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Abstract. This paper addresses the problem of reconstructing implicit function 
from point clouds with noise and outliers acquired with 3D scanners. We 
introduce a filtering operator based on mean shift scheme, which shift each 
point to local maximum of kernel density function, resulting in suppression of 
noise with different amplitudes and removal of outliers. The “clean” data points 
are then divided into subdomains using an adaptive octree subdivision method, 
and a local radial basis function is constructed at each octree leaf cell. Finally, 
we blend these local shape functions together with partition of unity to 
approximate the entire global domain. Numerical experiments demonstrate 
robust and high quality performance of the proposed method in processing a 
great variety of 3D reconstruction from point clouds containing noise and 
outliers. 
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1   Introduction 

The interest for point-based surface has grown significantly in recent years in 
computer graphics community due to the development of 3D scanning technologies, 
or the riddance of connectivity management that greatly simplifies many algorithms 
and data structures. Implicit surfaces are an elegant representation to reconstruct 3D 
surfaces from point clouds without explicitly having to account for topology issues. 
However, when the point sets data generated from range scanners (or laser scanners) 
contain large noise, especially outliers, some established methods often fail to 
reconstruct surfaces or real objects. 

There are two major classes of surface representations in computer graphics: 
parametric surfaces and implicit surfaces. A parametric surface [1, 2] is usually given 
by a function f (s, t) that maps some 2-dimensional (maybe non-planar) parameter 
domain Ω into 3-space while an implicit surface typically comes as the zero-level 
isosurface of a 3-dimensional scalar field f (x, y, z). Implicit surface models are 
popular since they can describe complex shapes with capabilities for surface and 
volume modeling and complex editing operations are easy to perform on such models. 
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Moving least square (MLS) [3-6] and radial basis function (RBF) [7-15] are two 
popular 3D implicit surface reconstruction methods. 

Recently, RBF attracts more attention in surface reconstruction. It is identified as 
one of most accurate and stable methods to solve scattered data interpolation 
problems. Using this technique, an implicit surface is constructed by calculating the 
weights of a set of radial basis functions such they interpolate the given data points. 
From the pioneering work [7, 8] to recent researches, such as compactly-supported 
RBF [9, 10], fast RBF [11-13] and multi-scale RBF [14, 15], the established 
algorithms can generate more and more faithful models of real objects in last twenty 
years, unfortunately, most of them are not feasible for the approximations of 
unorganized point clouds containing noise and outliers. 

In this paper, we describe an implicit surface reconstruction algorithm for noise 
scattered point clouds with outliers. First, we define a smooth probability density 
kernel function reflecting the probability that a point p is a point on the surface S 
sampled by a noisy point cloud. A filtering procedure based on mean shift is used to 
move the points along the gradient of the kernel functions to the maximum probability 
positions. Second, we reconstruct a surface representation of “clean” point sets 
implicitly based on a combination of two well-known methods, RBF and partition of 
unity (PoU). The filtered domain of discrete points is divided into many subdomians 
by an adaptively error-controlled octree subdivision, on which local shape functions 
are constructed by RBFs. We blend local solutions together using a weighting sum of 
local subdomains. As you will see, our algorithm is robust and high quality. 

2   Filtering  

2.1   Covariance Analysis 

Before introducing our surface reconstruction algorithm, we describe how to perform 
eigenvalue decomposition of the covariance matrix based on the theory of principal 
component analysis (PCA) [24], through which the least-square fitting plane is 
defined to estimate the kernel-based density function. 

Given the set of input points Ω＝{pi}iє[1,L], pi є R3, the weighted covariance matrix 
C for a sample point pi є Ω is determined by  

( ) ( ) ( )T

1

L
hj i j i j ij

= − − ⋅ Ψ −∑
=

C p p p p p p  ,                            (1) 

where ip  is the centroid of the neighborhood of pi, Ψ is a monotonically decreasing 

weight function, and h is the adaptive kernel size for the spatial sampling density. 
Consider the eigenvector problem 

l l lλ⋅ = ⋅C e e  .                                                      (2) 

Since C is symmetric and positive semi-define, all eigenvalues λl are real-valued and 
the eigenvectors el form an orthogonal frame, corresponding to the principal 
components of the local neighborhood. 
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Assuming λ0≤λ1≤λ2, it follows that the least square fitting plane H(p): 

( ) 0i 0− ⋅ =p p e  through ip  minimizes the sum of squared distances to the neighbors 

of pi. Thus e0 approximates the surface normal ni at pi, i.e., ni = e0. In other words, e1 
and e2 span the tangent plane at pi.  

2.2   Mean Shift Filtering 

Mean shift [16, 17] is one of the robust iterative algorithms in statistics. Using this 
algorithm, the samples are shifted to the most likely positions which are local maxima 
of kernel density function. It has been applied in many fields of image processing and 
visualization, such as tracing, image smoothing and filtering. 

