
E. Franconi, M. Kifer, and W. May (Eds.): ESWC 2007, LNCS 4519, pp. 579 – 593, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Unified Approach to Retrieving Web Documents and
Semantic Web Data

Trivikram Immaneni and Krishnaprasad Thirunarayan

Department of Computer Science and Engineering, Wright State University,
3640 Colonel Glenn Highway, Dayton, OH 45435, USA
{immaneni.2,t.k.prasad}@wright.edu

Abstract. The Semantic Web seems to be evolving into a property-linked web
of RDF data, conceptually divorced from (but physically housed in) the
hyperlinked web of HTML documents. We discuss the Unified Web model that
integrates the two webs and formalizes the structure and the semantics of
interconnections between them. We also discuss the Hybrid Query Language
which combines the Data and Information Retrieval techniques to provide a
convenient and uniform way to retrieve data and documents from the Unified
Web. We present the retrieval system SITAR and some preliminary results.

Keywords: Semantic Web, Information Retrieval, Data Retrieval, Hybrid
Retrieval, Unified Web, Hybrid Query Language.

1 Introduction

Semantic Web [1] is a term used to describe the family of description languages,
standards, and other technologies which aim at “extending” the current web by
making its content machine accessible. Since the Resource Description Framework
(RDF) forms the foundation of this “extension”, we can visualize the Semantic Web
(SW) as a labeled graph with resources as nodes and binary predicates as edges (web
of data). This is in contrast to the Hypertext Web (HW) which is a graph with
resources (usually documents) as nodes and hyperlinks as edges (web of documents).

An interesting question that arises is as to where the Web documents fit into the
SW and how they can be retrieved. Intuitively, since the Web documents are
resources that are identified by their URIs, we can view them as nodes in the SW
graph. The document content can be explicitly incorporated into the SW as literals.
We can then use RDF query languages such as SPARQL [2], which enable RDF
graph traversal and support regular expression matching of strings (literals), to
retrieve the documents based upon their neighborhood as well as their content. For
example, we can pose queries such as retrieve documents authored by Tragula and
contain the string “Spectrographic”. This is classic Data Retrieval (DR).

Arguably, for this method of retrieving Web documents to have any remote chance
of out-performing current Information Retrieval (IR) techniques, each and every Web
document should have highly useful semantic descriptions. Some technologies such
as RDFa [3] enable embedding of semantic markup in a HTML document. Even if
such technologies gain wide usage, unless we find a way to (automatically) create

580 T. Immaneni and K. Thirunarayan

semantic descriptions of all of the existing HW documents, there will always be a
large corpus of documents isolated from the SW. Another issue here is that query
languages such as SPARQL require the users to have intimate knowledge of the
underlying schema (exact URIs) to compose queries. The simple keyword-based
interfaces that systems such as Yahoo! and Google expose to their users is another
compelling reason to stick to IR techniques for retrieving Web documents. So, we
seem to be better off retrieving data from the SW using DR techniques and retrieving
documents from the HW using keyword-based IR techniques. In this sense, when
seen from (data or document) retrieval perspective, the Semantic Web is,
conceptually, a web of data that is estranged from the web of documents that is the
Hypertext Web.

Our high level goal is to view the Semantic Web and the Hypertext Web as a
unified whole and retrieve data and documents from this Unified Web (UW) [4]. This
way, we can utilize the available semantic descriptions to enhance Web document
retrieval and will also have the option of using the information from the (unstructured
documents of) HW to improve the SW data retrieval.

The web documents can be broadly divided into the following three categories –
those meant primarily for human consumption (HTML, plain text, jpg, etc.), those
meant primarily for machine consumption (RDF, OWL, RDFS, etc.) and hybrid
documents that are meant for both machine and human consumption (RDFa,
microformats and other such technologies that allow embedding of semantic markup
in HTML/XHTML documents [5]). Our goal is to facilitate the retrieval of all the
above three types of documents while fully exploiting semantic markup/descriptions
when available to increase retrieval effectiveness.

We want to enable lay users to retrieve human-consumable documents (first and
third types) using the traditional keyword-based query mechanism (with minimal
enhancements). We want to transparently use the available SW data to enhance the
retrieval process. For example, if the user knows that she is looking for Jaguar the car,
she should be able to communicate this disambiguating information to the system
using a query such as “car::jaguar”.

For more informed users, we want to provide a light-weight, keyword-based hybrid
query language, that does not require knowledge of the underlying schema (exact
URIs). These users should be able to use the query language to retrieve all three types
of documents. That is, they should be able to (i) retrieve human-consumable
documents by posing queries such as retrieve documents authored by Tragula (the
professor) and are about spectrography, or retrieve homepages of professors named
John, (ii) query for and retrieve SW documents (RDF, OWL, RDFS, etc.) by posing
queries such as retrieve documents that assert triples about the ventriloquist John
Smith, and (iii) retrieve hybrid documents (e.g., RDFa) by posing queries that
combine the features of the above two types of queries. In addition, the users should
be able to query and retrieve data by posing questions such as what is professor
Tragula’s phone number or list all the elements in group 1 of the periodic table, even
in the absence of schema information.

We first describe the Unified Web model in Section 2, followed by the description
of the Hybrid Query Language in Section 3. We discuss the implementation of our
system SITAR and present some results in Section 4. We discuss related research in
Section 5 and conclude with Section 6.

