Distributed Knowledge Representation
on the Social Semantic Desktop:
Named Graphs, Views and Roles in NRL

Michael Sintek!, Ludger van Elst!, Simon Scerri?, and Siegfried Handschuh?

! Knowledge Management Department
German Research Center for Artificial Intelligence (DFKI) GmbH,
Kaiserslautern, Germany
firstname.surname@dfki.de
2 DERI, National University of Ireland, Galway
firstname.surname@deri.org

Abstract. The vision of the Social Semantic Desktop defines a user’s
personal information environment as a source and end-point of the Se-
mantic Web: Knowledge workers comprehensively express their informa-
tion and data with respect to their own conceptualizations. Semantic
Web languages and protocols are used to formalize these conceptualiza-
tions and for coordinating local and global information access. From the
way this vision is being pursued in the NEPOMUK project, we identified
several requirements and research questions with respect to knowledge
representation. In addition to the general question of the expressivity
needed in such a scenario, two main challenges come into focus: i) How
can we cope with the heterogeneity of knowledge models and ontologies,
esp. multiple knowledge modules with potentially different interpreta-
tions? ii) How can we support the tailoring of ontologies towards different
needs in various exploiting applications?

In this paper, we present NRL, an approach to these two question
that is based on named graphs for the modularization aspect and a view
concept for the tailoring of ontologies. This view concept turned out to
be of additional value, as it also provides a mechanism to impose different
semantics on the same syntactical structure.

We think that the elements of our approach are not only adequate
for the semantic desktop scenario, but are also of importance as building
blocks for the general Semantic Web.

1 Motivation: The Social Semantic Desktop

The very core idea of the Social Semantic Desktop is to enable data interoper-
ability on the personal desktop based on Semantic Web standards and technolo-
gies, e. g., ontologies and semantic metadata. The vision [6] aims at integrated
personal information management as well as at information distribution and col-
laboration, envisioning two expansion states: i) the Personal Semantic Desktop
for personal information management and later ii) the Social Semantic Desktop
for distributed information management and social community aspects.

E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 594-[G08} 2007.
© Springer-Verlag Berlin Heidelberg 2007

Distributed Knowledge Representation on the Social Semantic Desktop 595

In traditional desktop architectures, applications are isolated islands of data—
each application has its own data, unaware of related and relevant data in other
applications. Individual vendors may decide to allow their applications to inter-
operate, so that, e. g., the email client knows about the address book. However,
today there is no consistent approach for allowing interoperation and a system-
wide exchange of data between applications. In a similar way, the desktops of
different users are also isolated islands—there is no standardized architecture for
interoperation and data exchange between desktops. Users may exchange data
by sending emails or upload it to a server, but so far there is no way of seamless
communication from an application used by one person on their desktop to an
application used by another person on another desktop. The problem on the
desktop is similar to that on the Web.

The Social Semantic Desktop paradigm adopts the ideas of the Semantic Web
(SW) paradigm [3], which offers a solution for the web. Formal ontologies capture
both a shared conceptualization of desktop data and personal mental models.
RDF (Resource Description Format) serves as a common data representation for-
mat. Together, these technologies provide a means to build the semantic bridges
necessary for data exchange and application integration. The Social Semantic
Desktop will transform the conventional desktop into a seamless, networked
working environment, by loosening the borders between individual applications
and the physical workspace of different users. By aligning the Social Semantic
Desktop paradigm with the Semantic Web paradigm, a Semantic Desktop can
be seen as source and end-point of the Semantic Web.

This viewpoint of the user comprehensively generating, manipulating and ex-
ploiting private as well as shared and public data has to be adequately reflected
in the representational basis of such a system. While we think in general the as-
sumptions of knowledge representation in the Semantic Web are a good starting
point the Semantic Desktop scenario generates special requirements. We identi-
fied two core questions which we try to tackle in the knowledge representation
approach presented in this paper:

1. How can we cope with the heterogeneity of knowledge models and ontologies,
esp. multiple knowledge modules with potentially different interpretation
schemes?

2. How can we support the tailoring of ontologies towards different needs in
various exploiting applications?

The first question is rooted in the fact that with heterogeneous generation and
exploitation of knowledge there is no “master instance” which defines and en-
sures the “interpretation sovereignty.” The second question turned out to be an
important prerequisite for a clean ontology design on the semantic desktop, as
many applications shall use a knowledge worker’s “personal ontology.”

