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Abstract. With the rapid increase of available 3D models, content-based 3D re-
trieval is attracting more and more research interests. Histogram is the most 
widely in constructing 3d shape descriptor. Most existing histogram based de-
scriptors, however, will not remain invariant under rigid transform. In this pa-
per, we proposed a new kind of descriptor called poisson shape histogram. The 
main advantage of the proposed descriptor is not sensitive for rigid transform. It 
can remain invariant under rotation as well. To extract poisson shape histogram, 
we first convert the given 3d model into voxel representation. Then, the poisson 
solver with dirichlet boundary condition is used to get shape signature for each 
voxel. Finally, the poisson shape histogram is constructed by shape signatures. 
Retrieving experiments for the shape benchmark database have proven that 
poisson shape histogram can achieve better performance than other similar  
histogram-based shape representations. 
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1   Introduction 

Recent development in modeling and digitizing techniques has led to a rapid increase 
of 3D models. More and more 3D digital models can be accessed freely from Internet 
or from other resources. Users can save the design time by reusing existing 3D mod-
els. As a consequence, the concept has changed from “How do we generate 3D mod-
els?” to “How do we find them?”[1]. An urgent problem right now is how to help 
people find their desirable 3D models accurately and efficiently from the model data-
bases or from the web. Content-based 3D retrieval aiming to retrieve 3D models by 
shape matching has become a hot research topic.    

In Content-based 3D retrieval, histogram based representation has been widely 
used for constructing shape features[2]. For histogram based representation, it needs 
to define shape signatures. The defined shape signature is the most important for 
histogram descriptor. It should be invariant to affine transformations such as transla-
tion, scaling, rotation and rigid transform. Some rotation invariant shape signatures, 
such as curvature, distance et al, have been used for content-based 3d retrieval. Those 
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shape signatures are independent of 3d shape rotation. However, little researches are 
focusing on extracting invariant shape signatures under rigid transform. Those exist-
ing rotation-invariant shape signatures are often sensitive to rigid transform. 

In this paper, we propose a new kind of shape signature called poisson shape 
measure. It can remain almost invariant under not only rotation transform, but also 
rigid transform. The proposed shape signature is based on poisson theory. As one of 
the most important PDE theory, it has been widely used for computer vision, com-
puter graphics, analysis of anatomical structures and image processing[3-5]. How-
ever, it has not been used for defining 3d shape signature and then content based 3d 
retrieval. The process of constructing poisson shape histogram can be concluded as 
following: the given 3d model will be first converted into voxel representation. Then, 
the poisson solver with dirichlet boundary condition is used to get shape signature for 
each voxel. Finally, the poisson shape histogram is constructed by the shape signa-
tures. The comparative study shows poisson shape histogram can achieve better re-
trieving performance than other similar histogram descriptors. 

The remainder of the paper is organized as follows: Section 2 provides a brief re-
view of the related work. Section 3 discusses the poison equation and the related 
property. Section 4 discusses how to construct poisson shape histogram. Section 5 
provides the experimental results for content-based 3D retrievals. Finally, Section 6 
concludes the paper and recommends some future work. 

2   Related Work 

Previous shape descriptors can be classified into two groups by their characteristics: 
namely structural representation and statistical representation. The method proposed 
in this paper belongs to statistical representation. This section mainly gives a brief 
review on statistical shape description for content-based 3D retrieval. For more details 
about structure descriptors and content-based 3D retrieval, please refer to some  
survey papers[6-8]. 

As for statistical representation, the most common approach is to compute geome-
try signatures of the given model first, such as normal, curvature, distance and so on. 
Then, the extracted shape signatures are used to construct histogram. Existing shape 
signatures for 3d shape retrieval can be grouped into two types: one is the rotation 
invariant shape signatures, and the other is not. For the latter, rotation normalization is 
performed prior to the extraction of shape signatures. 

