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Abstract. Influenza outbreaks occur seasonally and peak during winter
season in temperate zones of the Northern and Southern hemisphere. The
occurrence and recurrence of flu epidemics has been alluded to variabil-
ity in mechanisms such temperature, climate, host contact and traveling
patterns [4]. This work promotes a Gaussian—type regression model to
study flu outbreak trends and predict new cases based on influenza—like—
illness data for France (1985-2005). We show that the proposed mod-
els are appropriate descriptors of these outbreaks and can improve the
surveillance of diseases such as flu. Our results show that limited data
reduces our ability to predict unobserved cases. Based on laboratory
surveillance data, we prototype each season according to the dominating
virus (H3N2, HIN1, B) and show that high intensity outbreaks are cor-
related with early peak times. These findings are in accordance with the
dynamics observed for influenza outbreaks in the US.

1 Background

Seasonal variation of infectious diseases is associated with several factors that in-
clude, environmental mechanisms, host—specific behavior and pathogen’s ability
to continuously invade the host population. The influenza virus, a well studied
pathogen, is known for its ability to continuously invade the human host by
constantly mutating and successfully evading a host’s immune system. Due to
constant minor (antigenic drift) and major changes (antigenic shift) in the virus
surface proteins, flu vaccines are updated yearly to enhance protection against
new infections. Influenza seasons occur during winter in temperate zones of the
Northern and Southern hemisphere. It is estimated that some 50 million people
get infected, more than 200,000 people are hospitalized from flu complications,
and about 47,200 people die from flu each year.

A goal of research in bio—surveillance of communicable diseases such as in-
fluenza involves the development and implementation of reliable methods for
early outbreak detection [I]. Effective surveillance methods enhance the pre-
paredness and facilitate immediate response from health officials in the event of
epidemic and pandemic events [3, [B [8, []. The recent SARS outbreak (2002
2003) event showed that control and containment of the outbreak was mainly
based on rapid diagnosis coupled with effective patient isolation according to the
modeling in [2]. A commonly, and widely used method for automatic detection of
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flu  epidemics from time-series data was proposed by Serfling in
1963 [6]. Since then, the Center for Disease Control and Prevention has im-
plemented the Serfling methodology to parameterize a baseline model based on
statistical expectations (95% confidence interval of the baseline) by training data
from non—epidemic years. A surveillance system based on the Serfling method-
ology signals an epidemic whenever the observed time—series data exceeds a
threshold. The model assumes an average mortality (5p), linear trend (£1t), and
a 52—week cyclical period denoted by facos(27t/52)+ fFzsin(27t/52). This model

Y (t) = Bo + Pit + Pacos(2wt/52) + B3sin(2mt/52)

assumes that flu outbreaks are unimodal, cyclical and symmetric between the
peak and troughs.

One of the aims of flu surveillance is the early detection of outbreaks, however,
understanding the underlying mechanisms driving the observed fluctuations can
be instrumental in developing effective monitoring systems. We study a time
series regression model that summarizes outbreak trends and describes the ob-
served seasonality. We apply the model to influenza-like-illness (ILI) weekly
data for France reported during 1985-2005. We estimate the model parameters
through least squares and validated the model numerically (adjusted R?) and
graphically (residual analysis). We assess the impact of timely reporting in pre-
dicting new flu cases. Finally, we study the correlation of outbreak peak times,
intensity for virus-specified seasons and discuss the relevance of the proposed
model for surveillance and prediction of flu outbreaks.

2 Methods

Weekly data of influenza—like—illness is illustrated in Figure 1 and demonstrates
that flu outbreaks are highly seasonal with irregular intervals. The model pro-
pose incorporates several features that are characteristic of flu outbreaks. In
particular, the model adjusts for variable peak times, intensity, and duration of
outbreaks. Although the majority of flu outbreaks exhibit single peaks, Figure 1
shows that multiple peaks are also possible (Figure 1: the seasons 91-92, 97-98,
00-01 exhibit such behavior).

