

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 37–52, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Empowering Software Maintainers
with Semantic Web Technologies

René Witte1, Yonggang Zhang2, and Jürgen Rilling2

1 Institute for Progam Structures and
Data Organisation (IPD), Faculty of Informatics

University of Karlsruhe, Germany
witte@ipd.uka.de

2 Department of Computer Science
and Software Engineering

Concordia University, Montreal, Canada
{rilling,yongg_zh}@cse.concordia.ca

Abstract. Software maintainers routinely have to deal with a multitude of arti-
facts, like source code or documents, which often end up disconnected, due to
their different representations and the size and complexity of legacy systems.
One of the main challenges in software maintenance is to establish and maintain
the semantic connections among all the different artifacts. In this paper, we
show how Semantic Web technologies can deliver a unified representation to
explore, query and reason about a multitude of software artifacts. A novel fea-
ture is the automatic integration of two important types of software mainte-
nance artifacts, source code and documents, by populating their corresponding
sub-ontologies through code analysis and text mining. We demonstrate how the
resulting “Software Semantic Web” can support typical maintenance tasks
through ontology queries and Description Logic reasoning, such as security
analysis, architectural evolution, and traceability recovery between code and
documents.

Keywords: Software Maintenance, Ontology Population, Text Mining.

1 Introduction and Motivation

As software ages, the task of maintaining it becomes more complex and more expen-
sive. Software maintenance, often also referred to as software evolution, constitutes a
majority of the total cost occurring during the life span of a software system [15, 16].
Software maintenance is a multi-dimensional problem space that creates an ongoing
challenge for both the research community and tool developers [8,14]. These mainte-
nance challenges are caused by the different representations and interrelationships
that exist among software artifacts and knowledge resources [17,18]. From a main-
tainer’s perspective, exploring [11] and linking these artifacts and knowledge re-
sources becomes a key challenge [1]. What is needed is a unified representation that
allows a maintainer to explore, query and reason about these artifacts, while perform-
ing their maintenance tasks [13].

38 R. Witte, Y. Zhang, and J. Rilling

In this research, we introduce a novel formal ontological representation that inte-
grates two of the major software artifacts, source code and software documentation,
thereby reducing the conceptual gap between these artifacts. Discovered concepts and
concept instances from both source code and documents are used to explore and estab-
lish the links between these artifacts, providing maintainers with support during typical
software maintenance tasks [2].

Source Code

Documents

Automatic
Population

Semantic
Web clients

Ontology
(non-populated)

Maintainers

Source Code

Documents

Automatic
Population

Semantic
Web clients

Ontology
(non-populated)

Maintainers

Fig. 1. Ontology-Based Software Maintenance Overview

A general overview of our approach is shown in Fig. 1. In a first step, the existing
ontology is automatically populated from both the source code and documentation
artifacts. In a second step, the resulting knowledge base is explored, queried and rea-
soned upon by utilizing various Semantic Web-enabled clients.

Our research is significant for several reasons: (1) The fact that we provide a novel
approach to unify different software artifacts using a Semantic Web approach. (2) We
developed fully automatic ontology population that allows us to take advantage of the
large body of existing software artifacts, namely software documents and source code
and the knowledge they contain. (3) We present concrete application examples, illus-
trating how our ontological representation can benefit software developers during
typical maintenance tasks.

In Section 2, we discuss both challenges and requirements for a Semantic Web ap-
proach to software maintenance. Section 3 provides a general overview of our system.
The design for our software and source code ontologies is discussed in Section 4. In
Section 5, we describe in detail the fully automatic population of the ontologies, fol-
lowed by concrete examples illustrating how our approach can benefit software engi-
neers during typical maintenance tasks in Section 6.

2 Semantic Web and Software Maintenance

In a complex application domain like software maintenance, knowledge needs to be
continually integrated from different sources (like source code repositories, documen-
tation, test case results), different levels of scope (from single variables to complete
system architectures), and across different relations (static, dynamic, etc.) [7, 9]. No
single system is currently capable of supporting a complete domain like software en-
gineering by itself. This makes it necessary to develop focused applications that can

 Empowering Software Maintainers with Semantic Web Technologies 39

deal with individual aspects in a reliable manner, while still being able to integrate
their results into a common knowledge base. Ontologies offer this capability: a large
body of work exists that deals with ontology alignment and the development of upper
level ontologies, while Description Logic (DL) reasoners can check the internal con-
sistency of a knowledge base, ensuring at least some level of semantic integrity.
However, before we can design Semantic Web support for software maintenance, we
have to analyze the requirements particular to that domain.

