗ at this point), C returns QIDi = bP
and adds 〈IDi, QIDi , ki = ⊥〉 to LH1 . Otherwise C picks a random ki ∈ Z∗

q

and returns QIDi = kiP , and adds 〈IDi, QIDi , ki〉 to LH1 .



450 K.Y. Choi et al.

– H2 query: When FI makes this query on PKIDi , if the list LH2 contains
〈PKIDi , yIDi〉, C returns yIDi . Otherwise, C picks a random yIDi ∈ Z∗

q and
returns yIDi , and adds 〈PKIDi , yIDi〉 to LH2 .

– H3 query: When FI makes this query on (mi, Ui), if the list LH3 contains
〈mi, Ui, hi〉, C returns hi. Otherwise C picks a random hi ∈ Z∗

q and returns
hi, and adds 〈mi, Ui, hi〉 to LH3 .

– ExtrPartSK(IDi) query: When FI makes this query on IDi, if IDi �= ID∗, C
finds 〈IDi, QIDi , ki〉 in LH1 , and returns DIDi = kiaP . Otherwise C outputs
FAIL and aborts the simulation.

– RequestPK(IDi) query: When FI makes this query on IDi, if the list LK

contains 〈IDi, PKIDi , xIDi , c〉, C returns PKIDi . Otherwise, C picks a ran-
dom xIDi ∈ Z∗

q . Then C returns PKIDi = xIDiP and adds 〈IDi, PKIDi ,
xIDi , 1〉 to LK .

– ExtrFullSK(IDi) query: When FII makes this query on IDi, if IDi = ID∗, C
outputs FAIL and aborts the simulation. Otherwise, C finds 〈IDi, QIDi , ki〉
and 〈IDi, PKIDi , xIDi , c〉 in LH1 and LK , respectively. C performs as follows:

• If the list LH2 contains 〈PKIDi , yIDi〉, C returns SKIDi = 1
xIDi

+yIDi
kiaP .

• If the list LH2 does not contain 〈PKIDi , yIDi〉, C picks a random yIDi ∈
Z
∗
q and returns SKIDi = 1

xIDi
+yIDi

kiaP , and adds 〈PKIDi , yIDi〉 to
LH2 .

– ReplacePK(IDi, PK ′
IDi

) query: When FI makes this query on (IDi, PK ′
IDi

),
C performs as follows:

• If the list LK contains 〈IDi, PKIDi , xIDi , c〉, C sets PKIDi = PK ′
IDi

and c = 0.
• If the list LK does not contain 〈IDi, PKIDi , xIDi , c〉, C makes a Re-

questPK query on IDi itself. Then C sets PKIDi = PK ′
IDi

and c = 0.
– SIGN(m, IDi) query: When FI makes this query on (IDi, m), C finds 〈IDi,

QIDi , ki〉 and 〈IDi, PKIDi , xIDi , c〉 in LH1 and LK , respectively. Then C
performs as follows:

• If c = 1, C picks two random ri, hi ∈ Z
∗
q and finds 〈PKIDi , yIDi〉 in LH2 .

If it does not exist, C picks a random yIDi ∈ Z∗
q and adds 〈PKIDi , yIDi〉

to LH2 . C computes Ui = ri(xIDi + yIDi)P − hiQIDi and Vi = riaP . C
then returns (Ui, Vi) and adds 〈mi, Ui, hi〉 to LH3 (C outputs FAIL and
aborts the simulation if the 〈mi, Ui, hi〉 has already been defined in the
list LH3).

• If c = 0, C gets additionally information x′
IDi

from FI . Using the x′
IDi

,
C then simulates as in the above case (c = 1).

Eventually, FI outputs a valid signature (IDt, mt, σt = (Ut, Vt)). If IDt �= ID∗,
C outputs FAIL and aborts the simulation. Otherwise, C finds 〈mt, Ut, ht〉 in
LH3 . Then by replays of C with the same random tape but different choices
of H3 (it is to apply the ’forking’ technique formalized in [14]), C gets another
valid signature tuple (IDt, mt, h

′
t, σt = (Ut, V

′
t )) such that ht �= h′

t. C finds
〈IDt, PKIDt , xIDt , c〉 in LK . If c = 0, that is, FI generated a public/private
key pair and replaced the public key of IDt. In such case, as the proof in [10],



Efficient Certificateless Signature Schemes 451

we assume that C keeps track of the public/private key pair generated by FI .
Hence, after C finds 〈PKIDi , yIDi〉 in LH2 , he can compute as follows:

(xIDt + yIDt)
Vt − V ′

t

ht − h′
t

= SKIDt = abP.

