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Abstract. In this paper, we introduce a new piecewise linear parame-
terization of 3D surface patches which provides a basis for texture map-
ping, morphing, remeshing, and geometry imaging. To lower distortion
when flatting a 3D surface patch, we propose a new method to locally
calculate straightest distances with cutting planes. Our new and simple
technique demonstrates competitive results to the current leading pa-
rameterizations and will help many applications that require one-to-one
mapping.

1 Introduction

A 3D mesh parameterization provides a piecewise linear mapping between a 3D
surface patch and an isomorphic 2D patch. It is a widely used or required oper-
ation for texture-mapping, remeshing, morphing or geometry imaging. Guaran-
teed one-to-one mappings that only requires a linear solver have been researched
and many algorithms [I5TTIRIT0] were proposed. To reduce inevitable distor-
tions when flattening, a whole object is usually partitioned into several genus
0 surface patches. Non-linear techniques [19] are also presented with good re-
sults in some applications but they require more computational time than linear
methods.

Geodesics on meshes have been used in various graphics applications such as
parameterization [10], remeshing [T4)20], mesh segmentation [20/6], and simula-
tions of natural phenomena [T69]. Geodesics provide a distance metric between
vertices on meshes while the Euclidean metric can not. Straightest geodesic path
on meshes was introduced by Polthier and Schmies [I5] and used for parameteri-
zation by [10]. However their straightest geodesics may not be defined between a
source and a destination and require special handling of the swallow tails created
by conjugate vertices [16] and triangles with obtuse angles [9].

In this paper we present a new linear parameterization of 3D surface patches.
Our parameterization is improved upon [I0] by presenting a new way to locally
calculate straightest geodesics. Our method demonstrates visually and statis-
tically competitive results to the current leading methods [5JI0] as shown in
Figure [ Bl B and Table[dl
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Fig.1. Comparisons with texture-mapped models, Hat and Nefertiti: (a) is resulted
by Floater’s [5] with a distortion of 1.26. (b) is by our new parameterization with a
distortion of 1.20, less than by Floater’s. The distortion is measured by the texture
stretch metric [I9]. (c) is by ours with a fixed boundary and (d) is also by ours with a
measured boundary.We can see much less distortion in (d) than (c).

1.1 Related Work

Parameterization. There has been an increased need for a parameterization for
texture-mapping, remeshing, morphing or geometry imaging. Many piecewise
linear parameterization algorithms [BITTIRITO] were proposed. Generally the
first step for parameterization is mapping boundary vertices to a fixed position.
Usually the boundary is mapped to a square, a circle, or any convex shape
while respecting the 3D-to-2D length ratio between adjacent boundary vertices.
The positions of the interior vertices in the parameter space are then found
by solving a linear system. The linear system is generated with coefficients in a
convex combination of 1-ring neighbors for each interior vertex. These coefficients
characterize geometric properties such as angle and/or area preserving.

Geodesic Paths. There are several algorithms for geodesic computations on
meshes, mostly based on shortest paths [I3I1I[7] and have been used for remeshing
and parameterization [20/T4]. However, still special processing for triangles with
obtuse angles is required. A detailed overview of this approach can be seen in [12].

Another approach is to compute the straightest geodesic path. Polthier and
Schmies first introduced an algorithm for the straightest geodesic path on a
mesh [I5]. Their straightest geodesic path is uniquely defined with the initial
condition i.e., a source vertex and direction but not with boundary conditions
i.e., a source and a destination. A parameterization by straightest geodesics was
first introduced in [I0]. They used locally calculated straightest geodesic dis-
tances for a piecewise linear parameterization. Our parameterization is improved
upon [I0] by presenting a new way to calculate straightest geodesics.