 A Unified Approach to Retrieving Web Documents and Semantic Web Data 581

2 The Unified Web Model

The Unified Web model aims to integrate the SW and the HW into a single unified
whole by encoding the two webs and the connections between them. The UW model
is a graph of nodes and edges (N, E). A node is an abstract entity that is uniquely
identified by its URI. There are two categories of nodes: (i) Natural nodes (NN) and
(ii) System defined nodes (SN). The natural nodes can be further classified as plain
(or non-document) nodes (PN) and document nodes (DN) based on whether or not a
node has an associated document. The system defined nodes can be further classified
as literal nodes (LN), triple nodes (TN) and blank nodes (BN). The system creates a
URI and assigns it to each blank node, triple and literal that it encounters on the Web.

There are two categories of edges: (i) User defined edges (UE) and (ii) System
defined edges (SE). The user defined edges come from the triples in the (Semantic
Web) documents while the system defined edges are defined to make explicit the
interconnections between the HW and the SW. The system defined edges are the
following. The asserts edge exists from a node (document) to each of the RDF
statements found in the associated document. The RDF statement itself has a subject,
a property and an object. There is no restriction as to how a triple is obtained from the
document. The hasDocument edge exists from a node to a literal. The literal is the
string representation of the document associated with the node. A hyperlinksTo edge
exists from a node A to another node B if there is a hyperlink from the document of
node A to the document of node B. The linksTo edge exists from node A to node B if
a hyperlinksTo relationship exists from node A to node B, or node B occurs in any of
the triples asserted by node A (see Figure 1).

Fig. 1. Relationships

More formally, they can be specified as functions/relations in terms of their
signatures (domains and ranges), and include:

hyperlinksTo ⊆ DN x NN
linksTo ⊆ DN x NN
asserts ⊆ DN x TN
hasDocument: DN LN

582 T. Immaneni and K. Thirunarayan

These relations are not independent and cannot be assigned arbitrarily. They must
satisfy at least the following constraints:

 ∀n ∈ DN, ∀m ∈ NN: if [n, hyperlinksTo, m] ∈ SE then [n, linksTo, m] ∈ SE

The Unified Web model is not a simple super-imposition of the SW graph over the
hypertext graph. The Semantic Web can be thought of as a global RDF graph
constructed by gathering all possible RDF triples from documents that reside on the
Hypertext Web. The UW reifies each of the SW triples by explicitly encoding the
asserts relationship between a document and the triple that is extracted from it. The
UW can be visualized as a meta – Semantic Web which in itself can be an RDF graph
(one that subsumes all RDF graphs found on the web). In addition, this RDF graph
also encodes the Hypertext Web (HTML documents and hypertext links between
them). The aim is to encode the HW (hyperlinksTo and hasDocument) and the SW
and the connections between the two (such as asserts which is not explicitly defined
by the user but is rather constructed by the system) while allowing easy mapping of
data retrieval queries meant for the “conventional” SW to those for the UW [4]. The
linksTo tries to define a generic “connection” between two nodes. It seeks to establish
a definite connection between a document node and a SW data node (which, of
course, can be a document node as well) and to deliberately blur the distinction
between such a connection and a hypertext connection. The linksTo edge is for the
Unified Web what the hyperlink is for the HW and the property-link is for the SW. In
our implementation, we use linksTo to view a document as being annotated by the
URIs that it linksTo and use this information while retrieving documents.

The UW model can be specified and implemented using RDF [4]. Since all the
“user triples” are present (in reified from) in the model, query languages like
SPARQL can be used to retrieve the data – all we need is a straight-forward mapping
of the SPARQL query for the SW to the SPARQL query for the UW.

3 Hybrid Query Language Specification

The Hybrid Query Language [4] enables convenient navigation and extraction of
information from the UW. It enables formulation of precise queries involving URIs,
and “approximate” word-based queries that capture context (e.g., wordset, wordset-
pairs queries) and/or content (e.g., keyword queries). In other words, it enables access
to both HW documents and SW data, incorporating indexing information from the
neighboring nodes. Specifically, the wordset queries can use anchor text in the HW to
retrieve SW nodes, and wordset pair queries can express disambiguation information
using the ISA edges encoded in the SW for semantic search of HW documents.

Before we go into the details of the query language, let us first define some more
utility functions/relations in addition to the four in the previous section:

homeURI: N Set(URI)
externalTexts: NN PowerSet(STRINGS)
indexWords : NN PowerSet(STRINGS)
parameters: DN PowerSet(STRINGS)
hasTriples: DN PowerSet(NN x NN x NN)
hasLiteral: LN STRINGS

 A Unified Approach to Retrieving Web Documents and Semantic Web Data 583

URI denotes a string that must satisfy the URI syntax requirement (RFC 3986),
while STRINGS denotes a set of words, phrases, and other fragments. PowerSet
operator yields a set of all subsets. The members of NN x NN x NN are referred to as
the triples (such as those found in RDF documents).

homeURI maps a node to its URI. The URI is what we use to refer to a node
explicitly. externalTexts maps a node to a set of strings, possibly from its neighborhood,
providing contextual information. indexWords maps a node to a set of strings that can
serve as an index to it. These can be composed from the URI and the anchor text from
the neighboring nodes among other things. hasDocument maps a document node to the
associated document text string. parameters maps a document node to a set of attribute-
value strings capturing OS/Server related book-keeping information on the document.
hyperlinksTo relates a document node to a node that appears in a hyperlink in
the corresponding document. linksTo relates a document node to a node that appears in
the corresponding document. This can be in the form of a hyperlink or embedded in a
triple. hasTriples maps a document node to the set of 3-tuples of nodes that appear in
the corresponding document. asserts relates a document node to a triple node that reifies
the triple that appears in the corresponding document. hasLiteral maps a literal node to
the string it is associated with. It is possible to have multiple literal nodes associated
with the same string. Note that a specific instantiation of the framework can be obtained
by defining how these functions/relations (such as externalText, IndexWords, etc) are
obtained from the node’s neighborhood.

