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Abstract. Efficient and robust nonlinear solvers, based on Variable Re-
laxation, is developed to solve nonlinear anisotropic thermal conduction
arising from fusion plasma simulations. By adding first and/or second
order time derivatives to the system, this type of methods advances cor-
responding time-dependent nonlinear systems to steady state, which is
the solution to be sought. In this process, only the stiffness matrix itself
is involved so that the numerical complexity and errors can be greatly
reduced. In fact, this work is an extension of implementing efficient linear
solvers for fusion simulation on Cray X1E.

Two schemes are derived in this work, first and second order Vari-
able Relaxations. Four factors are observed to be critical for efficiency
and preservation of solution’s symmetric structure arising from periodic
boundary condition: mesh scales, initialization, variable time step, and
nonlinear stiffness matrix computation. First finer mesh scale should be
taken in strong transport direction; Next the system is carefully initial-
ized by the solution with linear conductivity; Third, time step and re-
laxation factor are vertex-based varied and optimized at each time step;
Finally, the nonlinear stiffness matrix is updated by just scaling corre-
sponding linear one with the vector generated from nonlinear thermal
conductivity.

1 Introduction

In plasma physics modeling[1], the steady state of nonlinear anisotropic thermal
conduction can be modeled by the following nonlinear elliptic equation

∂
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(κx

∂T

∂x
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∂y
(κy

∂T
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) = s (1)

on a 2D rectangular domain ABCD: [0, Lx]×[0, Ly] with four vertexes at A(0, 0),
B(0, Lx), C(Lx, Ly), and D(0, Ly). Lx < Ly. The coordinate is given in Cartesian
(x, y) system. The magnetic field is directed in the y direction, and accordingly
we can set κx = 1 and κy as an nonlinear function of the temperature T , parallel
to magnetic field line. Therefore we can omit κx and denote κy by κ‖ to make
its meaning more clear. The periodic boundary condition is set on edges AD and
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BC, and Dirichlet boundary conditions are set on edges AB and CD. This setup
allows us to separate the effects of grid misalignment from the boundary effects.
The upper boundary, CD, represent the material surface where the temperature
is low, and the boundary condition there is TCD = 1. At the lower boundary,
AB, the inflow boundary condition is TAB(x) = 10 + 40e(−|x−Lx/2|).

Finite element discretization[2] generates the following nonlinear system

(Sxx + Syy(T ))T = Ms. (2)

M is the mass matrix. Sxx and Syy(T ) are the stiffness matrices contributed
by operator ∂2T

∂x2 and ∂
∂y (κ‖ ∂T

∂y ), respectively. T is the temperature profile to
be solved. When κ‖ is linear, Syy(T ) reduced to κ‖Syy. Newton-Krylov method
can be used to solve system (2). But usually it is quite expensive to update
Jacobian at each iteration. Although the Jacobian-free variation[3][4] is more
efficient, information of the Jacobian is still needed to form the preconditioner
and preconditioning is expensive.

In this work we present an alternative way, Variable Relaxation[5], to solve the
nonlinear system (1). This is a class of iterative methods which solve the elliptic
equations by adding first and/or second order time derivative terms to eq.(1)
to convert it to nonlinear parabolic or hyperbolic equation and then marching
the system to steady state. In this marching process, only the nonlinear stiffness
matrix Syy(T ) itself is involved and needs to be updated regularly.

We have been using this type of idea on Cray X1E to design efficient linear
elliptic solvers for M3D code[6]. Although It takes longer to converge, each it-
eration is much cheaper than other iterative solvers[7] so that it still wins on
vector architecture machines.

The nonlinear iteration can be completed in two steps:

Step 1: solve eq.(1) with linear conductivity 100 ≤ κ‖ ≤ 109.
Step 2: solve eq.(1) with nonlinear conductivity κ‖ = T 5/2.

The solution from ”Step 1” is used as an initial guess for ”Step 2”. Experi-
ments will show that this is a very powerful strategy to accelerate convergence.
We will also demonstrate how to choose artificial time step from CFL condi-
tion and relaxation factor from dispersion relation to achieve optimization. An
efficient way to generate the stiffness matrix is also to be discussed in order to
preserve the symmetry structure of the solution as a result of periodic boundary
condition.