From these general questions, we specialized the following five main require-
ments for knowledge representation on the Social Semantic Desktop:

Epistemological adequacy of modeling primitives:In the Social Semantic
Desktop scenario, knowledge modeling is not only performed offline (e. g., by a

596 M. Sintek et al.

distinguished knowledge engineer), but also by the end user, much like in the tag-
ging systems of the Web 2.0 where a user can continuously invent new vocabulary
for describing his information items. Even if much of the complexity of the un-
derlying representation formalism can be hidden by adequate user interfaces, it
is desirable that there is no big epistemological gap between the way an end-user
would like to express his knowledge and the way it is represented in the system.

Integration of open-world and closed-world assumptions: The main prin-
ciple of the SW is that it is an open world in which documents can add new
information about existing resources. Since the Web is a huge place in which
everything can link to anything else, it is impossible to rule out that a statement
could be true, or could become true in the future. Hence, the global semantic
web relies on a open-world semantic, with no unique-name assumption—the of-
ficial OWL and RDF/S semantics. On the other hand, the main principle on
the personal Semantic Desktop is that it is a closed-world as it mainly focuses
on personal data. While most people find it difficult to understand the logi-
cal meaning and potential inferences statements of the open-world assumption,
the closed-world assumption is easier to understand for the user. Hence, the
Personal Semantic Desktop requires the closed-world semantics with a unique-
name assumption or good smushing techniques to achieve the same effects. The
next stage of expansion of the personal semantic desktop is the Social Semantic
Desktop, which connects the individual desktops. This will require open-world
semantics (in between desktops) with local closed-world semantics (on the per-
sonal desktop). Thus the desktop needs to be able to handle external data with
open-world semantics. Therefore we require a scenario where we can always dis-
tinguish between data per se and the semantics or assumptions on that data. If
these are handled analogously, the semantic desktop, a closed-world in theory,
will also be able to handle data with open-world semantics.

Handling of multiple models: In order to adequately represent the social
dimension of distributed knowledge generation and usage [12], a module concept
is desirable which supports encapsulation of statements and the possibility to
refer to such modules. The social aspect requires a support for provenance and
trust information, when it comes to importing and exporting data. With the
present RDF model, importing external RDF data from another desktop presents
some difficulties, mainly revolving around the fact that there are no standard
means of retaining provenance information of imported data. This means that
data is propagated over multiple desktops, with no information regarding the
original provider and other crucial information like the context under which that
data is valid. This can result in various situations like ending up with outdated
RDF data with no means to update it, as well as redundant RDF data which
cannot be entirely and safely removed.

Multiple semantics: As stated before, the aspect of distributed (and indepen-
dently created) information requires the support of the open-world assumption
(as we have it in OWL and RDF/S), whereas local information created on a

Distributed Knowledge Representation on the Social Semantic Desktop 597

single desktop will have closed-world semantics. Therefore, applications will be
forced to deal with different kinds of semantics.

Multiple views: Also required by the social aspect is the support for multiple
views, since different individuals on different desktops might be interested in dif-
ferent aspects of the data. A view is dynamic, virtual data computed or collated
from the original data. The best view for a particular purpose depends on the
information the user needs.

In the next section, we will briefly discuss the state of the art which served
as input for the NEPOMUK Representation Language (NRL). Sec. Bl gives an
overview of our approach. The following sections elaborate on two important
aspects of NRL, the Named Graphs for handling multiple models (Sec.) and
the Graph Views for imposing different semantics on and application-oriented
tailoring of models (Sec. [). In Sec.[d, we present an example which shows how
the concepts presented in this paper can be applied. Sec. [summarizes the NRL
approach and discusses next steps.

2 State of the Art

The Resource Description Framework [§] and the associated schema language
RDFS [4] set a standard for the Semantic Web, providing a representational
language whereby resources on the web can be mapped to designated classes
of objects in some shared knowledge domain, and subsequently described and
related through applicable object properties. With the gradual acceptance of the
Semantic Web as an achievable rather than just an ideal World Wide Web sce-
nario, and adoption of RDF/S as the standard for describing and manipulating
semantic web data, there have been many attempts to improve some RDF/S
shortcomings to handling such data. Most where in the form of representational
languages that extend RDF /S, the most notable of which is OWL [1]]. Other work
attempted to provide further functionalities on top of semantic data to that pro-
vided by RDF/S by revising the RDF model itself. The most successful idea
perhaps is the named graph paradigm, where identifying multiple RDF graphs
and naming them with distinct URIs is believed to provide useful additional
functionality on top of the RDF model. Given that named graphs are manage-
able sets of data in an otherwise structureless RDF triple space composed of all
existent RDF data, most of the practical problems arising from dealing with RDF
data, like dealing with invalid or outdated data as well as issues of provenance
and trust, could be addressed more easily if the RDF model supports named
graphs. The RDF recommendation itself does not provide suitable mechanisms
for talking about graphs or define relations between graphs [2I84[7]. Although
the extension of the RDF model with named graph support has been proposed
[BIT9], and the motivation and ideas are clearly stated, a concrete extension
to the RDF model supporting named graph has not yet materialized. So far, a
basic syntax and semantics that models minimal manipulation of named graphs
has been presented by participants of the Semantic Web Interest Groupld Their