2 Our Parameterization by Straightest Distances

A 3D mesh parameterization provides a piecewise linear mapping between a
3D surface patch and an isomorphic 2D patch. Generally the piecewise linear



Parameterization of 3D Surface Patches by Straightest Distances 75

parameterization is accomplished as follows: for every interior vertex V; of a
mesh, a linear relation between the (u;,v;) coordinates of this point and the
(uj,v) coordinates of its 1-ring neighbors {V;};car@), is set of the form:

Z aij(Uj - Uz) =0 (1)

JEN (i)

where U; = (u;,v;) are the coordinates of vertex V; in the parameter space,
and a;; are the non-negative coeflicients of matrix A. The boundary vertices are
assigned to a circle, or any convex shape while respecting the 3D-to-2D length
ratio between adjacent boundary vertices. The parameterization is then found
by solving the resulting linear system AU = B. A is sparse because each line in
the matrix A contains only a few non-zero elements (as many as the number of
its neighbors). A preconditioned bi-conjugate gradient (PBCG) method [I7] is
used to iteratively solve this sparse linear system.

As long as the boundary vertices are mapped onto a convex shape, the result-
ing mapping is guaranteed to be one-to-one. The core of this shape-preserving
parameterization is how to determine non-negative coefficients a;;. In this paper,
we propose a new algorithm to determine these coefficients.

2.1 Our Local Straightest Distances

The core of this piecewise linear parameterization is finding nonnegative coef-
ficients @;; in the equation [l Our new parameterization proposes to determine
these coefficients by using locally straightest paths and distances with local cut-
ting planes. The work by Lee et. al. [I0] uses local straightest geodesics by
Polthier and Schmies’s [I5] for these coefficients, however the tangents of the
straightest geodesics by this previous method are determined by gaussian cur-
vatures at vertices and may not be intuitively straightest especially when the
gaussian curvature is not equal to 27. In Figure ] V, is determined by having
the same left and right angle at V; by [10], while Vj,, is determined intuitively
straightest by our local cutting plane.

Our new method for local straightest paths and distances is determined as
follows. As shown in Figure[2] a base plane B is created locally at each interior
vertex. To preserve shape better, the normal Normalp of the base planeB is
calculated by area-weighted averaging of neighboring face normals of V; as shown
in equation 2l and normalized later.

Normalpg = Z w; Normal; (2)
JEN()

In this way, we found that the distortion is lower than a simple averaged
normal of neighboring faces. A local cutting plane P passing with V;, V; is also
calculated. Two planes intersect in a line as long as they are not parallel. Our
cutting plane P pierces a neighboring face (for example j-th neighboring face)
on the mesh. Therefore there is a line segment which is the straightest path by
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Fig.2. Our new local straightest path: For each interior vertex V;, a local base B
and a cutting plane P with Vi, Vj is created. A local straightest path is computed by
cutting the face V; Vi Vi with P. The intersection Vs is computed on the edge Vi, Vi and
connected to V; to form a local straightest path. V,, is determined by the Polthier and

Schimes’s [15] and Vo, is determined by our new method.
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Fig. 3. Results by our new parameterization: models are Nefertiti, Face, Venus, Man,
Mountain from the left to the right

our method. There may be multiple line intersections where the plane P may
pierce multiple neighboring faces. As a future work, we will explore how to select

a line segment.
A local straightest path is computed by intersecting the face V; Vi V; and the

cutting plane P. The tangent a for this intersecting line segment V;V}, can be
easily calculated from the normal Normal; of the face V;V;V; and the normal

Normal), of the cutting plane P as follows:

a = Normal; X Normal, (3)

Then, the intersection vertex V;, is computed on the edge V;V; and connected
to V; for the local straightest path V;V;Vj.. Finally barycentric coordinates for
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the weights of V;, Vi, V; are computed, summed, normalized and then used to
fill up the matrix A. Figure Bl shows the results of our new parameterization.

2.2 Discussion

Floater’s [5] is considered as the widely used parameterization and LTD’s [10]
also used a straightest geodesic path algorithm by [I5]. Therefore we compare
our method to the two existing parameterizations.

The visual results achieved by our new parameterization are shown in
Figure Bl The distortion with the texture-stretch metric in [19] is also measured
and shown in Table [[l Notice that our parameterization produces competitive
results to the current leading linear parameterizations. With measured boundary
The previous algorithms and the distortion metric (L?-norm, the mean stretch
over all directions) are all implemented by us.

3 Measured Boundary for Parameterization

As shown in Figure @l (b) and (c), and the 1st and 2nd figures in Figure 3] high
distortion always occurs near the boundary. To reduce this high distortion, we
attempt to derive a boundary by our straightest geodesic path algorithm.

