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Abstract. The black and white traveling salesman problem (BWTSP) is a new 
class of NP-hard problem arising from work on airline scheduling and 
telecommunication fiber networks. The existing Ghiani LP for the undirected 
BWTSP contains an exponential number of constraints. For a special case of the 
directed BWTSP whose L = +∞ , the LP with polynomial number of constraints 
could be obtained by transforming it to an asymmetric traveling salesman 
problem with replenishment arcs (RATSP), whereas there exists no LP for the 
directed BWTSP in its general form. This paper proposes a LP with 23 2n n+  
constraints only for the directed BWTSP in such a way that, by reducing the 
problem to an asymmetric traveling salesman problem (ATSP), we add 

2n cardinality constraints and 2n  length constraints to the existing Gavish-
Grave LP for the ATSP. The new LP is also valid for the undirected BWTSP 
when viewed as a special case of the directed BWTSP. 

Keywords: Black and white traveling salesman problem, Linear programming, 
Gavish-Grave LP. 

1   Introduction 

The black and white traveling salesman problem (BWTSP) is a generalization of the 
well known traveling salesman problem (TSP) and is therefore NP-hard. Given a 
directed graph ( , )G V A=  or an undirected graph ( , )G V E=  with vertex set 

{1, , }V n= , arc set {( , ) : , , }A i j i j V i j= ∈ ≠ or edge set {( , ) : , , }E i j i j V i j= ∈ ≠ , 

and costs on the arcs Ac R∈  or costs on the edges Ec R∈ , the BWTSP is to find a 
shortest Hamiltonian tour on G . However the tour must satisfy additional constraints 
i) cardinality constraints: the vertex set V  is partitioned into black vertices, denoted 

by B  ( 2B ≥ ) and white vertices, denoted by \W V B= , the number of white 

vertices between two consecutive black vertices on the tour does not exceed a positive 
integer Q , and ii) length constraints: the length of any path or chain between two 

consecutive black vertices does not exceed a positive value L .  
An application of the BWTSP arises in the design of telecommunication fiber 

networks using the SONET technology [1, 2]. When designing survivable fiber 
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networks using the SONET technology, one seeks a shortest Hamiltonian cycle 
comprising hubs (white vertices) and ring offices (black vertices) with upper bounds 
on both the number of hubs and chain length between consecutive ring offices. Aside 
the above-mentioned application, the scheduling of airline operations that incorporate 
maintenance connections [3] can also be modeled as a BWTSP. 

Ghiani et al. have shown a linear programming (LP) with exponential constraints for 
the undirected BWTSP, whereas no LP exists for the directed BWTSP in its general 
form. With the special case of the directed BWTSP whose Q L= = +∞  is associated 

extensive existing LPs by reverting to the usual ATSP (see [5]). Dantzig et al. [6] 
introduced a conventional LP with 12 1n n− − −  constraints in 1954. Miller et al. [7] 

presented a sequential LP with 2 2n n− + constraints in 1960. A single commodity 
flow based LP with ( 2)n n +  constraints was proposed by Gavish et al. [8] in 1978. In 

1983 Finke et al. [9] developed a two-commodity flow based LP with ( 4)n n +  

constraints. Wong [10] and Claus [11] described the multi-commodity flow based LP 
with 3 2 6 3n n n+ + −  constraints, respectively, in 1980 and 1984. Besides a time staged 

LP with 22 3n n− +  constraints by Vajda [12] in 1961, Fox et al. [13] showed two time 
staged LPs in 1980, one with 4 1n −  constraints, the other with ( 2)n n +  constraints. 

When L = +∞ , the directed BWTSP reduced to an asymmetric traveling salesman 
problem with replenishment arcs (RATSP). The natural arc LP for the RATSP was 
developed by Zhu [14] based on the DFJ formulation for the ATSP in 1994. Boland et 
al. [15] proposed a path LP for the same problem in 2000. Both of the previously 
mentioned LPs involve exponentially many variables and constraints. Vicky [16] 
strengthened the LP by Zhu, and proposed a polynomial-size LP. 

In this paper we propose a new LP with polynomial constraints for the directed 
BWTSP in its general form. The directed BWTSP reduces to an ATSP when 
Q L= = ∞ , thus we can derive our LP from the Gavish-Grave LP [8] for the ATSP. 

The new 2n  formulations of cardinality constraints are obtained in such a way that, 
by introducing cardinality flow representing the number of white vertices quota 
remaining, we investigate the conditions that the arcs on the tour should be subject to. 
Similarly, we obtain 2n  formulations of length constraints. Therefore, we establish 

the new LP with 23 2n n+  constraints for the original problem. The new LP is also 
valid for the undirected BWTSP when viewed as a special case of the directed 
BWTSP. The results of the paper can promote the complete algorithm design of the 
BWTSP. 