Rotation variant shape signatures 
Extend Gaussian Image (EGI) defines shape feature by normal distribution over the 
sphere[9]. An extension version of EGI is the Complex Extend Gaussian Image 
(CEGI)[10], which combines distance and normal for shape descriptor. Shape  
histograms defined on shells and sectors around a model centroid is to capture point 
distribution[11]. Transform-based shape features can be seen as a post-process of the 
original shape signatures. It often can achieve better retrieving accuracy than the 
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original shape signatures. Vranic et al perform spherical harmonics transform for 
point distribution of the given model[12]. While Chen et al considered the concept 
that two models are similar if they look similar from different view angles. Hence 
they extracted transform coefficients in 2D spaces instead of the 3D space[13]. Trans-
form-based 3D retrievals often can achieve better retrieving performance than  
histogram-based methods. but are more computational costly. 

Rotation invariant shape signatures 
This kind of shape signature is robust again rotation transform. Shape distribution 
used some measures over the surfaces, such as distance, angle and area, to generate 
histograms[14]. The angle and distance distribution (AD) is to integrate normal in-
formation into distance distribution[15]. The generalized shape distributions is to 
combine local and global shape feature for 3d retrieval. Shape index defined by cur-
vature is adopted as MPEG-7 3D shape descriptor[16]. Radius-Angle Histogram is to 
extract the angle between radius and normal for histogram[17]. The local diameter 
shape-function is to compute the distance from surface to medial axis[18]. It has the 
similar characteristic with the poisson measure proposed by this paper. The extraction 
of local diameter shape function, however, is very time-cost(It requires nearly 2 min-
utes in average for construing histogram).  

3   Poisson Equation 

Poisson’s equation arises in gravitation and electrostatics, and is the fundamental of 
mathematical physics. Mathematically, Poisson’s equation is a second-order elliptic 
partial differential equation defined as: 

1−=ΔU  (1) 

where UΔ is the laplacian operation. The poisson equation is to assign every internal 
point a value. As for definition, the poisson equation is somewhat similar with dis-
tance transform. The distance transform will assign to every internal point a value that 
depends on the relative position of that point within the given shape, which reflects its 
minimal distance to the boundary. The poisson equation, however, has a huge differ-
ence with distance transform. The poisson is to place a set of particles at the point and 
let them move in a random walk until they hit the contour. It measures the mean time 
required for a particle to hit the boundaries. That’s to say, the poisson equation will 
consider each internal point affected one more boundary points, and will be more 
robust again distance transform.  

The poisson equation has the potential property in shape analysis. Here we show 
some of these properties.  

1. Rotation invariant. Poisson equation is independent of the coordinate system over the 
entire domain (volume in 3D, and region in 2D). It makes the signature defined by poisson 
equation be robust again rotation. 
2. Geometry structure related. The poisson equation is correlated to the geometry of the 
structure. This correlation gives a mathematical meaning to the shape structure.  
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3. Rigid-transform invariant. Similar with geodesic distance, the poisson equation has a 
strong robustness over the rigid transform. 

4   Poisson Shape Histogram and Matching 

Followed by the definition of poisson equation, this section will discuss how to con-
struct poisson shape histogram and similarity calculation.  

The definition of poisson equation is to assign each internal point a value. Most 3D 
models, however, will use boundary representation, such as the mesh model. The 
given mesh model will be converted into 3d discrete grid(48×48×48) first. The vox-
elization algorithm used in this paper is based on Z-buffer[19]. The efficiency of this 
algorithm is independent of the object complexity, and can be implemented efficiently. 
The voxelization also make a process of scale normalization for the given model.  

Suppose the voxelization model can be represented by a finite voxel 

set NiVi ,2,1, = , where N is total voxel count. The tacus package[20] is then 

used for poisson solver. After that, for each voxel iV , we can get poisson shape signa-

ture, denoted by iP . The construction of poisson shape histogram can be concluded as 

the following steps: 

1) For the signature set NiiPi ,,2,1, = , compute its mean value μ  and vari-

anceσ  respectively. 

2) For each iP , perform Gaussian normalization by the following equation. 