2 First Order Relaxation and Numerical Schemes

The so called first order relaxation is obtained by adding a first order time
derivative term to eq. (1)
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Discretizing it in temporal direction by finite difference and spatial directions as
in system (2), we have

(
1
δt

M − θSnon)T k+1 = [
1
δt

M + (1 − θ)Snon)]T k − Ms. (4)

0 ≤ θ ≤ 1. When θ = 0, the system is fully explicit; when θ = 1, the system
is fully implicit; when θ = 1

2 , the system is stable and has smallest truncation
error as well. Snon = Sxx + Syy(T ). δt is the artificial time step which should be
chosen to be small enough to make the scheme stable and big enough to allow
the system approach steady state quickly. According to CFL condition, δt is
related to mesh scales δx in x direction and δy in y direction by

δt =
1
2

1
1
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=
δxδy

4
2
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4
δ̄t. (5)

Obviously, when κ‖ = 1, δ̄t is symmetric in (δx, δy) and gets maximized at
δx = δy. More can be derived if we different δ̄t with respect to δx and δy
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When κ‖ > 1, most likely we will have ∂δ̄t
∂δx < 0 and ∂δ̄t

∂δy > 0. This suggests that
δx should be taken as large as possible, while δy as small as possible.

The convergence of scheme (4) can be analyzed in the following way. Given
the form of transient solution of eq.(3) as ũ = e−γt sin mπx

Lx
sin nπy

Ly
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y
). m and n are the mode

numbers in x and y directions, respectively. Then the decaying rate is −λ11 and
the corresponding decaying time can be found by
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.

The number of iterations needed for convergence can be predicted by
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When κ‖ → ∞
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(NxNy) is the number of unknowns. After some experiments, we found the opti-
mized coefficient should be c = 0.64 for the problem we are studying. Also from
the following expression we found the number of iterations increases as κ‖ gets
larger

dNits

dκ‖
=

2
π2

(N2
y − N2

x)

(Ly

Lx
+ κ‖ Lx

Ly
)2

> 0

as long as δy ≤ δx.

3 Second Order Relaxation and Numerical Schemes

Besides the addition of the first order derivative term in eq. (3), the second order
relaxation is obtained by adding a relaxation factor, τ , and a second order time
derivative term to eq. (1)
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Again it can be discretized and rearranged as

[(1 + δt
τ )M − θSnon]T k+1 =

−(1 − δt
τ )MT k−1 + [2M + δt2(1 − θ)Snon]T k − δt2Ms.

(7)

The CFL condition can be expressed as δt2( 1
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The relaxation factor can be found again by looking for the transient solution
of eq.(6). The decay rates satisfy γ2 − 2

τ γ + λmn = 0, or γ = 1
τ ± ( 1

τ2 − λmn)1/2.

For optimal damping, we choose τ2 = 1
λ11 = 1/[(
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and the number of iterations for convergence can be predicted by
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Experiments show that the optimal coefficient would be c = 0.6. The number
of iteration increases as the conductivity κ‖ increases. This can be understood
from the following expression.

dNits

dκ‖
=

1
π

√
3N2

y + κ‖N2
y −

√
3N2

x + κ‖N2
y

3 + κ‖
> 0.

4 Variable Relaxations

When κ‖ is an nonlinear function of T , κ‖ changes as T k
ij changes at every vertex

ij and every time step k. Therefore, time step and relaxation factor changes as
well. This is why the name ”Variable” is given. From now on, schemes (4) is
called VR(4), scheme (7) is called VR(7), and κ‖ is rewritten as κk

ij in nonlinear
case. From the analysis given in the previous two sections, we have
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ij
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Ly

(12)

for VR(7).

5 Numerical Issues

In practical application due to nonuniform meshes and nonlinearity of the prob-
lem, δt and the damping factor τ are modified by scaling factors tscale and τscale.
The optimal δt and τ in both cases can be found by tuning these two parameters.
This is summarized in the following table:

VR(4) for linear problem VR(7) for linear problem

δt = δxδy
4
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δx +κ‖
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VR(4) for nonlinear problem VR(7) for nonlinear problem
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δxδy
4 is the stability criterion for VR(4) when κ‖ = 1. 2
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is the extra term when κ‖ is

larger than one or nonlinear.
δx and δy are chosen based on the guidelines discussed in the previous sections

so that as an example we have Nx = (16 − 1) ∗ 2 + 1 is 3 times less than
Ny = (51−1)∗ 2+1. Nx and Ny are the number of corresponding grid points in
x and y directions. In this case VR(4) converged in 29708 number of iterations
at optimal tscale = 0.174; while VR(7) converged in 1308 number of iterations
at optimal tscale = 0.41, τscale = 0.87. From here we can say that VR(7) is more
than 20 times faster than VR(4). Hence from now on we will only use VR(7).
Although iteration numbers seems to be large, each iteration is very cheap even
compared to JFNK which requires preconditioning.