! http:/ /www.w3.0rg/2004/03 /trix/

598 M. Sintek et al.

intent is to introduce the technology to the W3C process once initial versions
are finalized. The SPARQL query language [9], currently undergoing standard-
ization by the W3C, is the most successful attempt to provide a standard query
language for RDF data. SPARQL’s full support for named graphs has encour-
aged further research in the area. The concept of modularized RDF knowledge
bases (in the spirit of named graphs) plus views that can be used to realize the
semantics of a module (with the help of rules), amongst other things, has been
introduced in the Semantic Web rule language TRIPLE [T1].

Since the existing approaches are incomplete wrt. the needs of NEPOMUK
and most Semantic Web scenarios in general, we propose a combination of named
graphs and TRIPLE’s view concept as the basis for NRL, the representational
language we are presenting. In contrast to TRIPLE, we will add the ability to
define views as an extension of RDF and named graphs at the ontological level,
thus we are not dependent on a specific rule formalism as in the case of TRIPLE.

In the rest of this paper, we will give a detailed description of the named graphs
and views features of NRL. Other features of NRL (which consist of some RDFS
extensions mainly inspired by Protégé and OWL) will not be discussed.

3 Knowledge Representation on the Social Semantic
Desktop: The NRL Approach

NRL was inspired by the need for a robust representational language for the
Social Semantic Desktop, that targets the shortcomings of RDF/S. NRL was
designed to fulfill requirements for the NEPOMUK Social Semantic Desktop
projectE hence the particular naming, but it is otherwise domain-independent.

As discussed in the previous section, the most notable shortcoming of the
RDF model is the lack of support for handling multiple models. In theory Named
Graphs solve this problem since they are identifiable, modularized sets of data.
Through this intermediate layer handling RDF data, e. g., exchanging data and
keeping track of data provenance information, is much more manageable. This
has a great influence in the social aspect of the Social Semantic Desktop project,
since the success of this particular aspect depends largely on how to successfully
deal with these issues. All data handling on the semantic desktop including stor-
age, retrieval and exchange, will therefore be carried out through RDF graphs.
Alongside provenance data, more useful information can be attached to named
graphs. In particular we feel that named graphs should be distinguished by their
roles, e. g., Ontology or Instance Base.

Desktop users may be interested in different aspects of data in a named graph
at different times. Looking at the contents of an image folder for instance, the
user might wish to see related concepts for an image, or any other files related to
it, but not necessarily both concurrently even if the information is stored in the
same graph. Additionally, advanced users might require to see data that is not
usually visible to regular users, like additional indirect concepts related to the

2 http://nepomuk.semanticdesktop.org/

Distributed Knowledge Representation on the Social Semantic Desktop 599

file. This would require the viewing application to realize the RDF/S semantics
over the data to yield more results. The desktop system is therefore required
to work with extended or restricted versions of named graphs in different situ-
ations. However, we believe that such manipulations over named graphs should
not have a permanent impact on the data in question. Conversely, we believe
that the original named graph should be independent of any kind of workable
interpretation executed by an application, which can be discarded if and when
they are no longer needed.

For this reason, we present the concept of Graph Views as one of the core
concepts in NRL. By allowing for arbitrary tailored interpretations for any es-
tablished named graph, graph views fulfill our idea that named graphs should not
innately carry any realized semantics or assumptions, unless they are themselves
views on other graphs for exactly that purpose, and that they should remain un-
changed and independent of any view applied on them. This means that different
semantics can be realized for different graphs if required. In practice, different
application on the semantic desktop will require to apply different semantics, or
assumptions on semantics, to named graphs. In this way, although the semantic
desktop operates in a closed-world, it is also possible to work with open-world se-
mantic views over a graph. Importing a named graph with predefined open-world
semantics on the semantic desktop is therefore possible. If required (and mean-
ingful), closed-world applications can then work with a closed-world semantics
view over the imported graph.

Semantics Syntax

NRL

Declarative Semantics

RDFS’

OWL RDF/S NRL
h [NRL Schema

Schema

Named Graphs

»Graph Roles

OWL RDFS NRL Semantic Views | Graph Views

Procedural Semantics p

View Specifications

Fig. 1. Overview of NRL—Abstract Syntax, Concepts and Semantics

Fig. [gives an overview of the components of NRL, depicting both the syn-
tactical and the semantic blocks of NRL. The syntax box contains, in the upper

600 M. Sintek et al.

part, the NRL Schema language, which is mainly an extension of (a large subset
of) RDFS. The lower part shows how named graphs, graph roles, and views are
related, which will be explained in detail in the rest of this paper.