These functions must satisfy at least the following constraints:

 ∀n ∈ NN, ∀[n1, n2, n3] ∈ NN x NN x NN:
 [n1, n2, n3] ∈ hasTriples (n) only if
 [n, linksTo, n1] ∈ SE ∧ [n, linksTo, n2] ∈ SE ∧ [n, linksTo, n3] ∈ SE

∀n ∈ N, ∀[n1, n2, n3] ∈ NN x NN x NN:

[n1, n2, n3] ∈ hasTriples (n) if and only if
∃ tn ∈ TN : [n, asserts, tn] ∧ [tn, rdf:subject, n1] ∈ SE
 ∧ [tn, rdf:predicate, n2] ∈ SE ∧ [tn, rdf:object, n3] ∈ SE

For convenience, we abuse the language and say that n1, n2, and n3 appear in tn in
the context of the reification constraint.

In what follows, we motivate and specify the abstract syntax of the queries using a
context-free grammar, and the semantics of the queries in terms of the Unified Web
model, in sufficient detail to enable prototyping. Our presentation focuses on queries
that yield a set of nodes. The “domain information bearing” strings such as the
document text, literal, etc. can be easily obtained from a URI by calling corresponding
system functions such as hasDocument, hasLiteral, etc. and from triples using
rdf:subject, rdf:predicate, and rdf:object, etc.

TopLevelQuery ::= Nodes-ref | Triples-ref | …

QUERY: Nodes-ref ::= u, where u ∈ Set(URI).
ANSWER: Result(u) = { n ∈ N | HomeURI(n) = u }

584 T. Immaneni and K. Thirunarayan

SEMANTICS: The URI-query returns the set containing the unique node whose
HomeURI matches the given URI. Otherwise, it returns an error.
EXAMPLE: http://www.aifb.uni-karlsruhe.de/Personen/viewPersonenglish?id_db=20

QUERY: Nodes-ref::=ss, where ss ∈ PowerSet(STRINGS).
ANSWER: Result(ss) = { n in N | ss ⊆ IndexWords(n) }
SEMANTICS: The wordset query, ss, usually written as a set of strings delimited
using angular brackets, returns the set of nodes whose IndexWords contain ss.
EXAMPLE: <peter haase>

QUERY: Nodes-ref ::= pp::ss, where pp, ss ∈ PowerSet(STRINGS).
ANSWER: Result(pp::ss) = { n ∈ N | ss ⊆ IndexWords(n) ∧

 ∃m : n ISA m ∧ pp ⊆ IndexWords(m) }
SEMANTICS: The wordset-pair query, pp::ss, usually written as two wordsets
delimited using colon, returns the set of nodes such that each node has IndexWords
that contains ss and has an ISA ancestor whose IndexWords contains pp.
EXAMPLE: <student>::<peter>

QUERY: Triples-ref ::= u, where u ∈ Set(URI).
ANSWER: Result(u) = { n ∈ TN | HomeURI(n) = u }
SEMANTICS: The triple node URI-query returns the set containing the unique node
whose HomeURI matches the given triple node URI. Otherwise, it returns an error.
The triple nodes are system generated.
EXAMPLE: http://www.aifb.uni-karlsruhe.de/Personen/viewPersonFOAF/foaf_80.rdf#tri52

QUERY: Triples -ref ::= Single-Var-Triples-ref
 Single-Var-Triples -ref ::= [?var Nodes-ref Nodes-ref]
 Single-Var-Triples -ref ::= [Nodes-ref ?var Nodes-ref]
 Single-Var-Triples –ref ::= [Nodes-ref Nodes-ref ?var]

where ?var is a variable.
ANSWER: Result([?var Nodes-ref1 Nodes-ref2]) =

 { t ∈ TN | n1 ∈ Result(Nodes-ref1) ∧ n2 ∈ Result(Nodes-ref2)
 ∧ ∃m ∈ N : [m, asserts, t] ∧ [t, rdf:predicate, n1] ∧ [t, rdf:object, n2] }

Similarly, for the other two cases.
SEMANTICS: The part triple query [?var Nodes-ref1 Nodes-ref2] returns the set of
(system generated) triple nodes that are related by a binary predicate denoted by
Nodes-ref1 to some node denoted by Nodes-ref2. Similarly, for the other two cases.
Note that this query characterizes a node using its neighborhood.
EXAMPLE: [<silver> <atomic weight> ?x]

QUERY: Triples-ref ::= [Nodes-ref, Nodes-ref, Nodes-ref]
ANSWER: Result([Nodes-ref1, Nodes-ref2, Nodes-ref3]) =

 { t ∈ TN | n1 ∈ Result(Nodes-ref1)
 ∧ n2 ∈ Result(Nodes-ref2) ∧ n3 ∈ Result(Nodes-ref3)

 ∧ ∃m ∈ N : [m, asserts, t] ∧ [t, rdf:subject, n1]
 ∧ [t, rdf:predicate, n2] ∧ [t, rdf:object, n3] }

 A Unified Approach to Retrieving Web Documents and Semantic Web Data 585

SEMANTICS: The full triple query [Nodes-Ref, Nodes-Ref, Nodes-ref] returns the
set of (system generated) triple nodes matching the node references.
EXAMPLE: [http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id2062instance

<name> <peter>]

QUERY: Triples-ref ::= Double-Var-Triples-ref
 Double-Var-Triples-ref ::= [?var, ?var, Nodes-ref]
 Double-Var-Triples-ref ::= [?var, Nodes-ref, ?var]
 Double-Var-Triples-ref ::= [Nodes-ref, ?var, ?var]
 where ?var is a variable.