Next let’s study the impact of initializing on convergence. As mentioned be-
fore, the nonlinear process can be initialized by the solution from the linear
system with constant κ‖. Given the linear solution with different size of κ‖, the
number of iterations for the nonlinear system to reach steady state is given in
the following table. We found as long as the linear solution has κ‖ ≥ 2, the non-
linear convergence doesn’t have much difference. It only diverges when a guess
has κ‖ = 1.

κ‖ 1 2 3 4 5 6 7,8,9,101 ∼ 109

Nits diverge 1313 1310 1309 1309 1309 1308

The marching process is even accelerated by varying δt and τ at each vertex
ij and every time step k. We found the iteration won’t even converge if uniform
δt and τ are used.

Finally we give an efficient approach to update the nonlinear stiffness matrix
Syy(T ) at each time step. The numerical integration has to be carefully chosen in
order to keep the symmetric structure as a result of periodic boundary condition.
Generally

Syy(T ) = −
∫ ∫

κ‖
∂Ni

∂y

∂Nj

∂y
dσ

where Ni and Nj are the ith and jth base functions in finite element space.
On each triangle, assuming n is the index running through all of the collocation
points, then one way to formulate Syy(T ) at kth time step would be

Sij
yy(T ) =

∑
n

w(n)κk(n)
∂Ni

∂y
(n)

∂Nj

∂y
(n)J(n)
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where w(n), κk(n), and J(n) are the corresponding weight, conductivity, and
Jacobian at nth point. ∂Ni

∂y (n) and ∂Nj

∂y (n) are also valued at these points as
well. As a function of T , κk(n) can be found by

∑
l

(T k
l )5/2Nl(n) or

∑
l

[T k
l Nl(n)]5/2

where l is the index running through all of the vertexes on each triangle. But
experiments show that the symmetric structure is destroyed by the above two
formulations. Then we worked out the following formula

Sij
yy(T ) = κk

ij

∑
n

wn
∂Ni

∂y
(n)

∂Nj

∂y
(n)J(n)

which leads to

Snon = Sxx + BkSyy

where Bk is a vector with component Bij = κk
ij at each vertex given by ij.

Therefore, we conclude that the nonlinear stiffness matrix Syy can be updated
by just scaling the linear stiffness matrix Syy using nonlinear vector B. This
approach not only saves computation complexity, but also preserves the sym-
metric structure of the periodic solution. The nonlinear solution is shown in Fig.
1 again in (x, y) coordinate system. The linear initial guess with κ‖ = 2 × 104

given in the left plot is applied.
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Fig. 1. Nonlinear solution at Nx=31, Ny=101, tscale = 0.41, τscale = 0.87. VR(7) is
stable when tscale ≤ 0.41 ; VR(4) is stable when tscale ≤ 0.174.
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6 Conclusions

As an extension of developing efficient linear elliptic solvers for fusion simulation
on Cray X1E, nonlinear solver, based on Variable Relaxation, is constructed by
by adding first and/or second order time derivative to the nonlinear elliptic equa-
tion and marching the resulting time-dependent PDEs to steady state. Instead
of Jacobian, Only the stiffness matrix itself is involved and needs to be updated
at each iteration.

Two schemes has been given, first and second order Variable Relaxations. four
numerical issues has been fully discussed: The mesh scale ratio, nonlinear process
initialization, variable time step and relaxation factor, efficient calculation of the
nonlinear stiffness matrix. In summary, the mesh needs to be finer in direction
with strong conductivity; convergence can be sped up by using the solution
from corresponding linear system as an initial guess; time step and relaxation
factor has to be varied at each grid point and every time step as well; only
the nonlinear vector, used to update the nonlinear stiffness matrix, needs to be
updated regularly. Therefore, the only computation consists of renewing δtkij ,
τk
ij , and Bk at each iteration, and apparently these approaches give an efficient

and robust algorithm to solve nonlinear systems.
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