Therefore, if a Type I forger who can break our scheme eCLS exists, then an
attacker who solves the CDH problem exists. �

Theorem 2. Our certificateless signature scheme eCLS is existentially
unforgeable against a Type II forger in random oracle model under the mICDH
assumption.

Proof. Suppose there exists a forger FII which has advantage in attacking our
CLS scheme eCLS. We want to build an algorithm C that uses FII to solve the
mICDH problem. C receives a mICDH instance (P, aP, b) for randomly chosen
a, b ∈ Z∗

q and P ∈ G1. Its goal is to compute (a + b)−1P . C runs FII as a
subroutine and simulates its attack environment. C picks a random s ∈ Z

∗
q

and sets master-key= s. C then gives system parameters with master-key to
FII . Without loss of generality, we assume that any extraction (RequestPK,
ExtrFullSK) and signature (SIGN) queries are preceded by H1 query, and the
SIGN and ExtrFullSK queries are preceded by RequestPK query. To avoid collision
and consistently respond to these queries, C maintains four lists LH1 , LH2 , LH3 ,
LK = {〈ID, PKID, xID〉} which are initially empty. C then simulates the oracle
queries of FII as follows:

– H1 query: When FII makes this query on IDi, C picks a random ki ∈ Z∗
q

and returns kiP , and adds 〈IDi, ki〉 to LH1 .
– H2 query: When FII makes this query on PKIDi , if PKIDi = aP , C sets

yIDi = b and returns yIDi , and adds 〈PKIDi , yIDi〉 to LH2 . If the list LH2

contains 〈PKIDi , yIDi〉, C returns yIDi . Otherwise, C picks a random yIDi ∈
Z
∗
q and returns yIDi , and adds 〈PKIDi , yIDi〉 to LH2 .

– H3 query: When FII makes this query, C performs as in the proof of
Theorem 1.

– RequestPK(IDi) query: Suppose FII makes at most qPK queries to public
key request oracle. First, C chooses j ∈ [1, qPK ] randomly. When FII makes
a RequestPK query on IDi, if i = j (we let IDi = ID∗ at this point), C sets
PKIDi = aP and returns PKIDi , and adds 〈IDi, PKIDi , xIDi = ⊥〉 to LK .
Otherwise C picks a random xIDi and returns PKIDi = xIDiP , and adds
〈IDi, PKIDi , xIDi〉 to LK .

– ExtrFullSK(IDi) query: When FII makes this query on IDi, if IDi = ID∗,
C outputs FAIL and aborts the simulation. Otherwise, C finds 〈IDi, ki〉 and
〈IDi, PKIDi , xIDi〉 in LH1 and LK , respectively. C performs as follows:

• If the list LH2 contains 〈PKIDi , yIDi〉, C returns SKIDi = 1
xIDi

+yIDi
kisP .

• If the list LH2 does not contain 〈PKIDi , yIDi〉, C picks a random yIDi ∈
Z∗

q and returns SKIDi = 1
xIDi

+yIDi
kisP , and adds 〈PKIDi , yIDi〉

to LH2 .



452 K.Y. Choi et al.

– SIGN(m, IDi) query: When FII makes this query on (IDi, m), C finds 〈IDi,
QIDi , ki〉 and 〈IDi, PKIDi , xIDi〉 in LH1 and LK , respectively. C picks two
random ri, hi ∈ Z∗

q and finds 〈PKIDi , yIDi〉 in LH2 (if it does not exist, C
makes a H2 query on PKIDi itself). C computes (Ui = ri(PKIDi +yIDiP )−
hikiP , Vi = risP and returns (Ui, Vi), and adds 〈mi, Ui, hi〉 to LH3 (C out-
puts FAIL and aborts the simulation if the 〈mi, Ui, hi〉 has already been
defined in the list LH3).

Eventually, FII outputs a valid signature (IDt, mt, σt = (Ut, Vt)). If IDt �= ID∗,
C outputs FAIL and aborts the simulation. Otherwise, C finds 〈mt, Ut, ht〉 in
LH3 . Then, as in the proof of Theorem 1, C gets another valid signature tuple
(IDt, mt, h

′
t, σt = (Ut, V

′
t )) such that ht �= h′

t. Since C knows the master key s,
after C finds 〈IDt, kt〉 in LH1 , he can compute as follows:

Vt − V ′
t

kts(ht − h′
t)

=
1

a + b
P.