2.1 Statistical Model

We apply a Gaussian—type regression model to weekly influenza—like—illness (ILI)
epidemic data to study outbreak trends for France during 1985-2005. For each
year, we estimate the intensity, time of peak and duration of these outbreaks us-
ing least squares. The time series Y;(t) denotes the number of ILI cases observed
in year i at the predictor time ¢. The value of j denotes the number of peaks con-
sidered in the model. That is, j=1 represents a single peak outbreak while j=1,2
assumes multiple peaks. The general form of the Gaussian model is as follows:

2 t—bi;\ 2
}/,(LL) = aioe_biﬂt + Zaije_( cij )

j=1

(1)
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Fig. 1. Influenza—Like-Illness (ILI) weekly data for France (1985-2005)

Parameter a;, estimates the baseline (at time zero) of i—th year outbreak, a;, and
a;, estimate the intensity of each peak in the i-th year, b;, estimate the decay
rate for the background model, b;, and b;, evaluate the time of each peak, and
¢;, and ¢;, describe the duration of these outbreaks.

We identify outbreak trends for all seasons together, as well as, for outbreaks
that are dominated by specific virus subtypes (H3N2, HIN1, B) by fitting the
Gaussian model with single and multiple peaks. For each model, we estimate the
mean, median and standard deviation of each of the parameters fitted in these
models (e.g. outbreak peak time, intensity and duration). We summarize and
compare the goodness of fit for each model numerically and graphically.

2.2 Dominating Virus Subtypes in Epidemic Seasons

Using laboratory surveillance data, influenza seasons (1985-2000) were summa-
rized according to the prototype strain responsible each year. From the 20 sea-
sons studied, virus A (H3N2) predominated 13 seasons, A (HIN1) dominated 3
seasons and the remaining 4 seasons are dominated by B type viruses. Figure 2
gives a box—plot description of the data for each season. The prototype seasons
are distinguished by solid (H3N2), dotted (HIN1) and boxed (B) notches in order
to illustrate the frequency and magnitude of these outbreaks and the correspond-
ing dominating viruses.

2.3 Measuring the Uncertainty of Predicting New Cases

Based on the bimodal regression model, we estimate the likelihood of predict-
ing ILI cases for unobserved times. We calculated prediction bounds for a new
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Fig. 2. French ILI data reported weekly. Solid, dotted and boxed notches denote out-
breaks dominated by H3N2, HIN1 and B virus subtypes, respectively.

Table 1. Parameter estimation for single and bimodal peak models based on French
ILI data from 1985 to 2005. We calculate the mean, median and standard deviation
for each of the parameters estimated. Note that a; describes the model baseline, a2
and a3 the intensity of peaks 1 and 2, with peak times at b2 and bs, and corresponding
duration given by ¢; and ca. Parameter b1 denotes the decay rate of each season. Non
applicable findings are denoted by na.

Yi(t) a az b1 by ¢ a3 by c2 R? adj R RMSE
19852005

Model 1

mean 30464 507823 0.20 16.2 3.3 na  na na 0.9550 0.9485 29092
median 26640 497000 0.03 14.9 3.2 na  na na 0.9728 0.9689 25990
STD 20419 208105 0.52 5.4 0.9 na  na na 0.0471 0.0538 17561
Model 2

mean 20864 383466 0.01 13.6 3.3 240189 17.8 3.8 0.9919 0.9899 13133
median 27370 413500 0.04 11.5 2.0 240300 17.1 3.5 0.9934 0.9915 11780
STD 16188 262955 0.08 4.8 1.7 161857 4.9 1.9 0.0062 0.0077 4077

observation assuming that data was not available (extrapolation). The prediction
bounds are calculated simultaneously and measure the confidence that a new
observation lies within the interval regardless of time.
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Fig. 3. Fits obtained with regression Models 1 and 2
3 Results

To assess the outbreak trends for all seasons of data available, we fit Models
1 and 2 to each year of data. We estimate the parameters of the single peak
model (denoted by Model 1) and multiple peak model (denoted by Model 2)
through least squares for each of the 20 years of data available (Table 1). After
estimating the best fits for all 20 years, we calculate the mean, median and
standard deviation (STD) of the parameters in these models. Fitting results of
Model 1 yield a mean of 4.3x10%, 4.4x10° median and 2.2x10% STD for the
parameter estimating the intensity of the outbreaks. Similarly, we estimate the
mean, median and standard deviation for the peak times and obtain a 18.4 weeks,
17.2 weeks, and 5 weeks, respectively. Table 1 shows that Model 2 describes the
data better than Model 1 (adjusted R?). We illustrate the actual fit of both
Model for the 1991 season. These fits illustrate that the single peak model is ill
specified to capture the bimodality of the data.
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Fig. 4. Residual plots for Model 1 (a) and Model 2 (b) for French ILI data from 1985-
2005. Solid, dotted and boxed notches denote the residuals corresponding to H3N2,
H1N1 and B type strains.

