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Abstract. This paper is devoted to the numerical solution of the in-
stationary Maxwell equations in singular waveguides. The geometry is
called singular, as its boundary includes reentrant corners or edges, which
generate, in their neighborhood, strong electromagnetic fields. We have
built a method which allows to compute the time-dependent electro-
magnetic field, based on a splitting of the spaces of solutions: First, the
subspace of regular fields, which coincides with the whole space of so-
lutions, in the case of convex or smooth boundary; Second, a singular
subspace, defined and characterized via the singularities of the Laplace
operator. Numerical results illustrate the influence of frequency of the
ingoing electromagnetic waves in a L-shaped waveguide.

1 Introduction

Many practical problems require the computation of electromagnetic fields. They
are usually based on Maxwell equations. Within this framework, we developed a
numerical method for solving the instationary Maxwell equations (see [5]), with
continuous approximations of the electromagnetic field. However, in practical
examples, the boundary of the computational domain includes reentrant corners
and/or edges, called geometrical singularities because they generate strong fields.

We developed a method, the so-called Singular Complement Method, which
consists in splitting the space of electromagnetic fields into a two-term, direct,
possibly orthogonal sum. The first subspace is made of regular fields, the second
one is called the subspace of singular electromagnetic fields. One compute the
regular part of the solution with the help of an ad hoc – classical – method [5].
The singular part is computed with the help of specifically designed methods.

The present paper is a continuation of the Singular Complement Method,
developed for Maxwell equations in 2D [4], and for the Vlasov-Maxwell equations
[1]. We first recall Maxwell’s equations, together with the functional framework,
which is then used to describe the Singular Complement Method. Section 3 is
devoted to the numerical algorithms. In particular, the computation of singular
basis functions is described, together with the discretization of the variational
formulations. Numerical experiments are presented in the last Section.

Y. Shi et al. (Eds.): ICCS 2007, Part IV, LNCS 4490, pp. 235–242, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



236 F. Assous and P. Ciarlet Jr.

2 Mathematical Analysis of the Problem

Let Ω be a bounded, open, polyhedral subset of R
3. We denote by Γ its bound-

ary and by n the unit outward normal to Γ . If we let c, ε0 and μ0 be respec-
tively the light velocity, the dielectric permittivity and the magnetic permeability
(ε0μ0c

2 = 1), Maxwell’s equations in vacuum read,

∂E
∂t

− c2curlB = − 1
ε0

J , div E =
ρ

ε0
,

∂B
∂t

+ curl E = 0, div B = 0,

where E and B are the electric and magnetic fields, ρ and J the charge and
current densities, which depend on the space variable x and on the time variable
t. As it is well known, ρ and J have to verify the charge conservation

∂ρ

∂t
+ div J = 0.

These equations are supplemented with appropriate boundary conditions. For
the sake of simplicity, we will only consider first perfectly conducting boundary.
The case of Silver-Müller boundary condition will be then introduced. For the
time being, we suppose that

E × n = 0 and B · n = 0 on Γ.

Finally, one adds initial conditions, set at time t = 0, E(0) = E0, B(0) = B0 .
We explain below how in our formulation the electric and the magnetic fields
can be handled separately. Even if the principles of analysis are the same, the
results and the mathematical tools are different (see theoretical details in [2]).
The electric case generally appears in a non divergence-free modelling, typically
the Vlasov-Maxwell equations, and has been exposed in [1]. In this paper, we
will focus on the magnetic field formulation. Let us recall the definitions of the
following spaces

H(curl , Ω) = {u ∈ L2(Ω), curl u ∈ L2(Ω)} ,

H(div , Ω) = {u ∈ L2(Ω), div u ∈ L2(Ω)} ,

H1(Ω) = {u ∈ L2(Ω),gradu ∈ L2(Ω)} .

We define the space of magnetic fields B, called Y,

Y = {y ∈ H(curl , Ω) ∩ H(div , Ω) : y · n|Γ = 0} .

In what follows, we use the notation (·, ·)0 for the usual scalar product in L2(Ω)
or L2(Ω), and (·, ·)Y = (curl ·, curl ·)0 + (div ·, div ·)0 for the one in Y.