The left half of the figure sheds some light on the semantics of NRL, which
has a declarative and a procedural part. Declarative semantics is linked with
graph roles, i. e., roles are used to assign meaning to named graphs (note that
not all named graphs or views must be assigned some declarative semantics, e. g.,
in cases when the semantics is (not) yet known or simply not relevant). Views
are also linked to view specifications, which function as a mechanism to express
procedural semantics, e. g., by using a rule system. The procedural semantics
has, of course, to realize the declarative semantics that is assigned to a semantic
view.

4 Handling Multiple Models: NRL Named Graphs

Named graphs (NGs) are an extension on top of RDF, where every distinct
RDF graph is identified by a unique name. NGs provide additional functionality
on top of RDF particularly with respect to metametadata (metadata about
metadata), provenance, and data (in)equivalence issues, besides making data
handling more manageable. Our approach is based on the work described in [5]
excluding however, the open-world assumption stated there. As stated earlier
(¢f. Sec.Bl) we believe that named graphs should not innately carry any realized
semantics or assumptions on the semantics. Therefore, despite being designed as
a requirement for the Semantic Desktop, which operates under a closed-world
scenario, NRL itself does not impose closed-world semantics on data. This and
other semantics can instead be realized through designated views on graphs.

A named graph is a pair (n, g), where n is a unique URI reference denoting the
assigned name for the graph g. Such a mapping fixes the graph g corresponding
to n in a rigid, non-extensible way. The URI representing n can then be used
from any location to refer to the corresponding set of triples belonging to the
graph g. A graph ¢’ consistent] with a distinct graph g named n cannot be
assigned the same name n.

An RDF triple can exist in a named graph or outside any named graph. How-
ever, for consistency reasons, all triples must be assigned to some named graph.
For this reason NRL provides a special named graph, nrl:DefaultGraph. Triples
existing outside any named graph are considered part of this default graph. This
ensures backward compatibility with triples that are not based on named graphs.
This approach gives rise to the term RDF Dataset as defined in [9]. An RDF
dataset is composed of a default graph and a finite number of distinct named
graph, formally defined as the set {g, (n1,91), (n2, 92), .., (N, gn)} comprising of
the default graph g and zero or more named graphs (n;, g;).

NRL distinguishes between graphs and graph roles, in order to have orthog-
onal modeling primitives for defining graphs and for specifying their role. A

3 Two different datasets asserting two unique graphs but having the same URI for a
name contradict one another.

Distributed Knowledge Representation on the Social Semantic Desktop 601

rdfs:subClassOf

rl:DocumentGrap

rdfs:subClassOf

nrl:DefaultGraph nrl:Data

rdfs:subClassOf

nrl:InstanceBase

rdfs:subClassOf

rdfs:subClassOf rdfs:subClassOf

nrl:Configuration

rdfs:subClassOf

nrl:Ontology
rdfs:subClassOf
rl:KnowledgeBase

Fig. 2. NRL Named Graph Class Hierarchy

nrl:Schema

graph role refers to the characteristics and content of a named graph (e. g., sim-
ple data, an ontology, a knowledge base, etc.) and how the data is intended to
be handled. The NEPOMUK Graph Metadata vocabulary (NGME provides a
vocabulary for annotating graph roles. Graph metadata will be attached to roles
rather than to the graphs themselves, because its more intuitive to annotate an
ontology, for example, rather than the underlying graph. Roles are more stable
than the graphs they represent, and while the graph for a particular role might
change constantly, evolution of the role itself is less frequent. An instantiation
of a role represents specific type of graph and the corresponding triple set data.

Fig. [depicts the class hierarchy supporting NGs in NRL. Graph roles are
defined as specialization of the general graph representation nrl:Data. A special
graph, nrl:DocumentGraph, is used as a marker class for graphs that are rep-
resented within and identified by a document URL. We now present the NRL
vocabulary supporting named graphs. General graph vocabulary is defined in
Sec. T while Sec. is dedicated entirely to graph roles.