The remainder of this paper is organized as follows. In section 2, we describe the 
Gavish-Grave LP for the ATSP. Cardinality constraints and length constraints are 
presented in section 3 and in section 4, respectively, followed by conclusions in 
section 5. 

2   Gavish-Grave LP for the ATSP 

As mentioned before, the directed BWTSP reduces to an ATSP when Q L= = ∞ , 

thus any solution to the directed BWTSP is feasible for the ATSP, and all inequalities 
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for the ATSP are also valid for the directed BWTSP. Therefore, we are able to derive 
our LP from the Gavish-Grave LP. 

We define ijx  as a binary variable equal to 1 iff arc ( , )i j  belongs to the solution. 

To eliminate subtours, we introduce ijy  as a continuous variable which represents the 

commodity flow in arc ( , )i j . The Gavish-Grave LP for the ATSP can be described as 

follows. 

min  ij iji j
c x

≠∑  (1) 

s.t. 1                            iji j
x j B W

≠
= ∀ ∈∑ ∪  (2) 

1                           ijj i
x i B W

≠
= ∀ ∈∑ ∪  (3) 

=0 or 1                            ( , )ijx i j A∈  (4) 

0 ( 1)                   , ,ij ijy n x i j B W i j≤ ≤ − ∀ ∈ ≠∪  (5) 

11
1jj

y n
≠

= −∑  (6) 

1          {1}ij jzi j z j
y y j B W

≠ ≠
− = ∀ ∈ −∑ ∑ ∪  (7) 

In this LP, constraints (2)-(4) are degree constraints which insure that exactly one 
arc enters and leaves each vertex. Whereas constraints (5)-(7) are called arc 
constraints which guarantee that the solution contains exactly one loop. Assume that 
the solution contains more than one loop, all of them distinct. Consider a loop 

0 1 0( , ,..., , )kt i i i i=  which does not contain vertex 1. From (5) and (7) it follows that 

1 ( 1)mod( 1)
1

j j j j ki i i iy y
− + +

− = for all 1,...,j k= , therefore we have 
0 1 0ki i i iy y k= + , nevertheless 

from (7) it follows that 
0 0 1

1
ki i i iy y− = . No loops can exist that do not contain vertex 1; 

since vertex 1 is contained in exactly one loop, thus at most one loop is generated. 
The Gavish-Grave LP consists of ( 2)n n +  constraints, ( 1)n n −  0-1 variables and 

( 1)n n −  continuous variables. 

3   Cardinality Constraints 

We define 0 1( , ,..., )kp i i i=  as a black-to-black path with 1( , )j ji i A− ∈ for all 

1,...,j k= , j li i≠  for all distinct , {0,..., }j l k∈ , and 0 , ,k ji i B i W∈ ∈ for all 

1,..., 1j k= − . We also define 0 1( ) { , ,..., }kV p i i i=  as the vertices on p , 

0 1 1 2 1( ) {( , ), ( , ),..., ( , )}k kA p i i i i i i−= as the arcs on p , and 
0 1 1 2 1

( ) ...
k ki i i i i if p c c c

−
= + + + as 

the length of p . A black-to-black path p  is said to be feasible if the number of white 
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vertices on it does not exceed Q , i.e. ( ) 2V p Q− ≤ , and the length of it does not 

exceed L , i.e. ( )f p L≤ . Otherwise it is said to be infeasible. Obviously, a feasible 

solution of the BWTSP consists of alternating feasible black-to-black paths.  
To eliminate cardinality violation, we introduce extra cardinality flow ijq for each 

( , )i j A∈ , which represents the number of white vertices quota remaining after 

visiting arc ( , )i j . Then our cardinality constraints can be derived as follows.  

The total cardinality flow into a white vertex j W∈ will be 1 more than that out of 

j . Therefore, we have the following constraint: 

1                         ij jzi j z j
q q j W

≠ ≠
− = ∀ ∈∑ ∑  (8) 

And the total cardinality flow out of each black vertex j B∈  should not exceed Q  

in order to guarantee that, the number of white vertices on the black-to-black path 
starting with vertex j  does not exceed Q .  

                         jii j
q Q j B

≠
≤ ∀ ∈∑  (9) 

Last of all, ijq  is bounded according to: 

0                      , ,ij ijq Qx i j B W i j≤ ≤ ∀ ∈ ≠∪  (10) 

Constraints (8), (9) and (10) are formulations of cardinality constraints which impose 
the maximum number restriction of white vertices between consecutive black vertices. 
These formulations consist of 2n  constraints and ( 1)n n −  new continuous variables. 