2.1 Software Maintenance Challenges

With the ever increasing number of computers and their support for business proc-
esses, an estimated 250 billion lines of source code were being maintained in 2000,
with that number rapidly increasing [16]. The relative cost of maintaining and manag-
ing the evolution of this large software base represents now more than 90% of the
total cost [15] associated with a software product. One of the major challenges for the
maintainers while performing a maintenance task is the need to comprehend a multi-
tude of often disconnected artifacts created originally as part of the software devel-
opment process [9]. These artifacts include, among others, source code and software
documents (e.g., requirements, design documentation). From a maintainer’s perspec-
tive, it becomes essential to establish and maintain the semantic connections among
these artifacts.

In what follows, we introduce three typical use cases, which we will later revisit to
illustrate the applicability of our approach in supporting software maintainers during
these typical maintenance tasks.

Use case #1: Identify security concerns in source code. As discussed in [11], source
code searching and browsing are two of the most common activities during the main-
tenance of existing software. With applications that become exposed to volatile envi-
ronments with increased security risks (e.g., distributed environments, web-centric
applications), identifying these security flaws in existing software systems becomes
one of the major activities in the software maintenance phase.

Use case #2: Concept location and traceability across different software artifacts.
From a maintainer’s perspective, software documentation contains valuable informa-
tion of both functional and non-functional requirements, as well as information re-
lated to the application domain. This knowledge often is difficult or impossible to
extract only from source code [12]. It is a well known fact that even in organizations
and projects with mature software development processes, software artifacts created
as part of these processes end up to be disconnected from each other [1]. As a result,
maintainers have to spend a large amount of time on synthesizing and integrating in-
formation from various information sources in order to re-establish the traceability
links among these artifacts.

Use case #3: Architectural recovery and restructuring. With their increasing size and
complexity, maintaining the overall structure of software systems becomes an
emerging challenge of software maintenance. Maintainers need to comprehend the
overall structure of a software system by identifying major components and their
properties, as well as linking identified components with their lower-level
implementation [14].

40 R. Witte, Y. Zhang, and J. Rilling

2.2 Identified Requirements

Based on the stated use cases, we can now derive requirements for Semantic Web
support of software maintenance.

As a prerequisite, a sufficiently large part of the domain must be modeled in form
of an ontology, including the structure and semantics of source code and documents
to a level of detail that allows relevant queries and reasoning on the properties of ex-
isting artifacts (e.g., for security analysis).

Software maintenance intrinsically needs to deal with a large number of artifacts
from legacy systems. It is not feasible to manually create instance information for
existing source code or documents due to the large number of concept instances that
exist in these artifacts. Thus, automatic ontology population methods must be pro-
vided for extracting semantic information from those artifacts.

The semantic information must be accessible through a software maintainer's desk-
top. Knowledge obtained through querying and reasoning should be integrated with
existing development tools (e.g., Eclipse).

Finally, the acceptance of Semantic Web technologies by software maintainers is
directly dependent on delivering added benefits, specifically improving on typical
tasks, such as the ones described by the use cases above.

3 System Architecture and Implementation

In order to utilize the structural and semantic information in various software artifacts,
we have developed an ontology-based program comprehension environment, which
can automatically extract concept instances and their relations from source code and
documents (Fig. 2).

Racer

Semantic Web Infrastructure

RDF/OWL APIsProtege

Eclipse IDE

Query Interface
nRQL/JavaScript

Ontology
Management

SOUND Plug-in Ontology Browser
Document Navigator

Software
Artifact

Source
Code

Document

…

Source Code Analysis
System

Text Mining
System

Ontology Population

Software
Ontology

Source
Code

Ontology

Document
Ontology

Fig. 2. Semantic Web-enabled Software Maintenance Architecture

An important part of our architecture is a software ontology that captures major
concepts and relations in the software maintenance domain [6]. This ontology consists
of two sub-ontologies: a source code and document ontology, which represent

 Empowering Software Maintainers with Semantic Web Technologies 41

information extracted from source code and documents, respectively. The ontologies
are modeled in OWL-DL1 and were created using the Protégé-OWL extension of
Protégé,2 a free ontology editor.

Racer [5], an ontology inference engine, is adopted to provide reasoning services.
The Racer system is a highly optimized DL system that supports reasoning about
instances, which is particularly useful for the software maintance domain, where a
large amount of instances needs to be handled efficiently.

Automatic ontology population is handled by two subsystems: The source code
analysis, which is based on the JDT Java parser3 provided by Eclipse4; and the
document analysis, which is a text mining system based on the GATE (General
Architecture for Text Engineering) framework [3].

The query interface of our system is a plug-in that provides OWL integration for
Eclipse, a widely used software development platform. The expressive query
language nRQL provided by Racer can be used to query and reason over the
populated ontology. Additionally, we integrated a scripting language, which provides
a set of built-in functions and classes using the JavaScript interpreter Rhino5. This
language simplifies querying the ontology for software engineers not familiar with
DL-based formalisms.