4.1 Graph Core Vocabulary

nrl:Graph and nrl:DocumentGraph Instances of these classes represent
named graphs. The name of the instance coincides with the name of the
graph. The graph content for a nrl:DocumentGraph is located at the URL
that is the URIref for the nrl:DocumentGraph instance. This allows existing
RDEF files to be re-used as named graphs, avoiding the need of a syntax like
Tridd to define named graphs.

nrl:subGraphOf, nrl:superGraphOf, and nrl:equivalentGraph. These
relations between named graphs have the obvious semantics: they are de-
fined as C, O, and = on the bare triple sets in these graphs.

nrl:imports is a subproperty of nrl: superGraphOf and models graph imports.
Apart from implying the D relation between the triple sets, it also requires

4 NGM will not be described in this paper.
® http://sites.wiwiss.fu-berlin.de/suhl/bizer/TriG /

602 M. Sintek et al.

that the semantics of the two graphs is compatible if used on, e. g., graphs
that are ontologies.

nrl:DefaultGraph This instance of nrl:Graph represents the graph containing
all triples existing outside any user-defined named graph. Since we do not
apply any semantics to triples automatically, this allows views to be defined
on top of triples defined outside of all named graphs analogously to the
named-graph case.

4.2 Graph Roles Vocabulary

nrl:Data This subclass of nrl:Graph is an abstract class to make graph roles
easy-to-use marker classes. It represents the most generic role that a graph
can have, namely that it contains data.

nrl:Schema and nrl:Ontology are roles for graphs that represent data in
some kind of conceptualization model. nrl:0ntology is a subclass of
nrl:Schema.

nrl:InstanceBase marks a named graph to contain instances from schemas or
ontologies. The properties nrl:hasSchema and nrl:hasOntology relate an
instance base to the corresponding schema or ontology.

nrl:KnowledgeBase marks a named graph as containing a conceptual model
plus instances from schemas or ontologies.

nrl:Configuration is used to represent technical configuration data that is ir-
relevant to general semantic web data within a graph. Other additional roles
serving different purposes might be added in the future.

nrl:Semantics Declarative semantics for a graph role can be specified by refer-
ring to instances of this class via nrl:hasSemantics. These will usually link
(via nrl:semanticsDefinedBy) to a document specifying the semantics in
a human readable or formal way (e. g., the RDF Semantics document [7]).

5 Imposing Semantics on Graphs: NRL Graph Views

A named graph consists only of the enumerated triples in the triple set as-
sociated with the name, and does not inherently carry any form of semantics
(apart from the basic RDF semantics). However in many situations it is desir-
able to work with an extended or restricted interpretation of simple syntax-only
named graphs. These can be realized by applying some algorithm (e. g., specified
through rules) which enhances named graphs with entailment triples, returns a
restricted form of the triple set, or an entirely new triple set. To preserve the
integrity of a named graph, interpretations of one named graph should never re-
place the original. To model this functionality and retain the separation between
original named graph and any number of their interpretations, we introduce the
concept of Graph Views.

Views are different interpretations for a particular named graph. Formally, a
view is an executable specification of an input graph into a corresponding output
graph. Informally, they can be seen as arbitrary wrappings for a named graph.

Distributed Knowledge Representation on the Social Semantic Desktop 603

rdfs:subClassOf rdfs:subClassOf

nrl:GraphView nrl:ViewSpecification
nrl:hasSpecification

nrl:realizes

[Graph Roles

nri:hasSemantics

Fig. 3. Graph Views in NRL

Fig. Bl depicts graph view support in NRL. Views are themselves named graphs.
Therefore one can have a named graph that is a different interpretation, or view,
of another named graph. This modeling can be applied recurrently, yielding a
view of a view and so on.

View specifications can execute the view realization for a view, via a set of
queries/rules in a query/rule language (e.g., a SPARQL query over a named
graph), or via an external application (e. g., an application that returns the tran-
sitive closure of rdfs:subClass0f). As in the latter example, view realizations
can also realize the implicit semantics of a graph according to some language or
schema (e. g., RDFS, OWL, NRL etc.). We refer to these as Semantic Views,
represented in Fig. B by the intersection of nrl:GraphView and graph roles. One
can draw a parallel between this figure and Fig. [[l In contrast to graph roles,
which have only declarative semantics defined through the nrl:hasSemantics
property, semantic views also carry procedural semantics, since the semantics
of these graphs are always realized, (through nrl:realizes) and not simply
implied.

5.1 Views Vocabulary

In this section we briefly present the NRL vocabulary supporting graph view
specifications.

nrl:GraphView represents a view, modeled as a subclass of named graph.
A view is realized through a view specification, defined by an instance of
nrl:ViewSpecification via nrl:hasSpecification. The named graph on
which the view is being generated is linked by nrl:viewOn. The separation
between different interpretations of a named graph and the original named
graph itself is thus retained.

nrl:ViewSpecification This class represents a general view specification,
which can currently take one of two forms, modeled as the two subclasses
nrl:RuleViewSpecification and nrl:ExternalViewSpecification. As
discussed earlier, semantic views realize procedural semantics and are linked
to some semantics via nrl:realizes. This is however to be differentiated

604 M. Sintek et al.

from nrl:hasSemantics, which states that a named graph carries (through
a role) declarative semantics which is not necessarily (explicitly) realized via
a view specification.

nrl:RuleViewSpecification Views can be specified by referring to a rule lan-
guage (via nrl:rulelLanguage) and a corresponding set of given rules (via
nrl:rule). These views are realized by executing the rules, generating the
required output named graph.

nrl:ExternalViewSpecification Instances of this class map to the location of
(via nrl:externalRealizer) an external application, service, or program
that is executed to create the view.