We find strong evidence that Model 2 fits the data better than Model 1. The
goodness of fit of each of these models was assessed by analyzing their residuals
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for each of the years fitted. We illustrate the goodness of fit of these model for
the 1990-1991 flu season. Figure 3 illustrates the fits obtained with Model 2
(top—panel), Model 1 (bottom—panel) for these fits.

In order to investigate the goodness of fit of Model 1, we calculated these
statistics for the adjusted R? values of this data. The adjusted R? values es-
timated were 0.9423 (mean), 0.9606 (median) and 0.0588 (STD). In order to
compare the goodness of fit of Models 1 and 2, we carry out a similar analysis
for Model 2 (see Table 1). Our results show that Model 2 improves the data
fit. That is, the adjusted R? estimates for the mean is improved from 0.9423
to 0.987, median from 0.9609 to 0.988 with corresponding standard deviation
reduced by approximately 85% (from 0.0588 to 0.009). We further assess these
fits graphically by calculating the residuals for each model. Figure 4 (top—panel)
illustrates the residuals for Model 1 and Figure 4 (bottom—panel) for Model 2.

3.1 Correlating Trends with Subtype—Specific Outbreaks

We further assessed the trends of these outbreaks by analyzing them according
to dominating virus in each season. Our results show that intensity of H3N2
outbreaks were significantly higher than HIN1 and B subtypes combined (p =
0.0226, Kruskal-Wallis test, two-tailed). Table 2 also shows that H3N2 outbreaks
tend to peak sooner than HIN1 and B. We carried out a similar test to assess
any significant difference among the peak times for H3N2 and those for HIN1
and B and find that peak times for H3N2 subtype outbreaks occur earlier than
HIN1 and B. Note that these results are supported by the parameter estimates
obtained from fitting Model 1 and Model 2. For each subtype dominant season,
our goodness of fit results (adjusted R?) showed that the latter model improves
the fit.

Although the data in this study was available weekly, we assumed sev-
eral scenarios with limited data and assessed the likelihood of predicting new
ILI cases for unspecified times. We assumed that data is available weekly (as
in the current study), biweekly and monthly. Figure 5 illustrates the predic-
tion bounds (dashed—dotted) obtained assuming weekly (left—panel), biweekly
(middle—panel) and monthly (left—panel) data. Evaluating the prediction bounds
for each of the scenarios shows that our ability to predict new ILI cases decreases
as less data becomes available. That is, we show that for weekly available data we
can predict all data points with high certainty since all data lies within the 95%
confidence interval of prediction. As the data becomes more scarce (biweekly),
we show that we are no longer able to predict the highest intensity data of the
outbreak (Figure 5: middle-panel) . Finally, for monthly available data, we show
that we are no longer able to predict the bimodality of our data in addition to
the highest intensity peak.

4 Discussion

The findings in this study promote two Gaussian—type of regression models that
assess influenza outbreak trends. Unlike the well-known cyclical Serfling model,
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Table 2. Fit results implementing Model 1 and Model 2 for ILI data that is grouped
according to the subtype-specific strains (HIN1, H3N2, and B) dominating in each
season. Note that a; describes the model baseline, a2 and as the intensity of peaks
1 and 2, with peak times at b2 and b3, and corresponding duration given by ci and
c2. Parameter b; denotes the decay rate of each season. Non applicable findings are
denoted by na.