4 Ontology Design for Software Maintenance

Software artifacts, such as source code or documentation, typically contain knowledge
that is rich in both structural and semantic information. Providing a uniform ontological
representation for various software artifacts enables us to utilize semantic information
conveyed by these artifacts and to establish their traceability links at the semantic level.
In what follows, we discuss design issues for both the documentation and source code
ontology used in our approach.

4.1 Source Code Ontology

The source code ontology has been designed to formally specify major concepts of ob-
ject-oriented programming languages. In our implementation, this ontology is further
extended with additional concepts and properties needed for some specific languages
(in our case, Java). Examples for classes in the source code ontology are Package, Class,
Method, or Variable. Our source code ontology is described in more detail in [20].

Within this sub-ontology, various ObjectProperties are defined to characterize the
relationships among concepts. For example, two instances of SourceObject may have a
definedIn relation indicating one is defined in the other; or an instance of method may
read an instance of Field indicating the method may read the field in the body of the
method.

1 OWL Web Ontology Language Guide, W3C, http://www.w3.org/TR/owl-guide/
2 Protégé ontology editor, http://protege.stanford.edu/
3 Eclipse Java Development Tools (JDT), http://www.eclipse.org/jdt/
4 Eclipse, http://www.eclipse.org
5 Rhino JavaScript interpreter, http://www.mozilla.org/rhino/

42 R. Witte, Y. Zhang, and J. Rilling

Concepts in the source code ontology typically have a direct mapping to source
code entities and can therefore be automatically populated through source code analy-
sis (see Section 5.1).

4.2 Documentation Ontology

The documentation ontology consists of a large body of concepts that are expected to be
discovered in software documents. These concepts are based on various programming
domains, including programming languages, algorithms, data structures, and design
decisions such as design patterns and software architectures.

Additionally, the software documentation sub-ontology has been specifically
designed for automatic population through a text mining system by adapting the
ontology design requirements outlined in [19] for the software engineering domain.
Specifically, we included:

A Text Model to represent the structure of documents, e.g., classes for sentences,
paragraphs, and text positions, as well as NLP-related concepts that are discovered
during the analysis process, like noun phrases (NPs) and coreference chains. These
are required for anchoring detected entities (populated instances) in their originating
documents.

Lexical Information facilitating the detection of entities in documents, like the
names of common design patterns, programming language-specific keywords, or ar-
chitectural styles; and lexical normalization rules for entity normalization.

Relations between the classes, which include the ones modeled in the source code
ontology. These allow us to automatically restrict NLP-detected relations to semanti-
cally valid ones (e.g., a relation like <variable> implements <interface>, which
can result from parsing a grammatically ambiguous sentence, can be filtered out since
it is not supported by the ontology).

Finally, Source Code Entities that have been automatically populated through
source code analysis (cf. Section 5.1) can also be utilized for detecting corresponding
entities in documents, as we describe in more detail in Sections 5.2.

5 Automatic Ontology Population

One of the major challenges for software maintainers is the large amount of informa-
tion that has to be explored and analyzed as part of typical maintenance activities.
Therefore, support for automatic ontology population is essential for the successful
adoption of Semantic Web technology in software maintenance. In this section, we
describe in detail the automatic population of our ontologies from existing artifacts:
source code (Section 5.1) and documents (Section 5.2).

5.1 Populating the Source Code Ontology

The source code ontology population subsystem is based on JDT, which is a Java parser
provided by Eclipse. JDT reads the source code and performs common tokenization and
syntax analysis to produce an Abstract Syntax Tree (AST). Our population subsystem

 Empowering Software Maintainers with Semantic Web Technologies 43

traverses the AST created by the JDT compiler to identify concept instances and their
relations, which are then passed to an OWL generator for ontology population (Figure 3).

As an example, consider a single line of Java source code: public int sort(){, which
declares a method called sort. A simplified AST corresponding to this line of source
code is shown in Fig. 3. We traverse this tree by first visiting the root node Method
Declaration. At this step, the system understands that a Method instance shall be cre-
ated. Next, the Name Node is visited to create the instance of the Method class, in this
case sort. Then the Modifier Node and Type Node are also visited, in order to establish
the relations with the identified instance. As a result, two relations, sort hasModifier
public and sort hasType int, are detected.

Source Code

Parser (JDT)

Abstract Syntax Tree (AST)

Population system

Instances & Relations

OWL Generator

OWL Files

Method Declaration Node

Modifier Node
(public)

Name Node
(sort)

public int sort () {

Instance:
Method : sort

Relation:
sort hasModifier public
sort hasType int

Type Node
(int)

Fig. 3. Populating the source code ontology

The numbers of instances and relations identified by our system depend on the
complexity of the ontology and the size of the source code to be analyzed. At the cur-
rent stage of our research, the source code ontology contains 38 concepts (classes) and
41 types of relations (ObjectProperties). We have performed several case studies on
different open source systems to evaluate the size of the populated ontology. Table 1
summaries the results of our case studies, with the size of the software system being
measured by lines of code (LOC) and the process time reflecting both AST traversal
and ontology population.

