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Abstract. Testbeds play a key role in the evolution of GMPLS-based
Intelligent Optical Networks (ION) proving grounds in which new optical
networking research ideas (e.g., new constraint-based routing algorithms)
can be tested and evaluated. In order to be a productive experimentation
environment, a GMPLS optical network testbed should be flexible, allow-
ing the reconfiguration of as many different network topologies and con-
figurations as possible. But usually this flexibility comes at the expense
of high management costs when switching from one scenario to another is
performed through time-consuming error-prone manual procedures. This
paper describes an automatic model-based deployment mechanism that
overcomes the limitations of manual reconfigurable testbeds, allowing
high flexibility without involving high management costs. The model-
based approach is not only suitable for deployment (and undeployment)
but also for monitoring. The practical application of the mechanism to
ADRENALINE testbed (a GMPLS-based all-optical transport network
developed at CTTC) with the ADNETCONF tool is also described.

1 Introduction

The accelerating growth of Internet traffic is motivating the research on dynamic
transport networks based upon recent advances in optical networking technolo-
gies such as Wavelength Division Multiplexing (WDM), Reconfigurable Optical
Add Drop Multiplexers (R-OADM), Optical Cross Connects (OXC) and tunable
lasers, capable of providing reconfigurable high-bandwidth, end-to-end optical
connections. The introduction of the dynamism or intelligence in future optical
networks can be achieved by means of a distributed optical control plane (i.e.
routing and signalling). This control plane can be based on Generalized Mul-
tiprotocol Label Switching (GMPLS) [1] protocol architecture, an extension of
MPLS (Multiprotocol Label Switching) to cover circuit-oriented optical switch-
ing technologies such as WDM. One of the major applications of GMPLS is
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constraint-based routing (CBR), which is used to compute paths that satisfy
various requirements subject to a set of constraints.

Performance analysis of CBR algorithms in optical networks has been widely
studied in the past through simulations. However there is a considerable lack of
experimental performance evaluation of real GMPLS-based CBR implemented in
optical network testbeds.This experiments require flexible testbed platforms with
a high degree of reconfigurability in order to allow the deployment of not only
different network topologies (e.g., NSFNet, Pan-European network, metro rings,
etc.) but also, different configurations for each topology. (e.g., CBR algorithms
to test, available resources per link, etc.).

Manual reconfiguration is the usual procedure to achieve such flexibility,
but introducing commands and configurations manually in the different test-
bed devices has several important drawbacks. Firstly, is a high time-consuming
task due to a lot of time is employed performing tedious and mechanics oper-
ations. Secondly, reconfiguration needs specific knowledge not related with the
goal of the testbed itself. Third, humans tend to make errors typing commands
and writing configurations. Finally, manual reconfiguration is not scalable. The
aforementioned problems can be overcome implementing automatic reconfigura-
tion procedures. This paper describes one of such mechanism, based on optical
network modelling and the processing of models to perform automatic reconfig-
uration (deploy and undeploy) actions (in addition, model-based monitoring is
also possible) and applies it to ADRENALINE testbed [2], a flexible GMPLS-
based all-optical transport network developed at CTTC laboratories.

The rest of the paper is structured as follows. The ADRENALINE testbed
is introduced in Sect. 2 as example of flexible GMPLS-based optical network
testbed. Then Sect. 3 describes the proposed automatic model-based reconfigu-
ration and monitoring mechanism. After that, Sect. 4 focuses on the application
of the proposed approach to ADRENALINE testbed. Finally, Sect. 5 concludes
de paper and presents future work lines.