An interior source vertex S can be specified by a user or calculated as a center
vertex of the mesh from the boundary vertices. A virtual edge is defined as an
edge between S and a vertex on the boundary. Straightest paths and distances
of virtual edges to every vertex on the boundary will be measured as follows:

1. Make virtual edges connecting from S to every boundary vertex of the mesh.

2. Map each virtual edge onto the base plane B by a polar map, which preserves
angles between virtual edges such as []. The normal of the base plane B is
calculated as previously mentioned in

3. Measure the straightest distance for each virtual edge on B from S to each
boundary vertices with corresponding cutting planes.

4. Position each boundary vertex at the corresponding distance from S on B.

5. If the resulted boundary is non-convex shaped, change it to a convex. Find
the edges having minimum angle with the consecutive edge (i.e., concaved
part of the boundary) and move the boundary vertex to form a convex.

In the linear system AU = B, the boundary vertices in B is simply set to the
measured position (u;, v;) and (0, 0) for inner vertices. Then PBCG as mentioned
in[2is used to find positions in the parameterized space.

Figure[ (d) and (e) clearly shows the utility of our straightest geodesic paths
with the simple models Testplane on the top and Testplane2 on the bottom.
With a circular boundary, previous parameterizations [BII0] produce the same
results in (b) for two different models. In (c), there is also a high distortion in
the texture-mapping by using (b). Our straightest path algorithm contributes to
deriving two distinct measured boundaries and results in very low distortion in
(d) and much better texture-mapping in (e).
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(a) Models (b) Circular (c) Textured  (d) Measured  (e) Textured
boundary by (b) boundary by (d)

Fig. 4. Comparisons between parameterizations with a fixed boundary and a mea-
sured boundary by our new method: With a circular boundary, previous parameteri-
zations [BII0] produce the same results in (b) for two different models in (a). Notice
in (c) that there are a lot of distortion in the texture-mapping by the results in (b).
Our straightest path algorithm contributes to creating a measured boundary to reduce
distortion by distinct results in (d) and much better texture-mapping in (e).

T
A

Fig.5. Results by our new parameterization with different boundaries. Models are
Face in the two left and Venus on the two right columns. The tip of the nose on each
model is chosen as S.

Results with more complex models are demonstrated in Figure Bl Notice that
there is always a high level of distortion near the fixed boundary but a low level
of distortion near the measured boundary by using our method. The straightest
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distances to the boundary vertices are actually dependent on the selection on the
source vertex S. We simply use a vertex centered on the mesh from the boundary
as for the source S. As a future work, we will explore how to select the vertex S.

4 Results

The visual results by our method are shown in Figure[ll Bl and Bl The statistical
results comparing our parameterization with other methods are listed in Table[Il
Notice that visually and statistically our methods produce competitive results
than the previous methods.

Table 1. Comparisons of distortion measured by the texture stretch metric [I9]: The
boundary is fixed to a circle. Combined with measured boundaries by our straightest
path algorithm, our new parameterization in the 6th column produces better results
than the current leading methods.

Models No. of Floater’s [5] LTD’s [I0] Our Param. Our Param.

Vertices fixed bound. fixed bound. fixed bound. measured bound.
Nefertiti 299 1.165 1.165 1.164 1.146
Man 1208 1.244 1.241 1.240 1.226
Face 1547 1.223 1.222 1.221 1.334
Venus 2024 2.159 2.162 2.168 1.263
Mountain 2500 1.519 1.552 1.550 1.119

The performance complexity of our algorithm is all linear to the number of
vertices, i.e., O(V'). The longest processing time among our models in Table[] is
0.53 sec, required for the Mountain having the highest number of vertices. The
processing time is measured on a laptop with a Pentium M 2.0GHz 1GB RAM.

5 Conclusion and Future Work

In this paper, we introduce a new linear parameterization by locally straightest
distances. We also demonstrate the utility of our straightest path algorithm to
derive a measured boundary for parameterizations with better results.

Future work will extend the utility of our straightest path algorithm by ap-
plying it to other mesh processing techniques such as remeshing, subdivision, or
simplification.
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