Table 1. Source code Ontology size for different open source projects

 LOC Proc. Time Instances Relations Inst./LOC Rel./LOC
java.util 24k 13.62s 10140 47009 0.42 1.96
InfoGlue6 40k 27.61s 15942 77417 0.40 1.94
Debrief7 140k 67.12s 52406 244403 0.37 1.75
uDig8 177k 82.26s 69627 284692 0.39 1.61

6 Infoglue, http://www.infoglue.org
7 Debrief, http://www.debrief.info
8 uDig, http://udig.refractions.net

44 R. Witte, Y. Zhang, and J. Rilling

5.2 Populating the Documentation Ontology

We developed a custom text mining system to extract knowledge from software
documents and populate the corresponding sub-ontology. The processing pipeline and
its connection with the software documentation sub-ontology is shown in Fig. 4. Note
that, in addition to the software documentation ontology, the text mining system can
also import the instantiated source code ontology corresponding to the document(s)
under analysis.

considering ontology relations and properties

populated subset of,

specific NLP results
as well as document−

Gazetteer: assign ontology classes

OWL Ontology Export

Grammar: Named Entity recognition

NLP preprocessing: Tokenisation, Noun Phrase detection etc.

Coreference Resolution: determine identical individuals

Normalization: get representational individuals in canonical form

Relation detection: establish relations with syntactical rules

assign ontology classes to document entities

consider ontological hierarchies in grammar rules

look up synonym relations to find synonyms

look up ontology properties with rules for establishing the canonical form

Populated Ontology for Processed Documents

initial population

Morphological analysis, Deep Syntactic Analysis: SUPPLE

Instantiated Source Code Ontology

Complete Instantiated Software Ontology

Fig. 4. Workflow of the Ontology-Driven Text Mining Subsystem

The system first performs a number of standard preprocessing steps, such as
tokenisation, sentence splitting, part-of-speech tagging and noun phrase chunking.9
Then, named entities (NEs) modeled in the software ontology are detected in a two-
step process: Firstly, an OntoGazetteer is used to annotate tokens with the
corresponding class or classes in the software ontology (e.g., the word "architecture"
would be labeled with the architecture class in the ontology). Complex named entities
are then detected in the second step using a cascade of finite-state transducers
implementing custom grammar rules written in the JAPE language, which is part of
GATE. These rules refer back to the annotations generated by the OntoGazetteer, and
also evaluate the ontology. For example, in a comparison like
class=="Keyword", the ontological hierarchy is taken into account so that a
JavaKeyword also matches, since a Java keyword is-a keyword in the ontology.
This significantly reduces the overhead for grammar development and testing.

9 For more details, please refer to the GATE documentation: http://gate.ac.uk/documentation/

 Empowering Software Maintainers with Semantic Web Technologies 45

The next major steps are the normalization of the detected entities and the resolution
of co-references. Normalization computes a canonical name for each detected entity,
which is important for automatic ontology population. In natural language texts, an
entity like a method is typically referred to with a phrase like "the myTestMethod
provides...". Here, only the entity myTestMethod should become an instance of the
Method class in the ontology. This is automatically achieved through lexical
normalization rules, which are stored in the software ontology as well, together with
their respective classes. Moreover, throughout a document a single entity is usually
referred to with different textual descriptors, including pronominal references (like "this
method"). In order to find these references and export only a single instance into the
ontology that references all these occurrances, we perform an additional co-reference
resolution step to detect both nominal and pronomial coreferences.

The next step is the detection of relations between the identified entities in order to
compute predicate-argument structures, like implements(class, interface). Here, we
combine two different and largely complementary approaches: A deep syntactic
analysis using the SUPPLE bottom-up parser and a number of pre-defined JAPE
grammar rules, which are again stored in the ontology together with the relation
concepts.

Finally, the text mining results are exported by populating the software
documentation sub-ontology using a custom GATE component, the OwlExporter. The
exported, populated ontology also contains document-specific information; for
example, for each class instance the sentence it was found in is recorded. Figures 5
and 6 show excerpts of ontologies populated by our text mining system.

6 Application of Semantic Web-Enabled Software Maintenance

In what follows, we describe concrete application scenarios that correspond to the
three use cases introduced earlier in Section 2.1.