Therefore, if a Type II forger who can break our scheme eCLS exists, then an at-
tacker who solves the CDH problem exists. �

4 Certificateless Signature Scheme with a Pairing
Operation

In this section, we propose a CLS scheme with a pairing operation, and prove
the security of the proposed scheme. We denote this CLS scheme by oCLS.

4.1 Our Construction

Setup. To generate system parameters and master key, run as follows:
1. Generate (G1, G2, e) where G1 and G2 are cyclic groups of prime order

q and e is an admissible bilinear map.
2. Choose a random s ∈ Z∗

q and a generator P of G1. Compute Ppub = sP
and g = e(P, P ).

3. Choose three cryptographic hash functions H1 : {0, 1}∗ → Z
∗
q , H2 :

G1 → Z∗
q , and H3 : {0, 1}∗ → Z∗

q .
Return the private master-key= s and the system parameters params=
{e, G1, G2, q, g, P, Ppub, H1, H2, H3}. We assume that params is available to
all users.

Partial-Private-Key-Extract. On input params, master-key, and identity
IDA of user A. Compute qA = H1(IDA) and return a partial private key
DA = 1

s+qA
P for user A.

Set-Secret-Value. On input k and IDA, choose a random value xA ∈ Z∗
q and

return xA as A’s secret value.
Set-Public-Key. On input params and xA, compute QA = Ppub + H1(IDA)P

and RA = xAQA. Return the public key PKA = RA.



Efficient Certificateless Signature Schemes 453

Set-Private-Key. On input xA, RA, and DA. Compute yA = H2(RA) and
SA = 1

xA+yA
DA. Return the (full) private key SKA = SA.

Sign. On input params, IDA, SA, and a message m, perform the following steps:
1. Choose a random r ∈ Z∗

q .
2. Compute U = gr = e(P, P )r .
3. Set h = H3(m, U).
4. Compute V = (r + h)SA.
5. Return σ = (U, V ) as the signature on the message m.

Verify. On input params, IDA, RA, m, and σ = (U, V ). Compute QA =
(s + qA)P = Ppub + H1(IDA)P , yA = H2(RA), and h = H3(m, U). Check if
e(V, RA + yAQA) = Ugh holds. If the equation holds, it outputs 1,
otherwise 0.

We can easily show that our CLS scheme satisfies completeness property as
follows:

e(V, RA + yAQA) = e((r + h)SA, xA(Ppub + qAP ) + yA(Ppub + qAP ))

= e
(
(r + h)

1
(xA + yA)(s + qA)

P, (xA + yA)(s + qA)P
)

= e((r + h)P, P )
= e(P, P )r+h = Ugh.

4.2 Security Analysis

To prove the security of the oCLS, we review the k-CAA (Collusion Attack
Algorithm with k traitor) problem.

k-CAA [13] problem: The k-CAA problem is to compute 1
s+t0

P for some
t0 ∈ Z

∗
q when given

P, sP, t1, t2..., tk ∈ Z∗
q ,

1
s + t1

P , 1
s + t2

P ,..., 1
s + tk

P .

Theorem 3. Our certificateless signature scheme oCLS is existentially
unforgeable against a Type I forger in random oracle model under the k-CAA
assumption.

Proof. Suppose there exists a forger FI which has advantage in attacking our
CLS scheme oCLS. We want to build an algorithm C that uses FI to solve the
k-CAA problem. C receives a k-CAA instance (P, sP, t1, ..., tk, 1

s+t1
P, ..., 1

s+tk
P )

where k ≥ qH1 (we suppose FI makes at most qH1 queries to H1 oracle). Its
goal is to compute 1

s+t0
P for some t0. C runs FI as a subroutine and simu-

lates its attack environment. C sets g = e(P, P ) and Ppub = sP where s is the
master key, which is unknown to C, and gives system parameters to FI . With-
out loss of generality, we assume that any extraction (ExtrPartSK, RequestPK,
ExtrFullSK) and signature (SIGN) queries are preceded by H1 query, and the



454 K.Y. Choi et al.

SIGN and ExtrFullSK queries are preceded by RequestPK query. To avoid colli-
sion and consistently respond to these queries, C maintains four lists LH1 , LH2 ,
LH3 , LK = {〈ID, PKID, xID, c(= 0 or 1)〉} which are initially empty. C then
simulates the oracle queries of FI as follows:

– When FI makes H2, H3, and ReplacePK queries, C performs as in the proof
of Theorem1.