Proposition 1. Constraints (8), (9) and (10) are valid for the directed BWTSP.  

Proof. Assume that a solution of the directed BWTSP subject to constraints (8), (9) 
and (10) violates the cardinality constraints. Thus, there must be a black-to-black path 

0 1( , ,..., )kp i i i=  on the solution subject to 2k Q− ≥ . From (8) and (10) it follows that 

1 1 2
1

r r r ri i i iq q
+ + +

= +  for all 0,..., 2r k= − . Therefore, we have 
0 1 1

1
k ki i i iq q k Q

−
= + − > , 

which contradicts with constraint (9). Thus, no solution subject to (8), (9) and (10) 
could exist that does not satisfy cardinality constraints.  

To show that a feasible solution of the directed BWTSP satisfies (8), (9) and (10), 
assume that 0 1( , ,..., )kp i i i=  is a feasible black-to-black path on the solution; (8), (9) 

and (10) hold by assigning 
1

1
r ri iq k r

+
= − − , 0

ri zq =  for all ( , ) ( )ri z A p∉ , 

0,..., 1r k= − .                                                                                                                 
 

4   Length Constraints 

To eliminate length violation, we introduce length flow ijl for each ( , )i j A∈ , which 

represents the length quota remaining after visiting arc ( , )i j . Our length constraints 

are derived as follows.  
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If arc ( , )i j A∈ ( i W∈ ) belongs to the solution, i.e. if 1ijx = , the total length flow 

out of vertex i  will be ijc  less than that into it. To guarantee this is satisfied, we 

require that if 1ijx = , then  iz si ijz i s i
l l c

≠ ≠
= −∑ ∑ . Therefore, we have the following 

constraint: 

                         iz si iz izz i s i z i
l l c x i W

≠ ≠ ≠
= − ∀ ∈∑ ∑ ∑  (11) 

If arc ( , )i j A∈ ( i B∈ ) belongs to the solution, i.e. if 1ijx = , the total length flow 

out of vertex i  will be considered “refreshed” after visiting i  and ijl  will be set to 

ijL c− . Thus, we obtain the following constraint: 

                         iz iz izz i z i
l L c x i B

≠ ≠
= − ∀ ∈∑ ∑  (12) 

Last of all, ijl  is bounded according to: 

0                      , ,ij ijl x L i j B W i j≤ ≤ ∀ ∈ ≠∪  (13) 

Constraints (11), (12) and (13) are formulations of length constraints which impose 
the maximum length restriction between consecutive black vertices. These 
formulations consist of 2n  constraints and ( 1)n n −  new continuous variables.  

Proposition 2. Constraints (11), (12) and (13) are valid for the directed BWTSP.  

Proof. Assume that a solution subject to constraints (11), (12) and (13) violates the 
length constraints. Thus, there must be a black-to-black path 0 1( , ,..., )kp i i i=  on the 

solution subject to 
10 1 r rr k i ic L

+≤ ≤ −∑ >  and 
1

1
r ri ix

+
=  for all 0, , 1r k= − . From (11) it 

follows that 
1 2 1 1 2r r r r r ri i i i i il l c

+ + + + +
= −  for all 0,..., 2r k= − . Therefore, we have 

1 0 1 11 1k k r ri i i i r k i il l c
− +≤ ≤ −= −∑ . From (12) it follows that 

0 1 0 1i i i il L c= − ; hence, we have 

1 10 1 0
k k r ri i r k i il L c

− +≤ ≤ −= −∑ < , which contradicts with constraint (13). Thus, no solution 

subject to (11), (12) and (13) can exist that does not satisfy length constraints.  
We can show that a feasible solution of the directed BWTSP satisfies (11), (12) 

and (13) in a similar way as given in the proof of Proposition 1. Given a feasible 
black-to-black path 0 1( , ,..., )kp i i i=  on the solution, (11), (12) and (13) hold by 

assigning 
1 10r r s si i s r i il L c

+ +≤ ≤= −∑ , 0
ri zl =  for all ( , ) ( )ri z A p∉ , 0,..., 1r k= − .            

  

5   Conclusion 

In this paper, we have introduced a new LP for the directed BWTSP. Compared to the 
Ghiani LP with exponential constraints for the undirected BWTSP, our LP involves 

23 2n n+  constraints only. The new LP is derived from the Gavish-Grave LP by 
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defining two classes of flows: one represents the number of white vertices quota 
remaining, the other represents the length quota remaining. 
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