σ
μ

3
' −
= i

i

P
P . (2) 

3) For normalized set
'

iP , construct histogram containing 20 bins, denoted by:  

},,{ 20,21 HHHHH i=  

For two histograms, we use L1-metric to measure their dissimilarity.  

NiHHDis ii ,2,1,,2,12,1 =−=∑ . (3) 

where H1 and H2 denote poisson shape histogram for two models. The bigger value 
means two models are more dissimilar.  

Section 3 discusses the property of poisson equation, and it shows the poisson 
equation will be independent of rigid transform. Figure 1 gives poisson shape histo-
gram for horses under different rigid transform. The poisson shape histogram remains 
almost invariant for different rigid transform(the small difference due to the voxeliza-
tion error). As a comparison, the D2 shape distribution, however, appears to be huge 
difference for two models. 
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Fig. 1. Histogram descriptors for above models(Upper: Horses under different rigid-transform. 
Lower: The left is the poisson shape histogram for the above two models, and the right is the 
D2 shape distribution as well. The difference between poisson shape histograms appear to be 
very minor. While the difference of the D2 shape distributions appears to be very obvious). 

5   Experiment 

Experiments are carried out to test the retrieving performance of poisson shape histo-
gram. All experiments are performed with the hardware Intel Pentium 1.86GHZ, 
512M memory. The testing 3D models are Princeton Shape Benchmark data-
base(PSB)[21]. It contains 1804 mesh models, and is classified into two groups. Each 
group contains 907 models as well. One is the training set, which is used to get best 
retrieving parameters. The other is the testing set for retrieving performance compari-
son of different shape descriptors. The benchmark also provides different evaluating 
criterions for retrieving precision. Here we use Precision-Recall curve to measure the 
retrieving accuracy, and the precision-recall measure has been widely used in infor-
mation retrieval. We first show the time in constructing shape poisson histogram, and 
then retrieving accuracy comparison with similar histograms. 

As for content-based 3D retrieval, the feature extraction process should be per-
formed quickly. This is very important, especially for practical applications. The 
costing time for building poisson shape histogram consists of the following steps: 
voxelization, poisson solver and histogram construction. The voxelization time is 
almost 0.07s for each model, and the histogram construction is near to 0s. Notice the 
time for poisson solver is related with the count of voxel. Table 1 shows the costing 
time for different voxel models.  

In average, the costing time for poisson shape histogram is about 0.6s. While for 
D2 shape distribution, the generating time is about 0.8s.  

Next, we will compare the retrieving performance of poisson shape histo-
gram(PSH) with some other histogram based shape descriptors. They are 3D shape 
spectrum(3DS), and D2 distance(D2). Figure 2 givens the precision-recall curve for 
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Table 1. The costing time for poisson solver 

Voxel models Poisson solver (s) 

8624 1.1 

6832 0.7 

4500 0.4 

2306 0.2 

 

 
Fig. 2. The Precision-Recall curves for different histogram-based descriptors 

 
Fig. 3. Some retrieving results(For each row, the left model is the query model, and other three 
models are the most similar with queried model. Notice the model under different rigid trans-
form can be retrieved correctly). 
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three kinds of shape descriptors. It shows the poisson shape histogram can achieve 
best retrieving precision. Some retrieving results are also shown in Figure 3. Notice 
those models under different rigid transform can be retrieved correctly. 

6   Conclusion and Future Work 

This paper proposed a new kind of 3d shape descriptor called poisson shape histo-
gram. It uses poisson equation as the main mathematical theory. The encouraging 
characteristic of poisson shape histogram is insensitive for rigid transform. It remains 
rotation invariant as well. The retrieving experiments have shown that the poisson 
shape histogram can achieve better retrieving precision than other similar histogram-
based 3d shape descriptors. 

As a kind of histogram, the main drawback of poisson shape histogram can only 
capture global shape feature. It can not support partial matching. While for the defini-
tion of poisson equation, the poisson shape signature is only affected by local 
neighbors. It shows the poisson shape measure can represent local shape feature as 
well. As one of the future work, we will work for partial matching based on poisson 
equation. 
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