ANSWER: Result([?var, ?var, Nodes-ref]) =
 { t ∈TN | m ∈ Result(Nodes-ref)

 ∧ [t, rdf:object, m] ∧ ∃n ∈ N : [n, asserts, t] }
Similarly, for the other two cases.
SEMANTICS: The part triple to triples query [?var ?var Nodes-ref] returns the set
of (system generated) triple nodes that are related to some node denoted by Nodes-ref.
Similarly, for the other two cases. Note that this query characterizes the node
neighborhood. Each variable occurrence is independent of the other occurrences.
EXAMPLE: [?x <title> ?x]

QUERY: Nodes-ref ::= Nodes-ref AND Nodes-ref

Nodes-ref ::= Nodes-ref OR Nodes-ref
Triples-ref ::= Triples-ref AND Triples-ref
Triples-ref ::= Triples-ref OR Triples-ref

SEMANTICS: “OR” and “AND” are interpreted as set-union and set-intersection
respectively. Each variable occurrence is independent of the other occurrences.

3.1 Queries for Exploring the System-Generated Neighborhood of a Node

QUERY: Nodes-ref ::= getAllTriples(Nodes-ref)
ANSWER: Result(getAllTriples(Nodes-ref)) =

 { t ∈TN | n ∈ Result(Nodes-ref) ∧ n appears in t
∧ ∃m ∈ N: [m, asserts, t] }

SEMANTICS: This query retrieves the (system generated) triple nodes in which the
queried node URI appears.
EXAMPLE: getAllTriples(http://www.daml.org/2003/01/periodictable/PeriodicTable#group_11)

QUERY: Nodes-ref ::= getLinkingNodes(Nodes-ref)
ANSWER: Result(getLinkingNodes(Nodes-ref)) =

 Result(Nodes-ref) ∪
 { m ∈ N | ∃n ∈ Result(Nodes-ref) : [m, linksTo, n] }
SEMANTICS: This query retrieves the nodes corresponding to Nodes-ref and the
document nodes containing references to the nodes corresponding to Nodes-ref.
Effectively, nodes and their neighborhoods are retrieved.
EXAMPLE: getLinkingNodes(http://www.aifb.uni-karlsruhe.de/Personen/viewPerson?id_db=2023)

586 T. Immaneni and K. Thirunarayan

QUERY: Nodes-ref ::= getAssertingNodes(Triples-ref)
ANSWER: Result(getAssertingNodes(Triples-ref)) =
 { m ∈ DN | ∃t ∈ Results(Triples-ref) : [m, asserts, t] }
SEMANTICS: This query retrieves document nodes containing the triples.
EXAMPLE: getAssertingNodes([<peter haase> <publication> ?x])

QUERY: Nodes-ref ::= getDocsByKeywords(ss), where ss ∈ PowerSet(STRINGS)
ANSWER: Result(getDocsByKeywords(kws)) =

 { m ∈ DN | hasDocument(m) = dt ∧ match(kws, dt) }
SEMANTICS: This query is analogous to the traditional keyword query that takes a
set of keywords and retrieves document nodes that match the keywords. match
embodies the criteria for determining when a document text is “relevant” to a
keyword. It can be as simple as requiring verbatim occurrence, to as complex as
requiring stemming, synonym generation, spelling correction, etc. match may be
compositional, that is, match (kws, dt) = ∀w ∈ kws: match(w, dt), but it is not
required.

QUERY: Nodes-ref ::= getLiteralsByKeywords (ss),
 where ss ∈ PowerSet(STRINGS)
ANSWER: Result(getLiteralsByKeywords(kws)) =

 { m ∈ LN | hasLiteral(m) = dt ∧ match(kws, dt) }
SEMANTICS: This is analogous to the above query customized for literal nodes.
EXAMPLE: getLiteralsByKeywords(semantic grid)

3.2 Further Queries for Retrieving Documents

QUERY: getDocsByContent: PowerSet(STRINGS) PowerSet(DN)
ABBREVIATION FOR: getDocsByContent(kws) =

getLinkingNodes(getDocsByKeywords(kws))
 where kws ∈ PowerSet(STRINGS)
SEMANTICS: This query retrieves the document nodes with content matching
keywords in kws and the neighboring document nodes that reference such nodes.
Intuitively, we want to pursue both the “authorities” and the “hubs” [6], assisting both
navigational searches and research searches [7].