2 ADRENALINE Testbed: An Example of Flexible
GMPLS-based Optical Network

The ADRENALINE (All-optical Dynamic REliable Network hAndLINg IP/Ethernet
Gigabit traffic with QoS) testbed [2] is a GMPLS-based Intelligent Optical Net-
work (ION) developed at CTTC laboratories (Fig. 1). It is composed by an all-
optical transport network constituted by a metropolitan DWDM bidirectional
ring with three colourless R-OADM nodes and tuneable lasers, providing re-
configurable (space and frequency) end-to-end lightpaths. Each optical node is
equipped with a PC Linux-based Optical Connection Controller (OCC) for im-
plementing the GMPLS-based distributed control plane. These three OCCs are
named optical OCCs. The control plane is responsible for handling dynamically
and in real-time optical node’s resources in order to manage automatic provi-
sioning and survivability of lightpaths through signalling and routing protocols.
ADRENALINE deploys three optical bidirectional pairs of fiber. The Data Com-
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munication Network (DCN) employed for exchange signaling and routing packets
between OCCs is based on control channels carried at 1310 nm with a line rate
of 100 Mb/s using point-to-point links. Note that the optical transport topology
is fixed to a ring network and can not be modified.

Fig. 1. ADRENALINE functional architecture

Given the fact that one of the focus of ADRENALINE testbed is the per-
formance evaluation of GMPLS-based CBR algorithms and schemes, it was in-
troduced a new set of ten OCCs named satellite OCCs. The difference with
optical OCCs is that there is no optical hardware associated, that is, the optical
hardware is emulated. The satellite OCCs introduce a new degree of flexibility,
since there is no restriction neither on the optical network topology nor on the
resources per link (e.g., number of available wavelengths, fibers, etc.). Regard-
ing to the DCN, the satellite OCCs can be connected between themselves or
with the fix ring of optical OCCs following any topology, through Fast Ethernet
control channels. But in this case, the control channel is carried over emulated
optical links between any pair of OCCs, allowing QoS constraints configuration
(fixed and variable packet delays, packet losses, bandwidth limitations, etc.)1.
In order to provide a flexible framework for DCN topology reconfiguration, the
control channels are implemented using Virtual Local Area Networks (VLAN)
802.1q [3], configured in the layer 2 backbone Ethernet switches (named back-
bone nodes) and in the OCCs within the testbed. VLAN technology allows
performing any layer 2 interconnections between network nodes absolutely de-
coupled of the physical infrastructure.

All OCCs, both optical and satellite, run the same set of protocols and
processes: Resource Reservation Protocol Traffic Engineering (RSVP-TE [4]) for
lightpath provisioning, Open Shortest Path First Traffic Engineering (OSPF-TE
[5]) for topology and optical resources dissemination, Link Resource Manager
(LRM) for management of node’s optical resources, Single Network Manage-
ment Protocol (SNMP [6]) implementing a management agent, and eventually2,
Optical Link Resource Manager (OLRM) for optical hardware control.

1 Thanks to the Netem [7] emulation package installed in the OCCs.
2 OLRM only runs in optical OCCs, but not in satellites.
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Finally, ADRENALINE also includes client devices provided through a broad-
band tester that emulates a User Network Interface (UNI)-enabled IP router. It
generates statistically UNI lightpath requests for Gigabit Ethernet, transmitting
and analyzing IP packets once the lightpath is established.

3 Model-based Reconfiguration and Monitoring
Mechanism

This section described the proposed model-based mechanism, first introducing
scenario modeling concepts (Sect. 3.1), then detailing the model processing in
depth (Sect. 3.2).

3.1 Scenarios and Models

From the model-based mechanism point of view, flexible GMPLS testbed is com-
posed of a set of network nodes and backbones nodes (Fig. 2). The former are
OCCs (optical and satellite) and client devices (note the same physical broad-
band tester emulates up to 16 separated clients), but not the optical hardware
in the fixed transport plane. Backbone nodes are the Ethernet switches for DCN
interconnection, supporting the 802.1q VLAN technology thus allowing (upon
configuration) setting up different logical DCN topologies. Network nodes run
processes (backbone nodes don’t because their task is only providing VLAN-
based interconnection). Processes running in each OCC may be different (e.g.,
satellite OCCs does not run OLRM, optical OCCs do) and, in different OCCs,
the same process running on it can have different configurations (e.g., GMPLS
OSPF-TE can be configured with different CBR algorithms in different OCCs).