6.1 Source Code Security Analysis

Existing techniques on detecting and correcting software security vulnerabilities at the
source code level include human code reviews, testing, and static analysis. In the fol-
lowing example, we illustrate how our Semantic Web-based approach can facilitate
security experts or programmers in identifying potential vulnerabilities caused by
unexpected object accessibility.

In this scenario, a maintainer may consider allowing public and non-final fields in
Java source code a security risk that may cause the value of the field being modified
outside of the class where it was defined. In order to detect this, he can search the
ontology through a query10 that retrieves all Field instances that have a PublicModifier but
no FinalModifier:

var SecurityConcern1 = new Query(); // define a new query
SecurityConcern1.declare("F", "MP", "MF"); // declare three query variables
SecurityConcern1.restrict("F", "Field"); // variable F must be a Field instance
SecurityConcern1.restrict("MP", "PublicModifier"); // variable MP must be a PublicModifier instance

10 In this and the following examples, we present ontology queries using our JavaScript-based

query interface discussed in Section 3.

46 R. Witte, Y. Zhang, and J. Rilling

SecurityConcern1.restrict("MF", "FinalModifier"); // variable MF must be a FinalModifier instance
SecurityConcern1.restrict("F", "hasModifier", "MP"); // F and MP have a hasModifier relation
SecurityConcern1.no_relation("F", "hasModifier", "MF"); // F and MF have NO hasModifier relation
SecurityConcern1.retrieve("F"); // this query only retrieve F
var result = ontology.query(SecurityConcern1); // perform the query

In order to extend the query for more specific tasks, such as: Retrieve all public
data of Java package “user.pkg1” that may potentially be (read or write) accessed by
a package “user.pkg2”, the previous query can be further refined by adding:

SecurityConcern1.restrict("F", "definedIn", "user.pkg1"); // F must be definedIn user.pkg1
SecurityConcern1.restrict("M", "Method"); // variable M must be a Method instance
SecurityConcern1.restrict("M", "definedIn", "user.pkg2"); // M must be definedIn user.pkg2
SecurityConcern1.restrict("M", "access", "F"); // M and F have an access relation

It should be noted that fields or methods in Java are defined in classes, and classes
are defined in packages. The ontology reasoner will automatically determine the tran-
sitive relation definedIn between the concepts Field/Method and Package. In addition, read
and write relations between method and field are modeled in our ontology by the read-
Field and writeField ObjectProperties, which are a subPropertyOf access.

Many security flaws are preventable through security enforcement. Common vul-
nerabilities such as buffer overflows, accessing un-initialized variables, or leaving
temporary files in the disk could be avoided by programmers with strong awareness
of security concerns. In order to deliver more secure software, many development
teams have guidelines for coding practice to enforce security. In our approach, we
support maintainers and security experts during enforcement or validation, by check-
ing whether these programming guidelines are followed. For example, to prevent
access to un-initialized variables, a general guideline could be: all fields must be ini-
tialized in the constructors. The following query retrieves all classes that did not fol-
low this specific constructor initialization guideline:

var SecurityConcern2 = new Query(); // define a new query
SecurityConcern2.declare("F", "I", "C"); // declare three query variables
SecurityConcern2.restrict("F", "Field"); // variable F must be a Field instance
SecurityConcern2.restrict("I", "Constructor"); // variable I must be a Constructor instance
SecurityConcern2.restrict("C", "Class"); // variable C must be a Class instance
SecurityConcern2.restrict("F", "definedIn", "C"); // F must be definedIn C
SecurityConcern2.restrict("I", "definedIn", "C"); // I must be also definedIn C
SecurityConcern2.no_relation("I", "writeField", "F"); // I and F have NO writeField relation
SecurityConcern2.retrieve("C", "I"); // this query only retrieve C and I
var result = ontology.query(SecurityConcern2); // perform the query

These two examples illustrate the power of our Semantic Web-enabled software
maintenance approach: Complex queries can be performed on the populated ontology
to identify specific patterns in the source code. Such types of queries utilize both the
structural (e.g., definedIn) and semantic (e.g., writeField) knowledge of programming
languages, which is typically ignored by traditional search tools based on string-
matching, such as grep

11.

6.2 Establishing Traceability Links Between Source Code and Documentation

After instantiating both the source code and documentation sub-ontologies from their
respective artifacts, it is now possible to automatically cross-link instances between

11 Grep tool, http://www.gnu.org/software/grep/

 Empowering Software Maintainers with Semantic Web Technologies 47

these sub-ontologies. This allows maintainers to establish traceability links among the
sub-ontologies through queries and reasoning, in order to find, for example, documen-
tation corresponding to a source code entity, or to detect inconsistencies between in-
formation contained in natural language texts vs. the actual code.