QUERY: getDocsByIndexOrContent: PowerSet(STRINGS) PowerSet(DN)
ABBREVIATION FOR: getDocsByIndexOrContent (kws) =

 getDocsByKeywords(kws)∨
kwskw∈

∨ getLinkingNodes(kw)

where kws ∈ PowerSet(STRINGS)
SEMANTICS: This query retrieves the document nodes with content matching the
keywords kws or in the neighborhood of nodes indexed by kws. Implicitly, the
former captures syntactic retrieval and the latter enables semantic retrieval.
EXAMPLE: getDocsByIndexOrContent(semantic web)

QUERY: getDocsByIndexAndContent:

 Nodes-ref x PowerSet(STRINGS) PowerSet(DN)

 A Unified Approach to Retrieving Web Documents and Semantic Web Data 587

ABBREVIATION FOR: getDocsByIndexAndContent (nr, kws) =
 getLinkingNodes(Result(nr)) ∧ getDocsByKeywords(kws)

 where nr ∈ Nodes-ref, kws ∈ PowerSet(STRINGS)
SEMANTICS: This query retrieves the document nodes with content matching the
keywords kws and in the neighborhood of nodes corresponding to nr. Implicitly, if nr
is a URI of a document node containing the keywords kws, then the result will
contain this document node. If nr is a URI and this URI and the keywords kws are
contained in a document, then the result will contain the latter document node.
Similarly, for nodes in Result(nr) when nr contains wordset and wordset-pairs.

QUERY: getDocsByTriplesAndContent:

 Triples-ref x PowerSet(STRINGS) PowerSet(DN)
ABBREVIATION FOR: getDocsByTriplesAndContent(tr, kws) =

 getAssertingNodes(tr) ∧ getDocsByKeywords(kws)
 where tr ∈ Triples-ref, kws ∈ PowerSet(STRINGS)

SEMANTICS: This query retrieves (semantic web) document nodes that match the
keywords and contain the referenced triples.

QUERY: Single-Var-Triples-list ::= Single-Var-Triples-ref

 Single-Var-Triples-list ::= Single-Var-Triples-ref
 Single-Var-Triples-list

 Nodes-ref ::= getBindings(Single-Var-Triples-list)

QUERY1: Nodes-ref ::= getBindings([?var Nodes-ref Nodes-ref])
ANSWER: Result(getBindings([?var Nodes-ref1 Nodes-ref2]))

 = { n ∈ N | n1 ∈ Result(Nodes-ref1) ∧ n2 ∈ Result(Nodes-ref2)
 ∧ ∃m ∈ N : [m, asserts, t] ∧ [t, rdf:subject, n]

 ∧ [t, rdf:predicate, n1] ∧ [t, rdf:object, n2]}
Similarly, for the other two cases.

QUERY2: Nodes-ref ::= getBindings(Single-Var-Triples-ref
Single-Var-Triples-list)

ANSWER: Result(getBindings(Single-Var-Triples-ref Single-Var-Triples-list)) =
 Result(getBindings(Single-Var-Triples-ref)) ∩
 Result(getBindings(Single-Var-Triples-list))

SEMANTICS: This query retrieves the bindings for the variables that satisfy all the
triple references with single variable. All the variable occurrences are considered
identical, that is, they must all be assigned the same value throughout the getBindings-
argument.
EXAMPLE: getBindings([<phdstudent>::<peter> <name> ?x])
EXAMPLE: getBindings([?x <group> <group 1>] [?x <color> <white>])

QUERY: getDocsByBindingsAndContent:

 Single-Var-Triples-list x PowerSet(STRINGS) PowerSet(DN)

588 T. Immaneni and K. Thirunarayan

ABBREVIATION FOR: getDocsByBindingsAndContent(vtl, kws) =
 getBindings (vtl) ∧ getDocsByKeywords(kws)

 where vtl ∈ Single-Var-Triples-list,
 kws ∈ PowerSet(STRINGS)

SEMANTICS: This query retrieves document nodes that match the keywords and
contain the matching triples.
EXAMPLE: getDocsByBindingsAndContent([<phdstudent>::<peter> <homepage> ?x]
 “Semantic Grid”)

4 Implementation and Results

We have implemented an Apache Lucene [8] based retrieval system called SITAR
(Semantic InformaTion Analysis and Retrieval system) based upon our model. The
system can currently index HTML and RDF/OWL files in addition to RDF data. At
present, the system does not support pdf, doc files etc. (we index their URIs but their
content is not being analyzed).

Evaluating such a hybrid system is an extremely tricky process. The system has
DR components (triple matching) which render the precision and recall criteria
irrelevant. But at the same time, the system also has IR components such as keyword
based retrieval of documents in which case precision and recall become important. In
order to evaluate the system in terms of precision and recall, we would need a
standard data set (such as MEDLINE dataset) which has documents, their semantic
descriptions, some queries, and results of those queries (adjudged to be relevant by
human experts). We are still looking for such data sets. Here, we present qualitative
results obtained by experimenting with the invaluable AIFB SEAL [9] data.

The AIFB SEAL website has human-consumable XHTML documents (in English
and German) along-side OWL documents. Some of the XHTML documents have
explicit semantic descriptions (in the OWL documents). We crawled the SEAL
website looking only for English versions of web pages and RDF/OWL files using
heuristics. The crawler collected a total of 1665 files. Of these, we chose to
deliberately ignore some large OWL files (multiple copies of the same file with each
copy identified by a different URI) to simplify matters. Our system uses the
CyberNeko HTML parser [10] to parse HTML documents and the Jena ARP [11]
parser to parse RDF documents. The ARP parser could not parse some of the RDF
documents - possibly because of problems with container elements. In the end, a total
of 1455 (610 RDF files and 845 XHTML files) were successfully parsed and indexed.
A total of 193520 triples were parsed and indexed though there is no guarantee that
the same triple was not asserted by two different documents. Note that, all the index
structures are persistently stored.