6 Example: NRL in Use

In this section, we demonstrate the utilization of the various NRL concepts in
a more complex scenario: Ella is a biologist and works as a senior researcher at
Institute Pasteur in central Paris. She would like to compile an online knowledge
base describing animal species for her students to access. She knows that a rather
generic ontology describing the animal species domain, Oy, is already available
(which, technically speaking, means it exists as a named graph). Someone else
had also supplied data consisting of a vast amount of instances for the animals
ontology as a named graph with the role of instance base, I;. However this
combined data does not provide extensive coverage of the animal kingdom as
required by Ella. Therefore Ella hires a SW knowledge engineer to model another
ontology that defines further species not captured in O;, and this is stored as
another named graph, Os. Since Ella requires concepts from both ontologies,
the engineer merges O and Os in the required conceptualization by creating
a named graph O as an ontology and defining it as supergraph of O; and Os.
Furthermore, a number of real instances of the new animal species defined in O,
is compiled in an instance base, I5.

Ella now requires to use all the acquired and generated data to power a use-
ful service for the students to use. Schematic data from the graph O, and the
instances from I; and I are all imported to a new graph, KB, acting as a knowl-
edge base. Ella would like the students to be able to query the knowledge base
with questions like ‘Are flatworms Deuterostomes or Platyzoa?’. Although by
traversing the animals hierarchy it is clear that they are Platyzoa, the statement
is not innately part of the graph KB. This can be discovered by realizing the
semantics of rdfs:subClass0f as defined in the RDFS semantics. However KB
might be required as is, with no assumed semantics, for other purposes. Directly
enriching KB with entailment triples permanently would make this impossible.

Therefore the knowledge engineer creates a view over KB for Ella, consisting of
the required extended graph, without modifying the original KB in any way. This
is done by defining a view specification that computes the procedural semantics
for KB. The specification uses a rule language of choice that provides a number
of rules, one of which computes the transitive closure of rdfs:subClassOf for
a set of RDF triples. Executing that rule over the triples in KB results in the

Distributed Knowledge Representation on the Social Semantic Desktop 605

semantic view V1 (KB), which consists of the RDF triples in KB plus the gener-
ated entailment triples. The separation between the underlying model and the
model with the required semantics is thus retained and through simple queries
over V1 (KB), students can instantly get answers to their questions.

Ella later on decides to provide another service for younger students by us-
ing ‘Graph Taxonomy Extractor’, a graph visualization API that generates an
interactive graph depicting the animal hierarchy within V;(KB). However this
graph contains other information in addition to that required (e. g., properties
attributed to classes). Of course, Ella does not want to discard all this useful
information from V;(KB) permanently just to generate the visualization. The
knowledge engineer is aware of a Semantic Web application that does exactly
what Ella requires. The application acts as an external view specification and
generates a view, consisting of only triples defining the class hierarchy, over
an input named graph. The view generated by this application, Va (Vi (KB)), is
fed to the API to effectively generate the interactive graph for the students to
explore.

It is worth to note that all seven named graphs on which this last view is
generated upon are still intact and have not been affected by any of the opera-
tions along the way. If the knowledge engineer requires to apply some different
semantics over KB, it may still be done since generating V4 (KB) did not have an
impact on KB. However, the content of KB needs to be validated, or generated,
each time it is used since one of its subgraphs (O1, O2, I; and I5) can change.
Although from a practical point of view this might sound laborious, from a con-
ceptual point of view it solves problems regarding data consistency and avoids
other problems like working with outdated data that can’t be updated because
links to underlying models have been lost.

Fig. @ presents the “dataflow” in our example scenario, demonstrating how
the theoretical basis of NRL can be applied in practice to effectively model data
for use in different scenarios in a clear and consistent way.