One fixed physical topology,

several different possible
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Fig. 2. Experimentation scenarios and models in optical flexible testbed
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Experimentation scenarios are conceived by researchers, with their partic-
ular investigation goals in mind, obeying to diverse purposes (e.g., validating
a theory, get measures, test new algorithm implementations, etc.). An experi-
mentation scenario consists on a particular topology of network nodes (that will
be set with the appropriated configuration of interconnection backbone nodes;
for example, setting the proper VLAN configuration in switches and network
elements operating systems) plus a particular configuration for each one of the
processes running in those network nodes. A scenario model is a formal speci-
fication of an experimentation scenario, written in a particular language (with
a particular syntax and semantic) so it can be processed automatically. Models
include all the information regarding the network topology (network nodes in-
volved in the scenario, the interconnection links among them, addressing issues,
etc.) and the configuration of the processes running in each network node.

In theory any language can be used to write models. However, we will focus
on XML-based ones. XML [8] is a W3C (World Wide Web Consortium) recom-
mended general-purpose markup language for creating special-purpose markup
languages. Currently, there are many well-known languages based on it (e.g.,
XHTML, RDF, SOAP, DocBook, etc.). The advantage of using XML is that,
being a recognized standard with a wide support in the industry, there are many
XML software components available that can be easily reused in order to build
model processing tools. As a matter of fact, the ADNETCONF tool (the software
that implements the model-based reconfiguration mechanism in ADRENALINE;
described in detail in Sect. 4.1) reuses some of such XML modules.

3.2 Model Processing

The processing workflow is illustrated in Fig. 3. Firstly, the user writes the model
of the desired scenario, either directly with a general purpose editor (XML is
text-based human-readable) or, preferably, using a tool specifically designed for
testbed model edition (like ADNETCONF, described in Sect. 4.1). Once the
model has been created, it is ready to be processed. The processing engine (im-
plemented with a software program) must run in a node (named controlling node
in Fig. 2) physically interconnected to the testbed interconnection backbone. In
addition, the controlling node must have pre-existing IP connectivity (control
connection in the Fig. 2 and 3) to all the network and backbone nodes.

1. User launches the processing engine, using as input the model and the desired
action to perform with it (deploy, undeploy or monitor). Typically, models
are physically stored in the controlling node.

2. The processing of the model produces interaction with the network and
backbone nodes through the control connection. There are two possible in-
teractions: issuing commands (always) and installing configuration files (only
in some cases during deploy). The nature of the commands depends on the
interface provided by the node. In some cases (e.g., PC-based nodes) these
commands are executed in the operating system of the node (using a re-
mote shell). In others, they are issued using a proprietary API (Application
Programming Interface) (e.g., vendor-specific broadband testers).
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3. Processing engine reports the outcome of the action (i.e., whether the action
was performed correctly or there was some error). In the case of monitoring,
the result includes information regarding to scenario status.

There are three different processing actions (deploy, undeploy and monitor).
The particular interactions performed during each action are described following:

Deploy. Processing of a model in order to set the corresponding scenario up in
the testbed. The first commands issued to network and backbone nodes are for
establishing the logical topology. It uses to imply enabling VLANs in backbone
nodes and assigning VLANs and addresses (e.g., IP addresses) in network nodes.
Then, commands are issued in order to start and configure the processes (only for
network nodes, due to backbone nodes don’t execute processes). The position
(first setting the topology, next starting processes) is important, due to some
processes need the topology configured in order to start properly (e.g., a routing
process starting when no link has been established could fail). In the case some
process needs a start-up configuration file, they are generated and installed before
executing process starting commands.

Undeploy. Processing of a model in order to set the corresponding scenario
down, reverting the testbed to a clear status (i.e., no scenario configured in the
testbed). The scenario is supposed to have been previously deployed. Undeploy
commands involve stopping of processes in first place, then removing the config-
uration of the logical topology. In this case configuration files are not required
to be generated (they are needed for starting processes but not for stopping).

