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Abstract. Let D(n) and H(n) be the fractal dimension and the Hurst parameter of 
traffic in the nth interval, respectively. Thus, this paper gives the experimental 
variance analysis of D(n) and H(n) of network traffic based on the generalized 
Cauchy (GC) process on an interval-by-interval basis. We experimentally infer 
that traffic has the phenomenon Var[D(n)] > Var[H(n)]. This suggests a new way 
to describe the multifractal phenomenon of traffic. That is, traffic has local high-
variability and global robustness. Verifications of that inequality are demonstrated 
with real traffic.  
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1   Introduction 

Network traffic (traffic for short) has multifractal behavior (Taqqu, Teverovsky and 
Willinger [1]). Multifractional Brownian motion (mBm) is a way to describe the 
multifractal of a time series by extending the Hurst parameter H to a time-dependent 
function H(t) on a point-by-point basis, see e.g. Peltier and Levy-Vehel [2], Lim and 
Muniandy [3]. From a view of networking, however, time-varying H is usually 
expressed by H(n), where n is the index of the nth interval (see e.g. Willinger, Paxson, 
Riedi and Taqqu [4], Li [5]), since servers in computer networks usually serve 
arriving traffic on an interval-by-interval basis. In this paper, we investigate the 
variances of H(n) and D(n) of real traffic, where D(n) is the fractal dimension of 
traffic in the nth interval. 

A single parameter model, such as the standard Fractional Gaussian noise (fGn for 
short), is a widely used tool in traffic modeling, see e.g. [6-9,31,35], where H is 
related to D by the linear expression D = 2 – H. However, Tsybakov and Georganas 
[8, Paragraph 1, Section II] noticed that “the class of exactly self-similar processes 
(i.e., fGn) is too narrow for modeling actual network traffic.” In addition, Paxson and 
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Floyd [9, Last sentence, Paragraph 4, § 7.4] remarked that “it might be difficult to 
characterize the correlations over the entire trace with a single Hurst parameter.” 

Recently, Gneiting and Schlather [12] introduced stationary Gaussian processes 
indexed by two parameters. A simple one is called the Cauchy class, since the 
processes in that class can be regarded as an extension of the generalized Cauchy 
process used in geostatistics [11]. For simplicity, we call a process belonging to such 
a class as the generalized Cauchy (GC) process as stated in [14]. Li and Lim applied 
it to traffic modeling in the mono-fractal sense [13] and discussed its properties in 
[14]. A key point of the GC process is that it has the functionality to separately 
characterize D and H of a time series with LRD, where H is a measure of LRD while 
D is a measure of roughness or local irregularity ([12] and Mandelbrot [15,16]). In 
passing, we note that the linear relation D = 2 – H, resulting from fGn, implies that 
local properties are reflected in global ones for fGn, as can be seen from Mandelbrot 
[10], [12]. 

Experimental processing of traffic reveals that traffic is robust at large time scaling 
[9] but highly irregular at small time scaling (Feldmann, Gilbert, Willinger and Kurtz 
[17], Willinger, Govindan, Jamin, Paxson and Shenker [18]). This may be a tough 
issue to explain in traffic analysis from the point of view of a single parameter model 
such as fGn. Intuitively, such multifractal phenomena of traffic imply Var[D(n)] > 
Var[H(n)], because a high value of Var[D(n)] represents local high-variability while a 
small value of Var[H(n)] implies global robustness. Nevertheless, variance analysis 
based on fGn results in, due to the relation D = 2 – H, Var[D(n)] = Var[H(n)], which 
conflicts with the traffic’s multifractal phenomenon experimentally observed in 
[1,9,17,18].  

Now, suppose that H and D of traffic can be decoupled. Then, we can separately 
characterize Var[D(n)] and Var[H(n)] for the goal of investigating multifractal 
phenomenon of traffic. Recently, we introduced GC to model traffic [13], which 
provides a useful tool to achieve that goal. It is our belief that this paper is the first 
attempt at: 1) doing the variance analysis of D(n) and H(n) of traffic based on GC 
model, and 2) experimentally inferring that traffic has the phenomenon Var[D(n)] > 
Var[H(n)], which may serve as a novel description of the properties that traffic has 
local high-variability and is globally robust 

The rest of this paper is organized as follows. The GC process is briefed in Section 
2. The variance analysis of D(n) and H(n) of traffic is discussed in Section 3, which is 
followed by conclusions. 