For example, our source code analysis tool may identify c1 and c2 as classes; and
this information can be used by the text mining system to identify named entities – c'1
and c'2 – and their associated information in the documents (Fig. 5). As a result,
source code entities c1 and c2 can now be linked to their occurrences in the documents
(c'1 and c'2). After source code and documentation ontology are linked, users can per-
form ontological queries on either documents or source code regarding properties of
c1 or c2. For example, in order to retrieve document passages that describe both c1 and
c2 or to retrieve design pattern descriptions referring to a pattern that contains the
class currently being analyzed by a maintainer. Furthermore, it is also possible to
identify inconsistencies – the documentation might list a method as belonging to a
different class than it is actually implemented, for example – which are detected
through the linking process and registered for further review by the user.

We performed an initial evaluation on a large open source Geographic Information
System (GIS), uDig12, which is implemented as a set of plug-ins on top of the Eclipse
platform. The uDig documents used in the study consist of a set of JavaDoc files and
a requirement analysis document.13

Links between the uDig implementation and its documentation are recovered by first
performing source code analysis to populate the source code ontology. The resulted
ontology contains instances of Class, Method, Field, etc., and their relations, such as inheri-
tance and invocation. Our text mining system takes these identified class names, method
names, and field names as an additional resource to populate the documentation ontol-
ogy (cf. Fig. 4). Through this text mining process, a large number of Java language con-
cept instances are discovered in the documents, as well as design-level concept
instances such as design patterns or architecture styles. Ontology linking rules are then
applied to link the populated documentation and source code ontologies.

Documentation Ontology Source Code Ontology

Fig. 5. Linked Source Code and Documentation Ontology

12 uDIG open source GIS, http://udig.refractions.net/confluence/display/UDIG/Home
13 uDig documentation, http://udig.refractions.net/docs/

48 R. Witte, Y. Zhang, and J. Rilling

A partial view of a linked ontology is shown in Figure 5; the corresponding sen-
tences are:

Sentence_2544: “For example if the class FeatureStore is the target class and the
object that is clicked on is a IGeoResource that can resolve to a FeatureStore then a
FeatureStore instance is passed to the operation, not the IGeoResource”.

Sentence_712: “Use the visitor pattern to traverse the AST”

Figure 5 shows that our text mining system was able to discover that sentence_2544
contains both class instances _4098_FeatureStore and _4100_IGeoResource. Both
of these classes can be linked to the instances in source code ontology,
org.geotools.data.FeatureStore and net.refractions.udig.catalog.IGeoResource, respec-
tively. Additionally, in sentence_712, a class instance (_719_AST) and a design pattern
instance (_718_visitor_pattern) are also identified. Instance _719_AST is linked in a
similar manner to the net.refractions.udig.catalog.util.AST interface in the source code
ontology. Therefore, the recovery of traceability links between source code and docu-
mentation is feasible and implicit relations in the linked ontologies can be inferred.

6.3 Architectural Analysis

The populated ontology can also assist maintainers in performing more challenging
tasks, such as analyzing the overall structure of a software system, i.e., architectural
analysis. In this case study, we analyzed the architecture of the open source web site
content management system, InfoGlue14. The first step of an architectural analysis is
wtypically to identify potential architectural styles [7] and candidate components in
the system. By browsing the documentation ontology populated through text mining,
we observe that a large number of instances of concept Layer are discovered. This in-
formation provides us with significant clues that the InfoGlue system might be im-
plemented using a typical Layered Architecture [7]. Additionally, the text mining
discovered that the application layer contains a set of action classes, as shown in
Fig. 6. This information provides important references for our further analysis of the
documents and source code.

Fig. 6. Architecture information discovered by text mining

We later determined that the action classes refer to classes that implement
webwork.action.Action interface. Before conducting the analysis, we hypothesized

14 InfoGlue Open Source Content Management Platform, http://www.infoglue.org/

 Empowering Software Maintainers with Semantic Web Technologies 49

that the InfoGlue system implements a common layered architecture, in which each
layer only communicates with its upper or lower layer. In order to validate our
hypothesis, we performed a number of queries on the populated source code ontology
to retrieve method calls between layers.

The script first retrieves all layer instances in the ontology, and then iteratively
queries method call relations between layers. A similar query is performed to retrieve
the number of methods being called.

var layers = ontology.retrieve_instance(“Layer”);

for(var i = 0; i < layers.size(); i++){
var layer1 = layers.get(“Layer”, i);
for(var j = 0; j < layers.size(); j++){

 var layer2 = layers.get(“Layer”, j);
 if(layer1.equals(layer2)) continue;
 var query = new Query();
 query.declare(“M1”, “M2”);
 query.restrict(“M1”, “Method”);
 query.restrict(“M2”, “Method”);
 query.restrict(“M1”, “definedIn”, layer1);
 query.restrict(“M2”, “definedIn”, layer2);
 query.restrict(“M1”, “call”, “M2”);
 query.retrieve(“M1”, “M2”);
 var result = ontology.query(query);
 out.println(layer1 + “ calls “ + layer2 + “ “ + result.size() + “ times.”);