Monitor. Processing of a model in order to check the corresponding scenario
status. The scenario is supposed to have been previously deployed. Monitor ac-
tions involve checking the status of links between network nodes and the aliveness
of process (i.e., if the process is running or not). For each link and process, the
status (up or down) is reported to the user, so he can know the status of the sce-
nario accurately. Although deploy and undeploy are the main actions, monitor
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is also a very useful auxiliary one that allows knowing if the scenario is working
properly or, otherwise, easing the location and fixing of problems.

4 Application to ADRENALINE Testbed

This section presents the practical results of applying the proposed model-based
reconfiguration mechanism (described in Sect. 3) to ADRENALINE testbed, first
describing the ADNETCONF software tool (Sect. 4.1) and, secondly, showing the
experimental results that demonstrates the benefits of the approach compared
with manual reconfiguration (Sect. 4.2).

4.1 The ADNETCONF Tool

ADNETCONF (ADrenaline NETwork CONFigurator) is a software tool in charge
of scenario model management in ADRENALINE testbed. It has been developed
with two main objectives in mind. First, it provides and easy, quick and intuitive
way of designing scenario models. Secondly, it implements deploy, undeploy and
monitor operations (as described in Sect. 3.2) of such models. The structure of
the tool resembles these goals; it is composed of two main modules, a graphic
user interface (providing the model editor, in addition to the interface to launch
operations) and a processing engine (implementing the actual operations).

As model editor, the GUI (shown in Fig. 4) provides a high-level perspective
of the testbed. Models are created just “drawing” the network topology, using a
library of items that includes the different network nodes in ADRENALINE test-
bed (OCCs and client devices) and configuring links among them. In addition,
the configuration of the processes is performed just clicking in the particular el-
ement and editing a set of dialog boxes (one for each process). Model are stored
in files, that can be saved, opened, modified, etc., following the same paradigm
that any other conventional editor (e.g., .doc files for Microsoft Word).

Once the model has been completed, the user launches the desired opera-
tion clinking in the particular button on the GUI. The model is then serialized
to a set of XML files that correspond to the formal representation of the sce-
nario that the processing engine will understand. Up to six different XML files
are produced; one describing the logical DCN topology (mandatory), the other
five describing the configuration of the different processes (LRM, OSPF-TE,
RSVP-TE, SNMP, OLRM), only needed when the particular process has been
included in the scenario. This modularization allows a better implementation of
the engine, composed of several modules each one specialized in validating and
processing one XML file. In fact, XML files can be seen as an internal interface
between the GUI (focused in model graphical design but not in processing) and
the engine (focused in processing the model but not in designing aspects), hiding
the complexity of the XML language to the user by the user-friendly GUI.

The ADNETCONF engine behaves like the one described in Sect. 3.2. The
following is used to provide control connections: SSH (Secure Shell) for OCCs,
telnet for Ethernet switches in the interconnection backbone and a RPC-based
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(Remote Procedure Call) vendor-specific proprietary API for the broadband
tester implementing client devices. The commands issued in the most complete
case (deploy) in ADRENALINE testbed include: VLANs set up for OCCs, client
devices and switches; process start-up (LRM, OSPF-TE, RSVP-TE, SNMP and
OLRM; two configurations files are generated and installed for OSPF-TE in each
OCC before starting the process; one configuration file for LRM) and configu-
ration of client devices in the broadband tester for connection requests, traffic
generation and traffic analysis in the configured network topology.

4.2 Results

This section shows some practical results of the model-based automatic deploy-
ment method presented in this paper applied to ADRENALINE testbed, with
the aim of illustrating its great benefits compared with conventional manual
configuration.