Every URI is analyzed (using several heuristics) to build a set of index words for it.
More importantly, if the URI occurs in a HTML document as a hyperlink, we use the
anchor text to add to its index words set. A HTML document is indexed by the URIs
that it linksTo (or hyperlinksTo) as well as the words that are extracted from the URIs.
In this sense, it can be seen as a bag of URIs and words. An RDF document is
indexed by the URIs that it linksTo and by the triples (URIs) that it asserts. In this
sense, an RDF document can be seen as a bag of URIs and triples. Note that a hybrid

 A Unified Approach to Retrieving Web Documents and Semantic Web Data 589

document such as an RDFa document would be indexed by all of the above. But as
mentioned before, we are not experimenting with RDFa documents at present.

A user can use the HQL (Hybrid Query Language) described in the previous
section to query for data and documents. A user searching for information about a
person named peter can pose the query <peter>. This query, in effect returns all
nodes (URIs) that have been indexed using the word peter. A total of 52 URIs were
retrieved in response to the above query including OWL files (instance data of
people) and HTML files. The user can convey to the system that she is looking
specifically for Ph.D. students named peter using the query <phdstudent>::<peter>.
The following URIs were retrieved in response to this query:

http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id2023instance
http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id2119instance
http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id2062instance

These are apparently URIs (of OWL files) representing individuals and containing
information about them. In order to find out the names of these individuals, the user
can use the query getBindings([<phdstudent>::<peter> <name> ?x]). This query
returned 125 literal nodes gathered from different RDF files (apparently FOAF files).
Note that the above queries are keyword-based, and hence easy to formulate, and
enable transparent traversal of the semantic web. The system finds the bindings for
the variable from triples such as those shown below:

uri: http://www.aifb.uni-karlsruhe.de/Personen/viewPersonFOAF/foaf_80.rdf#tri52
sub: http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id2023instance
pred : http://xmlns.com/foaf/0.1/name
obj (Literal): Peter Haase

uri: http://www.aifb.uni-karlsruhe.de/Personen/viewPersonFOAF/foaf_2127.rdf#tri27
subj: http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id2119instance
pred: http://xmlns.com/foaf/0.1/name
obj (Literal): Peter Bungert

uri: http://www.aifb.uni-karlsruhe.de/Personen/viewPersonFOAF/foaf_2069.rdf#tri132
sub: http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id2062instance
pred: http://xmlns.com/foaf/0.1/name
obj (Literal): Peter Weiß

These triples repeated themselves in different files (with different URIs) and so a
lot of duplicate data has been indexed by the system. The user can search for the
homepages of Ph.D. students named peter by posing the query, getBindings
([<phdstudent>::<peter> <homepage> ?x]), which returns the following results:

http://www.aifb.uni-karlsruhe.de/WBS/pha/
http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/WBS
http://www.aifb.uni-karlsruhe.de/Personen/viewPerson?id_db=2023
http://www.aifb.uni-karlsruhe.de/Personen/viewPerson?id_db=2119
http://www.aifb.uni-karlsruhe.de/Personen/viewPerson?id_db=2062

The above URIs are, apparently, home pages of the above three individuals. The
interesting thing is that all of the URIs except the first one points to a German page
(whose content has not been indexed by our system). So, we cannot pose queries such
as get homepages of Ph.D. students named peter which talk about “semantic grid”
which translates into getDocsByBindingsAndContent([<phdstudent>::<peter>

590 T. Immaneni and K. Thirunarayan

<homepage> ?x] “semantic grid”) , unless we can convey to the system that the
German version of the page should be treated “same as” the English version. Now
that the user has the names, she can use the names to query the system. The query
<peter haase> retrieves the following URIs:

http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id2023instance
http://www.aifb.uni-karlsruhe.de/Personen/viewPerson?id_db=2023
http://www.aifb.uni-karlsruhe.de/Personen/viewPersonenglish?id_db=2023
http://www.aifb.uni-karlsruhe.de/Publikationen/viewPublikationenPersonOWL/id2023.owl
http://www.aifb.uni-karlsruhe.de/Personen/viewPersonOWL/id2023.owl

These URIs are a mix of HTML (second and third URIs) and OWL documents.
The second URI is the homepage of the individual named Peter Haase. It is almost
synonymous with the individual [4] and so the pages that link to (linksTo) this page
must be, arguably, relevant to the individual. The query
getLinkingNodes (http://www.aifb.uni-karlsruhe.de/Personen/viewPerson?id_db=2023)
retrieves a set of RDF and HTML documents most of which are pages of projects on
which Peter Haase is working. Some of these results are shown below:

http://www.aifb.uni-karlsruhe.de/Personen/viewPersonDC/en/dc_2023.rdf
http://www.aifb.uni-karlsruhe.de/Personen/viewPersonFOAF/foaf_2023.rdf
http://www.aifb.uni-karlsruhe.de/Personen/Projekte/viewProjektenglish?id_db=78
http://www.aifb.uni-karlsruhe.de/Personen/Projekte/viewProjektenglish?id_db=80
http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/Projekte/viewProjektenglish?id_db=51
http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/Projekte/viewProjektenglish?id_db=71
http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/Projekte/viewProjektenglish?id_db=81
http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/Projekte/viewProjektenglish?id_db=42
http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/Projekte/viewProjektenglish?id_db=54

The user can query for publications by Peter Haase that have the word “semantic”
in the title by composing the query:
getBindings([<peter haase> <publication> ?x] [?x <title> <semantic>])
which retrieves the following URIs:

http://www.aifb.uni-karlsruhe.de/Publikationen/viewPublikationOWL/id399instance
http://www.aifb.uni-karlsruhe.de/Publikationen/viewPublikationOWL/id449instance
http://www.aifb.uni-karlsruhe.de/Publikationen/viewPublikationOWL/id748instance
http://www.aifb.uni-karlsruhe.de/Publikationen/viewPublikationOWL/id1003instance

All of the above are OWL files corresponding to publications. The user can query
for documents asserting the triples used to find the above bindings by using a query
such as getAssertingNodes([<peter haase> <publication> ?x]). The query
getDocByKeywords corresponds to straight-forward keyword search of HTML
documents. The query getDocByKeywords(peter haase) retrieves 251 HTML
documents. A Google search for “peter haase” retrieves 325 documents (with omitted
results) on the AIFB website. But note that we are not indexing all the AIFB web
pages and that we are completely ignoring PDF documents and the like.