– H1 query: FI makes an H1 query on IDi where 1 ≤ i ≤ qH1 , C chooses
j ∈ [1, qH1 ] randomly. If i = j (we let IDi = ID∗ at this point), C returns
qIDi = t0, otherwise qIDi = ti. C then computes QIDi = sP + qIDiP and
adds 〈IDi, QIDi , qIDi〉 to LH1 .

– ExtrPartSK(IDi) query: When FI makes this query on IDi, if IDi �= ID∗, C
returns DIDi = 1

s+ti
P . Otherwise C outputs FAIL and aborts the simulation.

– RequestPK(IDi) query: When FI makes this query on IDi, if the list LK

contains 〈IDi, PKIDi , xIDi , c〉, C returns PKIDi . Otherwise, C finds 〈IDi,
QIDi , qIDi〉 in LH1 , and picks a random xIDi ∈ Z∗

q . C then returns PKIDi =
xIDiQIDi and adds 〈IDi, PKIDi , xIDi , 1〉 to LK .

– ExtrFullSK(IDi) query: When FII makes this query on IDi, if IDi = ID∗,
C outputs FAIL and aborts the simulation. Otherwise, C finds 〈IDi, PKIDi ,
xIDi , c〉 in and LK , respectively. C performs as follows:

• If the list LH2 contains 〈PKIDi , yIDi〉, C returns SKIDi = (xIDi +
yIDi)−1 1

s+qIDi
P .

• If the list LH2 does not contain 〈PKIDi , yIDi〉, C picks a random yIDi ∈
Z
∗
q and returns SKIDi=(xIDi+yIDi)

−1 1
s+qIDi

P , and adds 〈PKIDi , yIDi〉
to LH2 .

– SIGN(m, IDi) query: When FI makes this query on (IDi, m), C finds 〈IDi,
QIDi , ki〉 and 〈IDi, PKIDi , xIDi , c〉 in LH1 and LK , respectively. Then C
performs as follows:

• If c = 1, C picks two random ri, hi ∈ Z∗
q and finds 〈PKIDi , yIDi〉

in LH2 . If it does not exist, C picks a random yIDi ∈ Z∗
q and adds

〈PKIDi , yIDi〉 to LH2 . C computes Ui = g−hie((ri + hi)P, QIDi) and
Vi = (ri + hi) 1

s+qIDi
P . C then returns (Ui, Vi) and adds 〈mi, Ui, hi〉 to

LH3 (C outputs FAIL and aborts the simulation if the 〈mi, Ui, hi〉 has
already been defined in the list LH3).

• If c = 0, C gets additionally information x′
IDi

from FI . Using the Q′
IDi

=
x′

IDi
(sP + qIDiP ), C then simulates as in the above case (c = 1).

Eventually, FI outputs a valid signature (IDt, mt, σt = (Ut, Vt)). If IDt �= ID∗,
C outputs FAIL and aborts the simulation. Otherwise, C performs as in the proof
of Theorem 1., and then he computes as follows:

(xIDt + yIDt)
Vt − V ′

t

ht − h′
t

= SKIDt =
1

s + q0
P.

Therefore, if a Type I forger who can break our scheme oCLS exists, then an at-
tacker who solves the k-CAA problem exists. �



Efficient Certificateless Signature Schemes 455

Theorem 4. Our certificateless signature scheme oCLS is existentially
unforgeable against a Type II forger in random oracle model under the mICDH
assumption.

Proof. This proof is same as the proof of Theorem 2. The different points are as
follows:

– H1 query: When FII makes this query on IDi, C picks a random qIDi ∈ Z∗
q

and returns qIDi . C then computes QIDi = sP +qIDiP and adds 〈IDi, QIDi ,
qIDi〉 to LH1 .

– H2 query: When FII makes this query on PKIDi , if PKIDi = saP +qIDiaP ,
C sets yIDi = b and returns yIDi , and adds 〈PKIDi , yIDi〉 to LH2 . If the list
LH2 contains 〈PKIDi , yIDi〉, C returns yIDi . Otherwise, C picks a random
yIDi ∈ Z∗

q and returns yIDi , and adds 〈PKIDi , yIDi〉 to LH2 .
– H3 query: When FII makes this query, C performs as in the proof of

Theorem 1.
– RequestPK(IDi) query: Suppose FII makes at most qPK queries to public

key request oracle. First, C chooses j ∈ [1, qPK ] randomly. When FII makes
a RequestPK query on IDi, C finds 〈IDi, QIDi , qIDi〉 in LH1 . If i = j (we let
IDi = ID∗ at this point), C sets PKIDi = saP +qIDiaP and returns PKIDi ,
and adds 〈IDi, PKIDi , xIDi = ⊥〉 to LK . Otherwise C picks a random xIDi

and returns PKIDi = xIDi(sP + qIDiP ), and adds 〈IDi, PKIDi , xIDi〉 to
LK .