The experiment consists in getting and analyzing some parameters when
executing deploy and undeploy actions (monitor is left apart for the sake of
briefness) with two different scenarios (one simple and the other one complex)
using ADNETCONF. The simple one is composed of 3 OCCs (based on a ring
topology), 3 client devices (each one attached to one OCC) and 3 links. The
complex scenario resembles the mesh topology of the real NFSNet [9], composed
by 14 OCCs, 14 client devices (each one attached to one OCC) and 20 links.
The parameters analysed are execution time (how long lasts the completion of
the operation), number of commands issued to network elements, number of
configuration files generated, and their total size (the sum of all the lines in all
the generated files). The summary of results is shown in Table 1.
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Table 1. Experiment results

Simple scenario Complex scenario
(3 Nodes ring) (14 Nodes NSFNet)

Deploy Undeploy Deploy Undeploy

Commands 168 108 1046 722

Mean execution time 110 s 10 s 370 s 125 s

Commands per second (cmd/s) 1.52 10.8 2.82 5.78

Execution time of equivalent 1008 s 648 s 6276 s 4332 s
manual operation (around (around (around (around
without errors (0.16 cmd/s) 17 min) 11 min) 105 min) 72 min)

Configuration files 9 Not applicable 42 Not applicable

Configuration files lines 617 Not applicable 6492 Not applicable

One of the conclusions is that ADNETCONF can set up a scenario in the
worst case (simple scenario deploy, around 1.52 cmd/s) much faster than any
human administrator in the best case (supposing an average never-mistyping
user3, 0.16 cmd/s). Moreover, ADNETCONF ratio can be even higher in the
case of undeploy (10.8 cmd/s) and when considering complex (and foreseeably
more interesting) scenarios (deployment 2.82 cmd/s; undeployment 5.78 cmd/s).

More important than the improvement in execution time is that ADNET-
CONF removes the error debugging and fixing time of manual deployments
(due to unnoticed typing errors introducing commands and configurations) since
computer-based tools never performs such errors4. This time is difficult to esti-
mate but usually is very high (it can take an entire day or even much more to
locate and fix a bug) and proportional to the size of the scenario, so the tool is
highly-scalable and especially valuable for complex scenarios (like the NFSNet).

Regarding to configuration files, ADNETCONF is able to generate 9 and 42
files respectively (involving 617 and 6492 lines) from a single model. Not only to
generate all those files “by hand” can be an overwhelming task, but, even in the
case they were created just once and reused after that, keeping the coherence in
so many and so long files is difficult. Therefore, the ADNETCONF approach of
generating all the needed files “on-the-fly” from the model is much better.

5 Conclusions and Future Work

The paper has described a reconfiguration mechanism for GMPLS-based optical
testbeds in order to allow experimental performance evaluation of real GMPLS-
based CBR under several topology and resource configurations. The method is
based on modeling the desired experimentation scenarios and then processing
models with automatic tools that deploy the desired configuration in the testbed

3 Considering 30 wpm (words per minute) [10] and average 5-words commands.
4 Software-caused errors impact is much smaller than human-caused. The former are

deterministic and once fixed in the software they do not happen again. So, after a
convenient software debugging time, the tool could be considered error-free.
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(involving link connectivity and configuration for the processes running at each
optical node) without human interaction. Therefore, the problems of manual re-
configurable testbeds (time consumption, high human error probability, specific
knowledge on reconfiguration technologies -like VLAN- and scalability) are over-
come, as proved with practical results in ADRENALINE testbed. Moreover, the
generation of models does not need to be performed directly (in languages like
XML) since specific user-oriented modelling tools can be developed (like AD-
NETCONF). Both factors (automatic reconfiguration and tool-oriented model
management) lead to a highly productive and flexible experimentation environ-
ment for optical networking researches which key elements are models.

Furthermore, although this paper is focused in GMPLS-based optical test-
beds, the mechanism is general enough to be applied to any other kind of testbed
(optical or not) based on IP overlays, maybe using other interconnection tech-
nologies apart VLAN (e.g., GRE or IPSec tunnels). Such general model-based
deployment method for IP networks is currently being patented by CTTC5.

Currently, future work is focused in two lines. Firstly, the modelling technol-
ogy and its performance should be further closely analysed in order to be en-
hanced. In addition, other fields in computers science (software engineering and
knowledge engineering mainly) has long experience in models and meta-modeling
and the technologies used there (like ontologies or model driven engineering)
should be carefully studied. Secondly, ADNETCONF tool can be improved, in-
creasing its usability (e.g., model coherence checking, real-time monitoring, etc.).
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