SITAR indexes and retrieves RDF files too. In other words, SITAR aims at treating
HTML and RDF files with equal importance. SITAR allows users to simply enter a
set of keywords which is then automatically plugged into the query
getDocsByIndexOrContent. So, the query peter haase returns 299 documents which
are a mix of HTML and OWL documents (it also retrieves a PDF document URI).

 A Unified Approach to Retrieving Web Documents and Semantic Web Data 591

Note that in all of the above queries, the user is using intuitive keywords to explore
the RDF data. She is not aware of the underlying schema and hardly ever needs to
know the exact URIs of the resources. The user however is required to have an idea of
the underlying model. The idea is to retrieve data and document nodes from the same
unified whole. As can be imagined, this will especially be useful when dealing with
those documents that have both text and semantic markup. Such documents can be
indexed using URIs, triples and text, and the getLinkingNodes and getAssertingNodes
will play a major role in retrieving those documents. We are currently looking for an
RDFa like dataset to test this.

5 Related Research

Storing and retrieving RDF data is an area of research that has been well explored by
researchers in the recent past [12,13,14,15]. Retrieving RDF data is typically viewed
as a data retrieval problem and, not surprisingly, most of the query languages have the
SQL flavor [14]. When seen purely from the perspective of querying the RDF data,
HQL is unique because it allows the users to explore the RDF graph even without any
knowledge about the underlying schema (namespaces, exact URIs, ontologies, etc.).
The user can use HQL to quickly get a feel for the underlying data.

As far as document retrieval is concerned, there are several retrieval systems that
retrieve documents based upon their annotations/descriptions [6,16,17,18,19,20,21],
but none seems to aim at retrieving HTML, RDF and hybrid documents (that is, all
the three types). We index a document based upon words, URIs, and triples that can
be extracted from the document and give the user a light-weight query language to
retrieve documents based upon this information. The query language is hybrid in the
sense that it has both “formal” and keyword components but what is unique is that the
“formal” component itself is expressible using keywords.

Unlike our unified approach, Semantic Search [6] treats the SW and the HW as
two separate repositories and aims at retrieving documents from the HW (in fact they
use Google to search for documents). It lets the user communicate the disambiguation
information using the user interface. Like SITAR, quizRDF[16] indexes a document
(URL) using words obtained from its body as well as from the literals of triples in
which its URL participates. Like Semantic Search, quizRDF too uses a GUI to let the
user communicate disambiguation information.

SITAR views the SW and the HW as a unified whole (unlike Semantic Search).
One benefit of this, compared to quizRDF, is that the URL of a document is also
indexed by the anchor text words. Further, SITAR indexes a document using any
URIs (linksTo) or triples (asserts) that can be extracted from the document. This
allows it to index and retrieve RDF documents (and hybrid RDFa kind of documents
in the future). Also, unlike the above two systems, the user can specify the
disambiguation information (the “class”) using word-set pairs, and use it in
conjunction with linksTo information to retrieve documents.

Swoogle[18] specializes in retrieving ontology documents and URIs. It doesn’t
seem to index HTML documents or support triple search or keyword-based querying
of the RDF graph.

592 T. Immaneni and K. Thirunarayan

OWLIR’s[17] approach of treating a triple (that appears in the document) as an
indexing term corresponds to what we are doing. But the way the indexing
information is used and the nature of the query language is quite different. HQL is
keyword-based and so the users can retrieve an “asserting” document even when the
exact URIs are not known. Also, we index a document based upon the component
URIs of the triples and the hyperlinks that appear in the document (linksTo).

There are several other systems [19,20,21] that perform hybrid retrieval but our
system is different due to the reasons discussed above and due to the fact that we view
SW and HW as a single UW. We situate the SW data and the HW documents side by
side and query the Unified Web using HQL which has both keyword and “formal”
components. We also exploit existing hyperlink (linksTo) connections between HW
documents and SW nodes while retrieving documents.

6 Conclusion and Future Work

We have discussed the Unified Web model that seeks to present a unified view of the
SW and the HW, and the design and implementation of the Hybrid Query Language
that can be used to retrieve data and documents from the UW. We have presented
preliminary results obtained by experimenting with AIFB SEAL data.

HQL is a light-weight, keyword-based query language that allows the users to
query and explore the RDF graph even when no schema information is available. This
can then lead to composition of more involved queries using languages such as
SPARQL. If, in the future, we expect lay users to pose queries such as what is the
phone number of Ph.D. student Peter Bungert, to the Semantic Web and get back
answers, query languages like HQL are a step in the right direction (though at present
the user is still required to have knowledge of the RDF model).