2   Brief of GC Process 

X(t) is called the GC process if it is a stationary Gaussian centered process with the 

autocorrelation given by [ ] ( ) /

( ) ( ) ( ) 1 ,
β αατ τ τ

−
= + = +C E X t X t  where 0 < α ≤ 2 

and β > 0 [12-14]. Since C(τ) is an even function. The following considers τ ≥ 0 
unless otherwise stated:  

/( ) (1 ) ,    0,α β ατ τ τ−= + ≥C  (1) 
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where C(τ) is positive-definite for the above ranges of α and β, and it is a completely 
monotone for 0 < α ≤ 1, β > 0. When α = β = 2, one gets the usual Cauchy process.  

Recall that a self-similar process X(t) with self-similarity index κ  requires for r > 
0,  

( ) ( ) ,κX rt r X t  (2) 

where  denotes equality in joint finite distribution. The above equation describes a 
global property. It is known that a stationary Gaussian random process X(t) that is not 
an exactly self-similar process may satisfy a weaker self-similar property known as 
local self-similarity. Taking into account the definition of local self-similarity by Kent 
and Wood [19], we say that a Gaussian stationary process is locally self-similar of 
order α if C(τ) satisfies for 0,τ →  

( ) 1 | | {1 (| | },    0.α γτ β τ τ γ′= − + >C O   

For the GC process, ββ α′ =  and .γ α=  The fractal dimension D of a locally 

self-similar process of order α is given by (see e.g., [19] and Adler [20]) 

2 .
2

α= −D  (3) 

Note that the local irregularities of the sample paths are measured by ,α  which 

can be regarded as the fractal index of the process (Davies and Hall [21], Hall [22], 
Constantine and Hall [23], Hall and Roy [24], Chan, Hall, and Poskitt [25]). Thus, the 
behavior of C(τ) at the origin to a great extent determines the roughness of the 
random process.  

The large time lag behavior of the correlation is given by the following 
hyperbolically decaying correlation 

( ) ~ ,    ,βτ τ τ− → ∞C  (4) 

which implies LRD for 0 < β < 1. The process becomes short-range dependent if β > 
1. Thus, the index β characterizes LRD. Comparing the large asymptotic value of the 
correlation βτ −  with 2 2τ −H  yields  

1 / 2.β= −H  (5) 

Therefore, the LRD condition 0 < β < 1 implies 0.5 < H < 1.  
One thing worth noting is that the two parameters α and β can vary independently. 

Hence, D of the GC process is independent of H. The separate characterization of D 
and H gives the GC model the flexibility that is lacking in single parameter models 
like fGn.  

At the end of this section, we note that the GC process is non-Markovian since its 
correlation 1 2( ,  )C t t  does not satisfy the triangular relation given by 

1 3 1 2 2 3 2 2 1 2 3( ,  ) ( ,  ) ( ,  ) / ( ,  ),  ,= < <C t t C t t C t t C t t t t t   
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which is a necessary condition for a Gaussian process to be Markovian (Todorovic 
[26]). In fact, up to a multiplicative constant, the Ornstein-Uhlenbeck process is the 
only stationary Gaussian Markov process (Lim and Muniandy [27], Wolperta and 
Taqqu [28]). 

3   Experimental Variance Analysis 

On an interval-by-interval basis, we write 

( ) ( ) / ( )( ;  ) (1 ) ,    0.α β ατ τ τ−= + ≥n n nC n  (6) 

Hence, we have 

( )
( ) 2 ,

2

α= − n
D n  (7) 

( )
( ) 1 .

2

β= − n
H n  (8) 

Consider three sets of test data. The first set consists of four traces measured at the 
Bellcore (BC) in 1989. The second includes traces recorded at Digital Equipment 
Corporation (DEC) in March 1995. The third contains 4 traces collected by the 
National Laboratory for Applied Network Research (NLANR) in November 2005. 
These data are available freely from [29,30]. They have been used in the research of 
traffic analysis, see e.g. [4,7,9,13,17,31,32]. The third is relatively recent, in 
comparison with the other two. 

Now, we use three test series for demonstrations. They are DEC-PKT-1, BC-
Oct89Ext, and AMP-1131669938-1.psize. Denote x[t(i)] a traffic series, indicating the 
number of bytes in a packet at time t(i) (i = 0, 1, 2, ). Then, x(i) is a series, 

representing the number of bytes in the ith packet. Figs. 1 (a) ~ (c) indicate the first 
1024 points of 3 series, namely DEC-PKT-1 at DEC in 1995, BC-Oct89Ext at BC in 
1989, and AMP-1131669938-1.psize at NLANR in 2005, respectively.  
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    (a)                                            (b)                                             (c) 

Fig. 1. Real traffic. (a). DEC-PKT-1. (b). BC-Oct89Ext. (c). AMP-1131669938-1.psize. 