In this paper, we use a nonparametric kernel density estimation scheme to estimate 
an unknown density function g(p) of input data. A smooth kernel density function 
g(p) is defined to reflect the probability that a point pє R3 is a point on the surface S 
sampled by a noisy point cloud Ω. Inspired by the previous work of Schall et al. [21], 
we measure the probability density function g(p) by considering the squared distance 
of p to the plane H(p) fitted to a spatial k-neighborhood of pi as 
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pro pro
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where Φi and Gi are two monotonically decreasing weighting functions to measure the 
spatial distribution of point samples from spatial domain and range domain, which are 
more adaptive to the local geometry of the point model. The weight function could be 
either a Gaussian kernel or an Epanechnikov kernel. Here we choose Gaussian 

function 
2 2/ 2xe σ−  . The ppro is an orthogonal projection of a certain sample point p on 

the least-square fitting plane. The positions p close to H(p) will be assigned with a 
higher probability than the positions being more distant. 

The simplest method to find the local maxima of (3) is to use a gradient-ascent 
process written as follows:  
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Thus the mean shift vectors are determined as  
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Combining equations (4) and (5) we get the resulting iterative equations of mean 
shift filtering 

1 ( )j j
i im+ =p p ,  o

i i=p p  ,                                              (6) 

where j is the number of iteration. In our algorithm, g(p) satisfies the following 
conditions 

( ) ( ) ( )( )2 1 1 2 1 1 20, 0g g g− >∇ − ∀ ≥ ∀ ≥p p p p p p p  ,                         (7) 
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thus g(p) is a convex function with finite stable points in the set ( ) ( ){ }1|i i iU g g= ≥p p p  

resulting in the convergence of the series { }, 1,..., , 1,2,...j
i i L j= =p . Experiments show 

that we stop iterative process if 1 35 10j j
i i h+ −− ≤ ×p p  is satisfied. Each sample 

usually converges in less than 8 iterations. Due to the clustering property of our 
method, groups of outliers usually converge to a set of single points sparsely 
distributed around the surface samples. These points can be characterized by a very 
low spatial sampling density compared to the surface samples. We use this criteria for 
the detection of outliers and remove them using a simple threshold. 

3   Implicit Surface Reconstruction 

3.1   Adaptive Space Subdivision 

In order to avoid solving a dense linear system, we subdivide the whole input points 
filtered by mean shift into slightly overlapping subdomains. An adaptive octree-based 
subdivision method introduced by Ohtake et al. [18] is used in our space partition. 

We define the local support radius R=α di for the cubic cells which are generated 
during the subdivision, di is the length of the main diagonal of the cell. Assume each 
cell should contain points between Tmin and Tmax. In our implementation, α=0.6, Tmin 
=20 and Tmax =40 has provided satisfying results. 

A local max-norm approximation error is estimated according to the Taubin 
distance [19], 

 ( ) ( )max /
i i

i i
c R

f fε
− <

= ∇
p

p p  .                                             (8) 

If the ε is greater than a user-specified threshold ε0, the cell is subdivided and a local 
neighborhood function fi is built for each leaf cell. 

3.2   Estimating Local Shape Functions 

Given the set of N pairwise distinct points Ω={pi}iє[1,N], pi єR3, which is filtered by 
mean shift algorithm, and the set of corresponding values {vi}iє[1,N], vi єR, we want to 
find an interpolation  f : R3→R such that  

( )i if v=p  .                                                      (9) 

We choose the f(p) to be a radial basis function of the form 

( ) ( ) ( )
1

N

i i
i

f η ω ϕ
=

= + −∑p p p p  ,                           (10) 

where η(p)= ζkηk(p) with {ηk(p)}kє[1,Q] is a basis in the 3D null space containing all 
real-value polynomials in 3 variables and of order at most m with { }3

3
mQ +=  depending 

on the choice of φ, φ is a basis function, ωi are the weights in real numbers, and | . | 
denotes the Euclidean norm. 
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There are many popular basis functions φ for use: biharmonic φ(r) = r, triharmonic 
φ(r) = r3, multiquadric φ(r) = (r2+c2)1/2, Gaussian φ(r) = exp(-cr2), and thin-plate 
spline φ(r) = r2log(r), where r = |p-pi|. 

As we have an under-determined system with N+Q unknowns and N equations, so-
called natural additional constraints for the coefficient ωi are added in order to ensure 
orthogonality, so that  

1 2
1 1 1

0
N N N

i i i Q
i i i

ω η ω η ω η
= = =

= = = =∑ ∑ ∑"  .                                    (11) 

The equations (9), (10) and (11) may be written in matrix form as 

0
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 ,                                                   (12) 

where A=φ(|pi-pj|), i,j =1,…,N, η=ηk(pi), i=1,…,N, k=1,…,Q, ω=ωi, i=1,…,N and 
ζ=ζk, k=1,…,Q. Solving the linear system (14) determines ωi and ζk, hence the f(p). 

 

Fig. 1. A set of locally defined functions are blent by the PoU method. The resulting function 
(solid curve) is constructed from four local functions (thick dashed curves) with their associated 
weight functions (dashed dotted curves). 