When the domain is convex (or with a smooth boundary), the space of mag-
netic fields Y is included in H1(Ω). That is not the case anymore in a singular
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domain (see for instance [10]). One thus introduces the regular subspace for
magnetic fields (indexed with R)

YR = Y ∩ H1(Ω),

which is actually closed in Y [9]. Hence, one can consider its orthogonal subspace
(called singular subspace and indexed with S), and then define a two-part, direct,
and orthogonal sum of the space as

Y = YR

⊥Y⊕ YS .

As a consequence, one can split an element y into an orthogonal sum of a regular
part and of a singular one, namely y = yR + yS . We have now to characterize
the singular magnetic fields. Following [9], elements yS ∈ YS satisfy

ΔΔΔyS = 0 in Ω ,

yS · n|Γ = 0 .

Now, we suppose that a part ΓC of the boundary Γ behaves as a perfect con-
ductor, namely B · n|Γ = 0. On the other part ΓA = Γ \ ΓC , we have to model
the electromagnetic interactions between the domain Ω and the exterior. One
has

(E − cB × n) × n = e� × n on ΓA , (1)

where the surface field e� is given. These conditions are known as the Silver-
Müller boundary conditions. Moreover, the artificial boundary ΓA is often split-
ted into Γ i

A and Γ a
A. On Γ i

A, we model incoming plane waves by a non-vanishing
function e�, whereas we impose on Γ a

A an absorbing boundary condition by
choosing e� = 0. Without loss of generality, one can choose the location of the
artificial boundary ΓA, in such a way that it does not intersect with a geometrical
singularity. Moreover, one can also choose a regular shape for ΓA.
Now, one could consider the space of solutions

YΓA = {y ∈ H(curl , Ω) ∩ H(div , Ω) : y · n|ΓC
= 0} .

Then introduce the regular subspace YΓA

R = YΓA ∩ H1(Ω), and construct the
ad hoc orthogonal splitting, in which appears a singular space, say YΓA

S . Nev-
ertheless, it is more interesting from a numerical point of view, to consider the
(non-orthogonal) splitting

YΓA = YΓA

R ⊕ YS .

First, since the subspace of singular magnetic fields is YS , as before. Second,
modelling incoming plane waves, or imposing an absorbing boundary condition
has no impact, as far as the singular subspace is concerned. It will be sufficient,
as soon as ΓA is not empty, to add in the variational formulation, integral terms
on ΓA as for a regular domain Ω.
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3 Numerical Algorithms

The numerical method consists in computing first the basis of the singular sub-
space. Then we solve the problem by coupling a classical method (to compute
the regular part of the solution) to the linear system, which allows to compute
the singular part of the solution.

To compute yS ∈ YS , it is convenient to introduce its divergence- and curl-
free parts wS and mS , which verify the following Helmholtz decomposition

yS = wS + mS . (2)

From now on, we assume that the singular subspace YS is finite-dimensional.
This is actually the case for a two-dimensional domain Ω, where the dimension
of the singular subspace is equal to the number of reentrant corners ( cf. [4]).
The three-dimensional case can be written formally as below, but some technical
mathematical tools are needed (unclassical spaces, weak trace properties, etc.).
We refer the reader to [2] for more theoretical details.

We shall need sN and sD, the non-vanishing, singular, harmonic functions,
with Neumann and Dirichlet homogeneous boundary condition respectively, so-
lutions to

ΔsN = 0, ΔsD = 0 , in Ω

∂sN

∂ννν
= 0, sD = 0 , on Γ .