One of the fundamental ideas behind HQL is to index a URI using a set of
keywords, which is a common notion in the literature. But because we position the
RDF data in a web of hypertext documents, we have the freedom to exploit
information from the hypertext documents (such as the anchor text) to enrich a URI’s
index words. At this level, we again see natural language induced problems such as
synonymy, polysemy, etc. (which only got pushed to a lower level). The resulting
uncertainty necessitates ranking (not unlike what Swoogle [18] is doing). But, this is
where the novel wordset pair queries such as <phdstudent>::<peter> enable
disambiguation, stating that the user is only interested in URIs of Peter the PhD
student. This, in essence, is how ontologies can help in document retrieval. And this is
where the “Semantic Web enabled Information Retrieval” starts deviating from
traditional IR. Otherwise, we are simply pushing the problem of keyword-based
document retrieval to the level of URIs (we have simply reduced the size of a typical
term vector) and there is nothing “semantic” about it – jaguar will retrieve both the
car and animal URIs in spite of “meaningful” label-literals.

SITAR and HQL are both works in progress and are gradually evolving. The major
piece of the puzzle missing from SITAR is ranking of URIs and documents. Even
though Lucene does rank URIs (SITAR stores a URI in a Lucene document that is
indexed by the index words), and of course, documents, we need a ranking algorithm
that is based on linksTo relationship among others (especially to rank RDF and hybrid
files). We are currently working on a ranking algorithm and its implementation.

 A Unified Approach to Retrieving Web Documents and Semantic Web Data 593

References

1. Semantic Web Activity page, [Webpage], http://www.w3.org/2001/sw/.
2. E. Prud'hommeaux, A. Seaborne, Eds., “SPARQL Query Language for RDF,” [W3C

Working Draft], October 2006, http://www.w3.org/TR/rdf-sparql-query/.
3. B. Adida, M. Birbeck, Eds., “RDFa,” [W3C Working Draft], 2006, http://www.w3 .org/

TR/xhtml-rdfa-primer/.
4. T. Immaneni and K. Thirunarayan, “Hybrid Retrieval from the Unified Web,” Proceedings

of the 22nd ACM Symposium on Applied Computing, Semantic Web and Applications
Track (ACM SAC 2007), Seoul, Korea, March 2007.

5. K. Thirunarayan, “On Embedding Machine-Processable Semantics into Documents,” in
IEEE Transactions on Knowledge and Data Engineering, Vol. 17, No. 7, pp. 1014-1018,
July 2005.

6. J. Kleinberg, “Authoritative sources in a hyperlinked environment,” Proceedings of the 9th
ACM-SIAM Symposium on Discrete Algorithms, 1998.

7. R. Guha, R. McCool, and E. Miller, “Semantic search,” in Proceedings of the Twelfth
International Conference on World Wide Web, Budapest, Hungary, New York: ACM
Press, May 2003.

8. Apache Lucene, [Webpage], http://lucene.apache.org/.
9. J. Hartmann, Y. Sure., "An Infrastructure for Scalable, Reliable Semantic Portals," IEEE

Intelligent Systems 19 (3): 58-65. 2004.
10. CyberNeko HTML Parser, [Webpage], http://people.apache.org/~andyc/neko/doc/html/ .
11. Jena ARP, [Webpage], http://www.hpl.hp.com/personal/jjc/arp/.
12. D.Beckett, “SWAD-E Deliverable 10.2: Mapping Semantic Web Data with RDBMSes,”

[Online Document] 2003, http://www.w3.org/2001/sw/Europe/reports/ scalable_ rdbms_
mapping_report/

13. D. Beckett, “SWAD-Europe Deliverable 10.1: Scalability and Storage: Survey of Free
Software / Open Source RDF storage systems,” [Online Document] 2002, http://www.w3.
org/2001/sw/Europe/reports/rdf_scalable_storage_report/.

14. J. Bailey, F. Bry, T. Furche, and S. Schaffert, "Web and Semantic Web Query Languages:
A Survey," Reasoning Web, Eds., N. Eisinger and J. Maluszynski , Springer-Verlag, 2005.

15. P. Haase, J. Broekstra, A. Egerhart, and R. Volz, “A comparison of RDF query langauges,”
in Proceedings of the Third International Semantic Web Conference, Hiroshima, Japan,
2004.

16. J. Davies, R. Weeks, and U. Krohn, “QuizRDF: Search technology for the semantic web,”
Workshop on Real World RDF and Semantic Web Applications, 11th International World
Wide Web Conference, Hawaii, USA, 2002.

17. J. Mayfield and T. Finin, “Information retrieval on the semantic web: Integrating inference
and retrieval,” in Proceedings of the SIGIR 2003 Semantic Web Workshop, 2003.

18. Li Ding et al., "Finding and Ranking Knowledge on the Semantic Web", in Proceedings of
the 4th International Semantic Web Conference, November 2005.

19. C. Rocha, D. Schwabe, and M.P. Aragao, “A Hybrid Approach for Searching in the
Semantic Web,” in Proceedings of the 13th International World Wide Web Conference,
New York, May 2004, pp. 374-383.

20. L. Zhang, Y. Yu, J. Zhou, C. Lin, Y. Yang, “An enhanced model for searching in semantic
portals,” in Proceedings of the 14th International World Wide Web Conference, Chiba,
Japan, NY: ACM Press, May 2005.

21. D. Vallet, M. Fernández, and P. Castells, "An Ontology-Based Information Retrieval Model,"
in Proc. of 2nd European Semantic Web Conf. (ESWC 2005), Berlin Heidelberg, 2005.

	Introduction
	The Unified Web Model
	Hybrid Query Language Specification
	Queries for Exploring the System-Generated Neighborhood of a Node
	Further Queries for Retrieving Documents

	Implementation and Results
	Related Research
	Conclusion and Future Work
	References