3.3   Partition of Unity 

After suppressing high frequency noise and removing outliers, we divide the global 
domain Ω={pi}iє[1,N] into M lightly overlapping subdomains {Ωi}iє[1,M] with 

i iΩ ⊆ Ω∪  

using an octree-based space partition method. On this set of subdomains {Ωi}iє[1,M], we 
construct a partition of unity, i.e., a collection of non-negative functions {Λi}iє[1,M] 
with limited support and with ∑Λi=1 in the entire domain Ω. For each subdomain Ωi 
we construct a local reconstruction function fi based on RBF to interpolate the 
sampled points. As illustrated in Fig. 1, four local functions f1(p), f2(p), f3(p) and f4(p) 
are blended together by weight functions Λ1, Λ2, Λ3 and Λ4. The solid curve is the 
final reconstructed function. 

Now an approximation of a function f(p) defined on Ω is given by a combination 
of the local functions 

( ) ( ) ( )
1

M

i i
i

f f
=

= Λ∑p p p  .                                        (13) 

The blending function is obtained from any other set of smooth functions by a 
normalization procedure 
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( ) ( ) ( )i i j
j

w wΛ = ∑p p p  .                                     (14) 

The weight functions wi must be continuous at the boundary of the subdomains Ωi. 
Tobor et al. [15] suggested that the weight functions wi be defined as the composition 
of a distance function Di:R

n→[0,1], where Di(p)=1 at the boundary of Ωi and a decay 
function θ: [0,1]→[0,1], i.e. wi(p)= θ ◦ Di(p). More details about Di and θ can be 
found in Tobor’s paper. 

Table 1. Computational time measurements for mean shift filtering and RBF+PoU surface 
reconstructing with error bounded at 10-5. Timings are listed as minutes:seconds. 

model Bunny  Dragon head  Dragon  
Pinput 362K 485K 2.11M 
Pfilter 165K 182K 784K 
Tfilter 9:07 13:26 41:17 
Toctree 0:02 0:04 0:10 
Trec 0:39 0:51 3:42 

          
                                     (a)                                (b)                                     (c) 

Fig. 2. Comparison of implicit surface reconstruction based on RBF methods. (a) Input noisy 
point set of Stanford bunny (362K). (b) Reconstruction with Carr’s method [11]. (c) 
Reconstruction with our method in this paper. 

4   Applications and Results 

All results presented in this paper are performed on a 2.8GHz Intel Pentium4 PC with 
512M of RAM running Windows XP. 

To visualize the resulting implicit surfaces, we used a pure point-based surface 
rendering algorithm such as [22] instead of traditionally rendering the implicit 
surfaces using a Marching Cubes algorithm [23], which inherently introduces heavy 
topological constraints. 

Table 1 presents computational time measurements for filtering and reconstructing 
of three scan models, bunny, dragon head and dragon, with user-specified error 
threshold 10-5 in this paper. In order to achieve good effects of denoising we choose a 
large number of k-neighborhood for the adaptive kernel computation, however, more 
timings of filtering are spent . In this paper, we set k=200. Note that the filtered points 
are less than input noisy points due to the clustering property of our method. 

In Fig. 2 two visual examples of the reconstruction by Carr’s method [11] and our 
algorithm are shown. Carr et al. use polyharmonic RBFs to reconstruct smooth, 
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manifold surfaces from point cloud data and their work is considered as an excellent 
and successful research in this field. However, because of sensitivity to noise, the 
reconstructed model in the middle of Fig. 2 shows spurious surface sheets. The 
quality of the reconstruction is highly satisfactory, as be illustrated in the right of  
Fig. 2, since a mean shift operator is introduced to deal with noise in our algorithm.  

For the purpose of illustrating the influence of error thresholds on reconstruction 
accuracy and smoothness, we set two different error thresholds on the reconstruction 
of the scanned dragon model, as demonstrated by Fig. 3. 

 
(a)                             (b)                             (c)                             (d) 

Fig. 3. Error threshold controls reconstruction accuracy and smoothness of the scanned dragon 
model consisting of 2.11M noisy points. (a) Reconstructing with error threshold at 8.4x10-4. (c) 
Reconstructing with error threshold at 2.1x10-5. (b) and (d) are close-ups of the rectangle areas 
of (a) and (c) respectively. 

5   Conclusion and Future Work 

In this study, we have presented a robust method for implicit surface reconstruction 
from scattered point clouds with noise and outliers. Mean shift method filters the raw 
scanned data and then the PoU scheme blends the local shape functions defined by 
RBF to approximate the whole surface of real objects. 

We are also investigating various other directions of future work. First, we are trying 
to improve the space partition method. We think that the Volume-Surface Tree [20], an 
alternative hierarchical space subdivision scheme providing efficient and accurate 
surface-based hierarchical clustering via a combination of a global 3D decomposition at 
coarse subdivision levels, and a local 2D decomposition at fine levels near the surface 
may be useful. Second, we are planning to combine our method with some feature 
extraction procedures in order to adapt it for processing very incomplete data. 
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