– ExtrFullSK(IDi) query: When FII makes this query on IDi, if IDi = ID∗, C
outputs FAIL and aborts the simulation. Otherwise, C finds 〈IDi, QIDi , qIDi〉
and 〈IDi, PKIDi , xIDi〉 in LH1 and LK , respectively. C performs as follows:

• If the list LH2 contains 〈PKIDi , yIDi〉, C returns SKIDi = (xIDi +
yIDi)−1 1

s+qIDi
P .

• If the list LH2 does not contain 〈PKIDi , yIDi〉, C picks a random yIDi ∈
Z∗

q and returns SKIDi=(xIDi+yIDi)−1 1
s+qIDi

P , and adds 〈PKIDi , yIDi〉
to LH2 .

– SIGN(m, IDi) query: When FII makes this query on (IDi, m), C finds 〈IDi,
QIDi , qIDi〉 and 〈IDi, PKIDi , xIDi〉 in LH1 and LK , respectively. C picks two
random ri, hi ∈ Z∗

q and finds 〈PKIDi , yIDi〉 in LH2 (if it does not exist, C
makes a H2 query on PKIDi itself). C computes Ui = g−hi · e(PKIDi , riP )·
e(yIDi(s + qIDi)P, riP ), Vi = riP and returns (Ui, Vi), and adds 〈mi, Ui, hi〉
to LH3 (C outputs FAIL and aborts the simulation if the 〈mi, Ui, hi〉 has
already been defined in the list LH3).

Eventually, FII outputs a valid signature (IDt, mt, σt = (Ut, Vt)). If IDt �= ID∗,
C outputs FAIL and aborts the simulation. Otherwise, C finds 〈mt, Ut, ht〉 in
LH3 . Then, as in the proof of Theorem 1, C gets another valid signature tuple
(IDt, mt, h

′
t, σt = (Ut, V

′
t )) such that ht �= h′

t. Since C knows the master key s,
after C finds 〈IDt, QIDt , qIDt〉 in LH1 , he can compute as follows:

(s + qIDt)
Vt − V ′

t

ht − h′
t

=
1

a + b
P.



456 K.Y. Choi et al.

Therefore, if a Type II forger who can break our scheme oCLS exists, then an at-
tacker who solves the CDH problem exists. �

5 Performance Analysis

We now compare our CLS schemes with other previously known CLS schemes
[10,12,20] in Table 1.

Table 1. Comparison of Certificateless Signature Schemes

Sign Verify
Schemes e G1 G2 e G1 G2

HSMZ05 [10] 2 2 0 5 1 0
LCS05 [12] 0 2 0 4 1 0

ZWXF06 [20] 0 3 0 4 0 0
eCLS 0 2 0 2 2 0
oCLS 0 1 1 1 1 1

(e: pairing operation, G1: multiplication in G1, G2: exponentiation in G2)

According to the result in [3,4], the pairing operation is several times more
expensive than the scalar multiplication in G1. Hence reducing the number of
pairing operations is critical. As we shown in Table 1, our CLS schemes are more
efficient than other previous schemes. In particular, our verification procedure
requires only one (or two) pairing operation because checking the validity of the
public key is not done separately.

6 Extension

The ring signature guarantees the anonymity of the signer. In certificateless
ring signature (CLRS) schemes, to guarantee the signer anonymity, a signature
generated should not reveal any information about both a signer’s identity and
his public key. This is different from the previous (certificate or identity-based)
ring signature schemes, because the ring signature schemes hide a public key
or identity of the actual signer. Using the similar techniques as in [19,7], it is
possible that our CLS schemes are expanded to CLRS schemes. Also, applying
the method in [18] to our CLS scheme, we can easily modify our eCLS to a
certificateless blind signature scheme.

7 Conclusion

The certificateless public key cryptography is receiving significant attention be-
cause it is a new paradigm that simplifies the public key cryptography. In this



Efficient Certificateless Signature Schemes 457

paper, we proposed two efficient CLS schemes which are provably secure in
the random oracle model. Particularly, our signature verification requires only
one pairing operation. In addition, our CLS scheme can be easily extended to
certificateless ring and blind signature schemes.