The computation settings are as follows. Block size L is 1024 and average times N 
= 10. Sectioning the series as x(i), i = (n – 1)(L×N), …, n(L×N) for n = 1, …, 30. By 
computing 30 correlations for each series and using the least square fitting, we 
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indicate H(n) of those in Fig. 1 by Fig. 2 (a), (b), and (c). Since H(n) appears random, 
we need investigating its variation statistically. Figs. 3 (a) ~ (c) give their histograms 
(see [36] for the computation of the histogram of a series). By numeric computation, 
we have Var[H(n)] = 0.073 for DEC-PKT-1, Var[H(n)] = 0.074 for BC-Oct89Ext, 
and Var[H(n)] = 0.073 for AMP-1131669938-1.psize. 
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(a)                                          (b)                                          (c) 

Fig. 2. H(n). (a). For DEC-PKT-1. (b). For BC-Oct89Ext. (c). For AMP-1131669938-1.psize. 
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(a)                                          (b)                                          (c) 

Fig. 3. Histograms of H(n). (a). For DEC-PKT-1: Var[H(n)] = 0.073. (b). For BC-Oct89Ext: 
Var[H(n)] = 0.074. (c). For AMP-1131669938-1.psize: Var[H(n)] = 0.073. 

On the other hand, D(n) of each test series is indicated in Fig. 4 (a), (b), and (c), 
respectively. Fig. 4 exhibits that D(n) also appears random. Thus, we use the 
histogram to observe its fluctuation. Figs. 5 (a) ~ (c) show their histograms. 
According to numeric computation, therefore, we obtain Var[D(n)] = 0.298 for DEC-
PKT-1, Var[D(n)] = 0.297 for BC-Oct89Ext, and Var[D(n)] = 0.304 for AMP-
1131669938-1.psize. Taking into account Var[H(n)] and Var[D(n)] mentioned above, 
we have  

Var[D(n)] = 0.298 > Var[H(n)] = 0.073 for DEC-PKT-1, (9) 

Var[D(n)] = 0.299 > Var[H(n)] = 0.074 for BC-Oct89Ext, (10) 

Var[D(n)] = 0.304 > Var[H(n)] = 0.073 for AMP-1131669938-1.psize. (11) 

Tables 1 ~ 3 give the comparisons of Var[H(n)] and Var[D(n)] for 3 sets of test 
series, respectively. One particular thing worth noting is that Var[H(n)] is in the order 
of magnitude of 10−2 while Var[D(n)] is in the order of magnitude of 10−1. Hence, we 
experimentally infer that traffic has the phenomenon expressed by 
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Var[D(n)] > Var[H(n)], (12) 

which is valid for the test data from the past (1989) to the current (2005) for either 
Ethernet traffic or WAN one. The mean square errors of the estimations of D(n) and 
H(n) are in the order of magnitude of 410 .−   
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Fig. 4. D(n). (a). For DEC-PKT-1. (b). For BC-Oct89Ext. (c). For AMP-1131669938-1.psize. 
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Fig. 5. Histograms of D(n). (a). For DEC-PKT-1: Var[D(n)] = 0.298. (b). For BC-Oct89Ext: 
Var[D(n)] = 0.299. (c). For AMP-1131669938-1.psize: Var[D(n)] = 0.304. 

Table 1. Comparisons of Var[H(n)] and Var[D(n)] of traffic at Bellcore 

Data series Var[H(n)] Var[D(n)] 
pAug89 0.074 0.299 
pOct89 0.076 0.300 
OctExt 0.075 0.298 
Octext41 0.077 0.301 

Table 2. Comparisons of Var[H(n)] and Var[D(n)] of traffic at DEC 

Data series Var[H(n)] Var[D(n)] 
DECPKT1 0.073 0.298 
DECPKT2 0.072 0.300 
DECPKT3 0.074 0.301 
DECPKT4 0.074 0.302 
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Table 3. Comparisons of Var[H(n)] and Var[D(n)] of traffic by NLANR 

Data series Var[H(n)] Var[D(n)] 
AMP-1131409930-1.psize 0.075 0.306 
AMP-1131495398-1.psize 0.075 0.305 
AMP-1131580868-1.psize 0.075 0.304 
AMP-1131669938-1.psize 0.073 0.304 

Finally, we note that the generalized GC process provides a new way to investigate 
or describe the multifractal [phenomenon of traffic. By “new way,” we mean that D 
and H of traffic are separately characterized, which substantially differs from single 
parameter based models, such as fGn or local Hurst function. We highly appreciate an 
anonymous referee who proposed a challenging issue of how D statistically correlates 
H of traffic. Let it be the topic of the future work. 

4   Conclusions 

We have explained the variance analysis of D(n) and H(n) of traffic based on the GC 
process. The present result implies that traffic has the property Var[D(n)] > 
Var[H(n)], meaning that the variability of D(n) of traffic is greater than that of H(n) in 
general. This may be a novel description to the multifractal of traffic. 
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