}
 }

Application LayerApplication Layer

Control LayerControl Layer

Domain LayerDomain Layer

535 Calls
285 Called

3 Calls
1 Called

842 Calls
383 Called

775 Calls
269 Called

0

0

Fig. 7. Example script to detect method calls between layers (left) and results obtained from
executing the query on the populated ontology (right)

Fig. 7 summarizes the results of these two queries, by showing both the number of
method calls and the number of methods being called. From the analysis of the result
one can refute the original hypothesis about the implementation of the common lay-
ered architecture. This is due to the fact that one can observe in the InfolGlue system
a significant amount of communications from the application layer to domain layer –
skipping the control layer. This information is valuable for software maintainers, be-
cause it indicates that any changes made in the domain layer may also directly affect
the application layer, a situation which one would not expect based on the architec-
tural description found in the InfoGlue system documentation.

In addition, we observed that there is no communication from the domain layer to
the control and application layer, i.e., the domain layer can be substituted by other
components matching the same interface. This observation also reveals an important
property of the domain layer in the InfoGlue system – the domain layer is a self-
contained component that can be reused by other applications. Our observation is also
supported by the architecture document itself, which clearly states that “the domain
business logic should reside in the domain objects themselves making them self
contained and reusable”.

Moreover, by analyzing these results, one would expect that a lower layer should not
communicate with its upper layer. The three method calls from the control layer to the
application layer can therefore be considered as either implementation defects or as the
result of a special design intention not documented. Our further inspection showed that

50 R. Witte, Y. Zhang, and J. Rilling

the method being called is a utility method that is used to format HTML content. We
consider this to be an implementation defect since the method can be re-implemented in
the control layer to maintain the integrity of a common layered architecture style.

7 Related Work and Discussions

Existing research on applying Semantic Web techniques in software maintenance
mainly focuses on providing ontological representation for particular software arti-
facts or supporting specific maintenance task [10]. In [21], Ankolekar et al. provide
an ontology to model software, developers, and bugs. This ontology is semi-
automatically populated from existing artifacts, such as software interface, emails,
etc. Their approach assists the communication between software developers for bug
resolution. In [22], Happle et al. present an approach addressing the component reuse
issue of software development by storing descriptions of components in a Semantic
Web repository, which can then be queried for existing components.

Comparing with the existing approaches, like the LaSSIE system [4], our work dif-
fers in two important aspects: (1) the automatic population from existing software arti-
facts, especially source code and its documentation, which are both very different in
structure and semantics; and (2) the application of queries on the populated ontologies,
including DL reasoning, to enhance concrete tasks performed by software maintainers.
The first aspect is an important prerequisite to bring a large amount of existing data
into the “Software Semantic Web”. The inclusion of semantically different and com-
plementary artifacts, in the form of machine-readable code and natural language, pro-
vides for real improvement in software maintenance, enabling for the first time an
automatic connection between code and its documentation. The second aspect shows
the power of DL-based reasoning when applied to the software domain, significantly
enhancing the power of conventional software development tools.

8 Conclusions and Future Work

In this paper, we presented a novel approach that provides formal ontological repre-
sentations of the software domain for both source code and document artifacts. The
ontologies capture structural and semantic information conveyed in these artifacts,
and therefore allow us to link, query and reason across different software artifacts on
a semantic level.

In this research, we address important issues for both the Semantic Web and the
software maintenance communities. For the Semantic Web community, we illustrate
how the use of the semantic technologies can be extended to the software mainte-
nance domain. Furthermore, we demonstrate how the large body of existing knowl-
edge found in source code and software documentation can be made available through
automatic ontology population on the Semantic Web.

From a software maintenance perspective, we illustrate through three concrete use
cases how the Semantic Web and its underlying technologies can benefit and support
maintainers during typical maintenance tasks.

 Empowering Software Maintainers with Semantic Web Technologies 51

In future versions, more work is needed on enhancing existing software development
tools with Semantic Web capabilities, some of which is addressed in the Semantic Desk-
top community. Many of the ideas presented here obviously also apply to other areas in
software engineering besides maintenance; we have also been investigating ontology-
enabled software comprehension processes [13], which will complement and further
enhance the utility of our “Software Semantic Web” approach.

References

1. G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia, “Information Retrieval Models for
Recovering Traceability Links between Code and Documentation”. In Proc. of IEEE In-
ternational Conference on Software Maintenance, San Jose, CA, 2000.

2. R. Brooks, “Towards a Theory of the Comprehension of Computer Programs”. Interna-
tional Journal of Man-Machine Studies, pp. 543-554, 1963.