Remark that sN and sD are not equal to zero since we are looking for a singular
solution, namely with a too poor regularity to be a variational solution. One
then introduce φS and ψS respectively solution to

−ΔφS = sN , −ΔψS = sD in Ω, (3)

still with Neumann and Dirichlet homogeneous boundary condition. Next, the
singular basis functions yS ∈ YS can be obtained (see [3]) with the relation

wS = curlψS , mS = gradφS , (4)

together with relation (2). Hence, the keypoint is to compute sN and sD.
Consider, for simplicity reasons, a domain with one reentrant corner. To com-

pute sN and sD, we have chosen to use the Principal Part Method. Let us describe
it on sD. It consists in splitting sD in a regular part s̃D (which belongs to H1(Ω))
and a known singular part sP

D

sD = sP
D + s̃D . (5)

It is common knowledge that sP
D = r−α sin(αθ), where (r, θ) denote the polar

coordinates centered on the reentrant corner of angle π/α. Above, sP
D is singular

since it belongs to L2(Ω) but not to H1(Ω), and verifies ΔsP
D = 0. One thus

computes with a P 1 finite element method, s̃D by solving

Δs̃D = 0 in Ω,

s̃D = −sP
D on Γ .
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Next, one proceeds similarly for the function ψS ∈ H1
0 (Ω) solution to

−ΔψS = sD in Ω,

ψS = 0 on Γ .

Again, splitting ψS in a regular part ψ̃S (which belongs to H2(Ω)) and a singular
one ψP

S ,

ψS = ψ̃S + CψψP
S , (6)

where Cψ is a constant which can be determined with an integration by parts
formula (cf. [3]). One needs the expression of ψP

S in polar coordinates, ψP
S =

rα sin(αθ). The regular part ψ̃S is then computed, by solving a standard varia-
tional formulation. The singular function sN and φS are obtained in the same
way.

With the help of singular mappings (see [2]), one can compute the singular
electromagnetic basis functions. We get the basis wS (resp. mS) by simply taking
the curl of ψS (resp. the gradient of φS)

wS = curl ψ̃S + CψcurlψP
S , (7)

mS = ∇φ̃S + Cφ∇φP
S , (8)

and yS is easily obtained with (2).
We recall now the Variational Formulation, or VF, which have been devel-

oped to solve the problem. We also introduce the discretization of this VF. First,
Ampère and Faraday’s laws are written equivalently as two second-order in time
equations, plus suitable initial and boundary conditions. Then, the electric and
magnetic fields are decoupled (up to the initial conditions). Next, following [5],
we enforce the divergence constraints on the electromagnetic field by introduc-
ing two Lagrange multipliers, which dualize Coulomb’s and absence of free mag-
netic monopole’s laws. This approach gives a Mixed VF of Maxwell’s equations,
which is well-posed, if the well-known inf-sup (or Babuska-Brezzi [6,7]) condi-
tion holds. In addition, we use an Augmented VF, by adding to the bilinear
form (curl ·, curl ·)0, the term (div ·, div ·)0. This results in a Mixed, Augmented
VF, or MAVF. In our case, the magnetic field belongs to Y. Then, the correct
Lagrange multiplier space is L2

0(Ω). Denote by p(t) the Lagrange multiplier, this
formulation reads

Find (B(t), p(t)) ∈ Y × L2
0 such that

d2

dt2
(B(t),y)0 + c2(B(t),y)Y + (p(t), div y)0 =

1
ε0

(J (t), curl y)0 , ∀y ∈ Y,

(div B(t), q)0 = 0 ∀q ∈ L2
0(Ω) .
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One has to include the regular/singular splitting in this formulation. The mag-
netic field B being decomposed into B(t) = BR(t) + BS(t) , and the same for the
test functions, the variational formulation reads now:
Find (BR(t), BS(t), p(t)) ∈ YR × YS × L2

0(Ω) such that

d2

dt2
(BR(t),yR)0 + c2(BR(t),yR)Y + (p(t), div yR)0 =

1
ε0

(J (t), curl yR)0

− d2

dt2
(BS(t),yR)0, ∀yR ∈ YR, (9)

d2

dt2
(BS(t),yS)0 + c2(BS(t),yS)Y + (p(t), div yS)0 =

1
ε0

(J (t), curl yS)0

− d2

dt2
(BR(t),yS)0, ∀yS ∈ YS , (10)

(div BR(t), q)0 + (div BS(t), q)0 = 0, ∀q ∈ L2
0(Ω). (11)

Remark 3.1. In the case of a non-orthogonal splitting, as for instance with a
non-empty absorbing boundary ΓA, one has to add −c2(BS(t),yR)Y to equation
(9), and the term −c2(BR(t),yS)Y to equation (10) (generated by the loss of
orthogonality).