References

1. S. Al-Riyami and K. Paterson, Certificateless public key cryptography, Asiacrypt
2003, LNCS 2894, pp. 452-473, Springer-Verlag, 2003.

2. D. Boneh and X. Boyen, Short Signatures Without Random Oracles, Eurocrypt
2004, LNCS 3027, pp. 56-73, 2004.

3. P. S. L. M. Barreto, S. Galbraith, C. O. hEigeartaigh, and M. Scott, Efficient
Pairing Computation on Supersingular Abelian Varieties, Crypto 2002, LNCS 2442,
pp. 354-368, Springer-Verlag, 2002.

4. P. S. L. M. Barreto, B. Lynn, and M. Scott, Efficient implementation of pairing-
based cryptosystems, Journal of Cryptology, pp. 321-334, 2004.

5. D. Boneh, H. Shacham, and B. Lynn, Short signatures from the Weil pairing,
Journal of Cryptology, Vol. 17, No. 4, pp. 297-319, 2004.

6. X. Cao, K. G. Paterson and W. Kou An Attack on a Certificateless Signature
Scheme, http://eprint.iacr.org/2006/367.

7. Sherman S.M. Chow, S.M. Yiu, and Lucas C.K. Hui, Efficient Identity Based Ring
Signature, ACNS 2005, LNCS 3531, pp. 499-512, Springer-Verlag, 2005.

8. P. Gutmann, PKI: It’s not dead, just resting, IEEE Computer, 35(8), pp. 41-49,
2002.

9. M. C. Gorantla and A. Saxena, An Efficient Certificateless Signature Scheme, CIS
2005, LNAI 3802, pp. 110-116, Springer-Verlag, 2005.

10. X. Huang, W. Susilo, Y. Mu, and F. Zhang, On the security of certificateless sig-
nature schemes from asiacrypt 2003, CANS 2005, LNCS 3810, pp. 13-25, Springer-
Verlag, 2005.

11. B. C. Hu, D. S. Wong, Z. Zhang, and X. Deng, Key Replacement Attack Against
a Generic Construction of Certificateless Signature, ACISP 2006, LNCS 4058, pp.
235-246, Springer-Verlag, 2006.

12. X. Li, K. Chen, and L. Sun, Certificateless signature and proxy signature schemes
from bilinear pairings, Lithuanian Mathematical Journal, Vol. 45, No. 1, pp. 76-83,
2005.

13. S. Mitsunari, R. Sakai and M. Kasahara, A new traitor tracing, Proc. of IEICE
Trans. Vol. E85-A, No.2, pp.481-484, 2002.

14. D. Pointcheval and J. Stern, Security Proofs for Signature Schemes, Eurocrypt
1996, LNCS 1070, pp. 387-398, Springer-Verlag, 1996.

15. A. Shamir, Identity based cryptosystems and signature schemes, Crypto 1984,
LNCS, Vol.196, pp. 47-53, Springer-Verlag, 1984.

16. A. R. Sadeghi and M. Steiner, Assumptions related to discrete logarithms: why sub-
tleties make a real difference, Eurocrypt 2001, LNCS 2045, pp. 243-260, Springer-
Verlag, 2001.

17. D. H. Yum and P. J. Lee, Generic Constructin of Certificateless Signature, ACISP
2004, LNCS 3108, pp. 200-211, Springer-Verlag, 2004.



458 K.Y. Choi et al.

18. F. Zhang and K. Kim, Efficient ID-Based Blind Signature and Proxy Signature
from Bilinear Pairings, ACISP 2003, LNCS 2727, pp. 312-323, Springer-Verlag,
2003.

19. F. Zhang, R. Safavi-Naini and W. Susilo, An Efficient Signature Scheme from
Bilinear Pairings and Its Applications, PKC 2004, LNCS 2947, pp. 277-290,
Springer-Verlag, 2004.

20. Z. Zhang, D. Wong, J. Xu and D. Feng, Certificateless Public-Key Signature:
Security Model and Efficient Construction, ACNS 2006, LNCS 3989, pp. 293-308,
Springer-Verlag, 2006.


	Introduction
	Preliminaries
	Bilinear Pairings and Some Problems
	Certificateless Signature Scheme

	New Certificateless Signature Scheme
	Our Construction
	Security Analysis

	Certificateless Signature Scheme with a Pairing Operation
	Our Construction
	Security Analysis

	Performance Analysis
	Extension
	Conclusion