3. H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan. “GATE: A Framework and
Graphical Development Environment for Robust NLP Tools and Applications.” In Proc. of
the 40th Anniversary Meeting of the ACL. Philadelphia, July 2002.

4. P. Devanbu, R.J. Brachman, P.G. Selfridge, and B.W. Ballard, “LaSSIE - a Knowledge-
based Software Information System”, Comm. of the ACM, 34(5), pp. 36–49, 1991.

5. V. Haarslev and R. Möller, “RACER System Description”, In Proc. of International Joint
Conference on Automated Reasoning, Siena, Italy, 2002.

6. P. N. Johnson-Laird, “Mental Models: Towards a Cognitive Science of Language, Infer-
ence and Consciousness”. Harvard University, Cambridge, MI, 1983.

7. A. V. Mayhauser, A. M. Vans, “Program Comprehension during Software Maintenance
and Evolution”. IEEE Computer, 28(8), pp. 44-55, August, 1995.

8. IEEE Standard for Software Maintenance, IEEE 1219-1998.
9. D. Jin and J. Cordy. "Ontology-Based Software Analysis and Reengineering Tool Integra-

tion: The OASIS Service-Sharing Methodology". In Proc. of the 21st IEEE International
Conference on Software Maintenance, Budapest, Hungary, 2005.

10. H.-J. Happel, S. Seedorf, "Applications of Ontologies in Software Engineering", In Proc.
of International Workshop on Semantic Web Enabled Software Engineering, 2006.

11. T.C. Lethbridge and A. Nicholas, "Architecture of a Source Code Exploration Tool: A
Software Engineering Case Study", Department of Computer Science, University of Ot-
tawa, Technical Report, TR-97-07, 1997.

12. M. Lindvall and K. Sandahl, “How well do experienced software developers predict soft-
ware change?” Journal of Systems and Software, 43(1), pp. 19-27, 1998.

13. W. Meng, J. Rilling, Y. Zhang, R. Witte, P. Charland, “An Ontological Software Compre-
hension Process Model”, In Proc. of the 3rd International Workshop on Metamodels,
Schemas, Grammars, and Ontologies for Reverse Engineering, Italy, 2006.

14. C. Riva, "Reverse Architecting: An Industrial Experience Report", In Proc. of the 7th
IEEE Working Conference on Reverse Engineering, Australia, 2000.

15. R. Seacord, D. Plakosh, and G. Lewis, “Modernizing Legacy Systems: Software Tech-
nologies, Engineering Processes, and Business Practices”, Addison-Wesley, 2003.

16. I. Sommerville, “Software Engineering (6th Edition)”, Addison-Wesley, 2003.
17. M.A. Storey, S.E. Sim, and K. Wong, “A Collaborative Demonstration of Reverse Engi-

neering tools”, ACM SIGAPP Applied Computing Review, Vol. 10(1), pp18-25, 2002.
18. C. Welty, “Augmenting Abstract Syntax Trees for Program Understanding”, In Proc. of

International Conference on Automated Software Engineering, 1997.

52 R. Witte, Y. Zhang, and J. Rilling

19. R. Witte, T. Kappler, C. Baker, “Ontology Design for Biomedical Text Mining”, Chapter
13 in Semantic Web: Revolutionizing Knowledge Discovery in the Life Sciences, Springer
Verlag, 2006.

20. Y. Zhang, R. Witte, J. Rilling, V. Haarslev, “An Ontology-based Approach for Traceabil-
ity Recovery”, In Proc. of International Workshop on Metamodels, Schemas, Grammars,
and Ontologies for Reverse Engineering, Genoa, Italy, 2006.

21. A. Ankolekar, K. Sycara, J. Herbsleb, R. Kraut, C. Welty, “Supporting Online Problem-
solving Communities With the Semantic Web”, In Proc. of the 15th International Confer-
ence on World Wide Web, 2006.

22. H.-J. Happel, A. Korthaus, S. Seedorf, P. Tomczyk, “KontoR: An Ontology-enabled Ap-
proach to Software Reuse”, In Proc. of the 18th International Conference on Software En-
gineering and Knowledge Engineering, 2006.

	Introduction and Motivation
	Semantic Web and Software Maintenance
	Software Maintenance Challenges
	Identified Requirements

	System Architecture and Implementation
	Ontology Design for Software Maintenance
	Source Code Ontology
	Documentation Ontology

	Automatic Ontology Population
	Populating the Source Code Ontology
	Populating the Documentation Ontology

	Application of Semantic Web-Enabled Software Maintenance
	Source Code Security Analysis
	Establishing Traceability Links Between Source Code and Documentation
	Architectural Analysis

	Related Work and Discussions
	Conclusions and Future Work
	References