To derive a finite-element approximation of this formulation, we have now to
choose discrete fields and test-functions, which verify a uniform, discrete inf-sup
condition. The Taylor-Hood, P2-iso-P1 Finite Element retains our attention here,
first because it fulfill this condition (cf. [8]). Moreover, it allows to build diagonal
mass matrices, when suitable quadrature formulas are used (cf. [5]). Thus, the
solution to the linear system, which involves the mass matrix, is straightforward.
Since there is one singularity, we can write BS(t) = κ(t)yS , where (yS) denotes
the basis of the discrete singular space, and κ is a continous time-dependent
function. Next, discretizing in time this formulation with the help of the well-
known leap-frog scheme, this results in the following fully discretized scheme:

MΩBn+1
R + MRSκn+1 + LΩpn+1 = F n , (12)

M
T
RSBn+1

R + MSκn+1 + LSpn+1 = Gn , (13)

L
T
ΩBn+1

R + L
T
S κn+1 = 0 . (14)

Above MΩ denotes the usual mass matrix, and LΩ corresponds to the divergence
term involving yh

R and ph(t). Then, MRS is a rectangular matrix, which is ob-
tained by taking L2 scalar products between regular and singular basis functions,
MS is the ”singular” mass matrix, and finally, LS corresponds to the divergence
term involving yi

S and ph(t).
One can solve this system by removing the unknown κn+1. To that aim, replace

equation (12) by (12)−MRSM
−1
S (13), and equation (14) by (14)−L

T
S M

−1
S (13).
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In this modified system, only the unknowns (Bn+1
R , pn+1) appear. If one lets ˜

stand for the modified matrices and right-hand sides, it reads

˜MBn+1
R + ˜Lpn+1 = ˜F n ,

˜L
T Bn+1

R − L
T
S M

−1
S LSpn+1 = ˜Hn .

Its solution can be obtained with the help of a Uzawa-type algorithm. Finally,
one concludes the time-stepping scheme by computing κn+1 with the help of
(13).

4 Numerical Experiments

We study now the influence of the frequency of the incoming signal, on the
localization in space of the singular effects. This is of importance, since not
taking into account the singular part of the electromagnetic field can result in a
computed solution, which is wrong over the whole domain.

We consider an L-shaped domain Ω, with a boundary Γ split into two parts,
Γ = ΓC ∪ ΓA. On ΓC (top and bottom parts), a perfect conducting boundary
condition is imposed. An incident wave enters the waveguide through the bound-
ary Γ i

A (left side), and exists through Γ a
A (rigth side). This behavior is modelled

thanks to the boundary condition (1) with a right hand-side equal to C sin(ωt)
on Γ i

A and zero on Γ a
A. Initial conditions are uniformly set to zero. Above, C is

a constant, and ω is associated to a frequency ν, which can vary.
We compare two numerical solutions. One, which is obtained by taking into

account the singular part, i.e. with the Singular Complement Method or SCM.
The other one, by computing only a P 1, Lagrange finite element approximation.
The values of ν are set successively to ν1 = 5.109 Hz, and ν2 = 15.109 Hz. In each
case, the mesh is such that the number of discretization nodes per wavelength
is constant. Numerical dispersion, if it occurs, is therefore comparable.

Results are shown on Figure 1. For the higher frequency ν2, the height is
roughly equal to seven wavelengths and the singular behavior is more localized,
near the reentrant corner. Results are rather close. But for ν1, which corresponds

Fig. 1. with (left) and without (right) SCM for low frequency ν1 - with (left) and
without (right) SCM for high frequency ν2
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to a wavelength comparable to the dimensions of the domain (the height is
roughly equal to two wavelengths), the solutions are very different.

5 Conclusion

In this paper, we were interested in the propagation of a wave in a singular
waveguide, by studying how the frequency of the ingoing electromagnetic waves
influences the singular solution. We developed a numerical method, based on
direct, and possibly orthogonal, splittings of the space of electromagnetic solu-
tions. One of the foremost result is that the singular behavior of the solution is
more localized, near the reentrant corner for the higher frequencies than for the
lower.
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