We now model the dataflow in Fig. @l in TriG syntaxﬁ TriG is a straight-
forward extension of Turtle[] Turtle itself is an extension of N—Tripleﬂ which
carefully takes the most useful and appropriate things added from Notationd]
while keeping it in the RDF model. TriG is a plain text format created for
serializing NGs and RDF Datasets. Fig. Bl demonstrates how one can make use
of the named graph paradigm and the syntax for named graphs:

[1] namespace declarations
[2-5] ontology graphs (ex:01 and ex: 02 are defined and then imported into
ex:0)
[6-8] instance/knowledge base definitions
[9] contents of ontology ex:02, defining extended animal domain
[10] contents of instance base ex:12, defining instances of animals in (ex: 02

5 http:/ /sites.wiwiss.fu-berlin.de/suhl/bizer/TriG /
" http://www.dajobe.org/2004/01/turtle/

& http://www.w3.org/TR/rdf-testcases/#ntriples
9 http://www.w3.org/Designlssues/Notation3

606 M. Sintek et al.

Senior Biology Students All Students

Sa A
!
V1

ORN

—> e
I / o i
View Specification View Specification
RDF/S Proc. Sem. Graph Taxonomy
I2 Extractor
—— Rules [—]

RDF/S Decl. Sem.

Fig. 4. NRL Dataflow Diagram

[1] @prefix nrl: <http://semanticdesktop.org/ontology/nrl-yyyymmdd#> .
@prefix ex: <http://www.example.org/vocabulary#> .
[2] ex:02 rdf:type nrl:Ontology .
[3] <http://www.domain.com/ol.rdfs> rdf:type nrl:Ontology ,
nrl:DocumentGraph .
[4] ex:ol rdf:type nrl:0Ontology ;
nrl:equivalentGraph <http://www.domain.com/ol.rdfs> .
[6] ex:o rdf:type nrl:Ontology ;
nrl:imports ex:ol, ex:o02 .
[6] ex:i2 rdf:type nrl:InstanceBase ;
nrl:hasOntology ex:o02 .
[7] http://www.anotherdomain.com/il.rdf> rdf:type nrl:InstanceBase ,
nrl:DocumentGraph .
[8] ex:kb rdf:type nrl:KnowledgeBase ;
nrl:imports ex:o, ex:i2, <http://www.anotherdomain.com/il.rdf> .
[9] ex:02 {
ex:Animal rdf:type rdfs:Class .
further Animal Ontology definitions here ## }
[10]ex:i2 {
ex:CandyCaneWorm rdf:type ex:Flatworm ;
further Animal Instance definitions here ## }
[11] ex:vikb rdf:type nrl:KnowledgeBase, nrl:GraphView ;
nrl:viewOn ex:kb ; nrl:superGraphOf ex:kb ;
nrl:hasSpecification ex:rvs .
[12] ex:rvs rdf:type nrl:RuleViewSpecification ;
nrl:realizes ex:RDFSSemantics ; nrl:ruleLanguage "SPARQL" ;
nrl:rule "CONSTRUCT {?s rdfs:subClassOf ?v} WHERE ..." ;
nrl:rule "CONSTRUCT {?s rdf:type ?v} WHERE ..."
[13] ex:RDFSSemantics rdf:type nrl:Semantics ; rdfs:label "RDFS" ;
nrl:semanticsDefinedBy "http://www.w3.org/TR/rdf-mt/" .
[14] ex:v2vikb rdf:type nrl:GraphView, nrl:KnowledgeBase ;
nrl:viewOn ex:vlkb ; nrl:hasSpecification ex:evs .
[156] ex:evs rdf:type nrl:ExternalViewSpecification ;
nrl:externalRealizer "GraphTaxonomyExtractor" .

Fig. 5. NRL Example—TriG Serialization

Distributed Knowledge Representation on the Social Semantic Desktop 607

[11-13] ex:v1ikb is defined as a view on ex:kb via the view specification
ex:rvs; furthermore, ex:v1kb is a super graph of ex:kb as it real-
izes the RDFS semantics and thus contains the original graph plus the
inferred triples; the view specification is realized (as an example) with
some SPARQL-inspired CONSTRUCT queries (for this to work, a real
rule language is required)

[14-15] similar to [11-13], but here we define ex:v2v1ikb with the help of an
external tool, the “GraphTaxonomyExtractor”

7 Summary and Outlook

Aligning knowledge representation on a Social Semantic Desktop with the gen-
eral Semantic Web approaches (RDF, RDFS, OWL, ...) promises a compre-
hensive use of data and schemas and an active, personalized access point to
the Semantic Web [I0]. In such a scenario, ontologies play an important role,
from very general ontologies stating which entities can be modeled on a Semantic
Desktop (e. g., people, documents, ...) to rather personal vocabulary to structure
information items. One of the most important design decisions is the question
of the representational ontology, constraining the general expressivity of such a
system. In this paper, we concentrated on those parts of the NEPOMUK Repre-
sentational Language (NRL) which are rooted in the requirements risen by the
distributed knowledge representation and heterogeneity aspects of the Semantic
Desktop scenario and which we think cannot satisfactorily be dealt with by the
current state of the art. In a nutshell, the basic arguments and design principles
of NRL are as follows:

— Due to the heterogeneity of the data creating and consuming entities in the
social semantic desktop scenario, a single interpretation schema cannot be
assumed. Therefore, NRL aims at a strict separation between data (sets of
triples, graphs) and their interpretation/semantics.