Yi(t) a az b1 b2 ¢ az by c2 R?* adj R* RMSE
H3N2

Model 1

mean 30464 507823 0.20 16.2 3.3 mna na na 0.9550 0.9485 29092
median 26640 497000 0.03 14.9 3.2 na na na 0.9728 0.9689 25990
STD 20419 208105 0.52 5.4 0.9 mna na na 0.0471 0.0538 17561
Model 2

mean 29864 383466 0.01 13.6 3.3 240189 17.8 3.8 0.9919 0.9899 13133
median 27370 413500 0.04 11.5 2.0 240300 17.1 3.5 0.9934 0.9915 11780
STD 16188 262955 0.08 4.8 1.7 161857 4.9 1.9 0.0062 0.0077 4077
H1N1

Model 1

mean 42843 364367 0.01 16.3 2.5 na na na 0.9133 0.9011 24683
median 45400 246100 0.01 17.92.5 na na na 0.9559 0.9497 26710
STD 12404 240319 0.01 4.1 0.4 na na na 0.0945 0.1080 7091
Model 2

mean 33040 318300 0.11 14.0 2.3 115903 21.7 4.9 0.9825 0.9775 15410
median 33600 212800 0.01 12.6 2.4 84370 19.5 2.1 0.9802 0.9746 11870
STD 2644 285561 0.19 3.4 0.1 104945 5.2 5.64 0.0101 0.0130 10785
B

Model 1

mean 31985 221450 0.004 21.1 3.1 na  na na 0.9588 0.9528 14030
median 29930 216950 0.01 20.52.9 mna na na 0.9582 0.9521 13950
STD 13091 35613 0.02 2.5 0.9 na na na 0.0205 0.0234 3692
Model 2

mean 28325 78820 0.04 18.0 5.7 177523 21.7 3.8 0.9867 0.9830 8578
median 24795 72175 0.05 19.6 5.6 187100 21.4 2.7 0.9865 0.9827 8776
STD 13293 49331 0.03 3.9 3.2 66625 2.14 2.6 0.0050 0.0064 1764

these models adjust for variability in time of peaks, intensity and duration of
outbreaks. We show that these models are highly effective in describing outbreak
trends, and thereby facilitate the assessment of flu patterns. The data presented
in this study illustrates that flu outbreaks depict multiple peaks and therefore
appropriate models are needed to regard for these dynamics. A residual eval-
uation of the fits of these models shows that these models are highly effective
in describing the data presented here. These models show that they are highly
effective in describing the data presented here, particularly, the bimodal model.

The results of this study support previous observations of the correlation in the
time of peak and intensity of influenza epidemics for A (H3N2) virus outbreaks
for the US [7]. That is, high intensity outbreaks tend to occur early—on the season,
while lower intensity outbreaks (HIN1 and B) occur later. Moreover, our study
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Fig. 5. Predictions based on weekly (left—panel), biweekly (middle-panel) and monthly
data available (right—panel)

suggests that low—intensity peaks are more likely to be followed by high—intensity
peaks since it is possible that frequently dominating viruses benefit from the
recruitment of susceptibles during for almost two years. However, less dominating
virus subtypes (HIN1 and B) do not rely on this recruiting advantage, and
therefore face a continuous challenge to become established in the population as
the dominating virus.

Effective surveillance of infectious diseases involves the timely assessment and
implementation of monitoring systems aimed to reduce morbidity and mortality
while minimizing societal disruption. Influenza surveillance is a combined effort
of virological identification, clinical and epidemiological monitoring of multi-
ple source data such as influenza—like—illness, pneumonia and influenza related
mortality, hospitalization, to name a few. However, in this study we show that
characterizing outbreak trends improves our understanding of the underlying
mechanisms driving influenza epidemics, and therefore, is key for developing ef-
fective surveillance systems.

A critical limitation of this work lies in the prediction of unobserved cases.
Our work evaluates the likelihood of predicting ILI cases during a particular sea-
son for unobserved times (retrospectively), however, we do not assess prediction
of cases in future seasons. It is evident that effective surveillance systems should
include a clear understanding of outbreak trends and retrospective assessment of
unobserved cases. Moreover, the prediction of future cases based on current and
historical data is an essential component of effective surveillance. To this end,
our current research efforts are placed in predicting flu cases for future seasons
based on the descriptive models proposed herein.
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