— Imposing specific semantics to a graph is realized by generating views on
that graph. Such a generation is directed by an (executable) view specifica-
tion which may realize a declarative semantics (e. g., the RDF/S or OWL
semantics specified in a standardization document).

— Graph views cannot only be used for semantic interpretations of graphs, but
also for application-driven tailoring of a graph

— Handling of multiple graphs (with different provenance, ownership, level of
trust, ...) is essential. Named graphs are the basic means to this problem.

— Graphs can play different roles in different contexts. While for one applica-
tion a graph may be an ontology, another one may see it as plain data. These
roles can explicitly be specified.

While originally designed as a NEPOMUK internal standard for the Social Se-
mantic Desktop, we believe that the arguments also hold for the general Semantic
Web, especially when we review the current trends which more and more show a

10 This corresponds to a database-like view concept.

608 M. Sintek et al.

development from the view of “the Semantic Web as one big, global knowledge
base” to “a Web of (machine and human) actors” with local perspectives and
social needs like trust, ownership, etc.

Within NEPOMUK, we are developing the approach technically, by comple-
menting the NRL standard with tools that facilitate its use by the application
programmer, as well as conceptually, by the development and integration of ac-
companying ontology standards, e. g., an annotation vocabulary, an information
element ontology, and an upper-ontology for personal information models.

Acknowledgements. This work was supported by the European Union IST
fund (Grant FP6-027705, Project NEPOMUK) and by the German Federal Min-
istry of Education, Science, Research and Technology (bmb+f), (Grant 01 TW
FO1, Project Mymory: Situated Documents in Personal Information Spaces).
The authors would especially like to thank all contributors to NEPOMUK’s
ontology taskforce.

References

1. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinnes, P. Patel-
Schneider, and L. Stein. OWL web ontology language reference, 2004.

2. D. Beckett. RDF/XML syntax specification (revised). W3C recommendation,
W3C, February 2004. http://www.w3.org/TR /rdf-syntax-grammar/.

3. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
89, May 2001.

4. D. Brickley and R. Guha. RDF vocabulary description language 1.0: RDF Schema.
Technical report, W3C, February 2004. http://www.w3.org/TR/rdf-schema/.

5. J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs, provenance and
trust. In WWW ’05: Proceedings of the 14th international conference on World
Wide Web, pages 613-622, New York, NY, USA, 2005. ACM Press.

6. S. Decker and M. Frank. The social semantic desktop. In Proc. of the WWW200,
Workshop Application Design, Development and Implementation Issues in the Se-
mantic Web, 2004.

7. P. Hayes. RDF semantics. W3C recommendation, W3C, February 2004. http://
www.w3.org/TR/rdf-mt/.

8. F. Manola and E. Miller. RDF primer. W3C recommendation, W3C, February
2004. http://www.w3.org/TR/rdf-primer/.

9. E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF. W3C
working draft, W3C, 2005. http://www.w3.org/TR/rdf-sparql-query/.

10. L. Sauermann, A. Dengel, L. Elst, A. Lauer, H. Maus, and S. Schwarz. Personaliza-
tion in the EPOS project. In M. Bouzid and N. Henze, editors, Proceedings of the
International Workshop on Semantic Web Personalization, Budva, Montenegro,
June 12, 2006, pages 42-52, 2006.

11. M. Sintek and S. Decker. TRIPLE—A query, inference, and transformation lan-
guage for the Semantic Web. In Ist International Semantic Web Conference
(ISWC2002), June 2002.

12. L. van Elst, V. Dignum, and A. Abecker. Towards agent-mediated knowledge
management. In L. van Elst, V. Dignum, and A. Abecker, editors, Agent-Mediated
Knowledge Management International Symposium AMKM 2003, Stanford, CA,
USA, March 24-26, 2003, Revised and Invited Papers, volume 2926 of LNAI, pages
1-31. Springer, Heidelberg, 2004.

	Motivation: The Social Semantic Desktop
	State of the Art
	Knowledge Representation on the Social Semantic Desktop: The NRL Approach
	Handling Multiple Models: NRL Named Graphs
	Graph Core Vocabulary
	Graph Roles Vocabulary

	Imposing Semantics on Graphs: NRL Graph Views
	Views Vocabulary

	Example: NRL in Use
	Summary and Outlook

