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Abstract. Optimization of the mesh quality of surface triangulation is
critical for advanced numerical simulations and is challenging under the
constraints of error minimization and density control. We derive a new
method for optimizing surface triangulation by minimizing its discrep-
ancy from a virtual reference mesh. Our method is as easy to implement
as Laplacian smoothing, and owing to its variational formulation it de-
livers results as competitive as the optimization-based methods. In ad-
dition, our method minimizes geometric errors when redistributing the
vertices using a principle component analysis without requiring a CAD
model or an explicit high-order reconstruction of the surface. Experimen-
tal results demonstrate the effectiveness of our method.
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1 Introduction

Improving surface mesh quality is important for many advanced 3-D numerical
simulations. An example application is the moving boundary problems where
the surfaces evolve over time and must be adapted for better numerical stability,
accuracy, and efficiency while preserving the geometry. Frequently, the geometry
of the evolving surface is unknown a priori but is part of the numerical solution,
so the surface is only given by a triangulation without the availability of a CAD
model. The quality of the mesh can be improved by mesh adaptation using edge
flipping, edge collapsing, or edge splitting (see e.g. [II2IBI4I5]), but it is often
desirable to fix the connectivity and only redistribute the vertices, such as in
the arbitrary Lagrangian-Eulerian methods [6]. In this paper, we focus on mesh
optimization (a.k.a. mesh smoothing) with fixed connectivity.

Mesh smoothing has a vast amount of literature (for example, see [TISIQITOITT]).
Laplacian smoothing is often used in practice for its simplicity, although it is not
very effective for irregular meshes. The more sophisticated methods are often opti-
mization based. An example is the angle-based method of Zhou and Shimada [I1].
Another notable example is the method of Garimella et al. [7], which minimizes the
condition numbers of the Jacobian of the triangles against some reference Jacobian
matrices (RJM). More recently, the finite-element-based method is used in [§], but

Y. Shi et al. (Eds.): ICCS 2007, Part I, LNCS 4487, pp. 334£341] 2007.
© Springer-Verlag Berlin Heidelberg 2007



Optimizing Surface Triangulation 335

their method is relatively difficult to implement. Note that some mesh smooth-
ing methods (such as the angle-based method) are designed for two-dimensional
meshes, and the conventional wisdom is to first parameterize the surface locally or
globally and then optimize the flattened mesh [2JT2IT3IT4]. To preserve the geom-
etry, these methods typically require a smooth or discrete CAD model and as-
sociated point location procedures to project the points onto the surface, which
increase the implementation complexity.

The goal of this paper is to develop a mesh smoothing method that is as
simple as Laplacian smoothing while being as effective as the sophisticated
optimization-based methods without parameterizing the mesh. The novelty of
our method is to formulate the problem as a near isometic mapping from an
ideal reference mesh onto the surface and to derive a simple iterative procedure
to solve the problem. Due to its variational nature, the method can balance
angle optimization and density control. It also eliminates the needs of the pre-
processing step of surface parameterization and the post-processing step of vertex
projection, so it is much easier to implement and is well-suited for integration
into numerical simulations.

The remainder of the paper is organized as follows. In Section 2 we formu-
late the mesh optimization problem and explain its relationship to isometric
mappings. In Section [B we describe a simple discretization of our method for
triangulated surfaces with adaptive step-size control. In Section H] we present
some experimental results. Section [ concludes the paper with discussions of
future research directions.

2 Mesh Optimization and Isometric Mappings

Given a mesh with a set of vertices and triangles, the problem of mesh opti-
mization is to redistribute the vertices so that the shapes of the triangles are
improved in terms of angles and sizes. Surface parameterization is the procedure
to map the points on one surface onto a parameter domain (such as a plane or
sphere) under certain constraints such as preservation of areas or angles [I5].
Although surface parameterization has been widely used in computer graphics
and visualization [T6IT7UT8ITIN2002T], in this section we explore an interesting
connection between it and mesh optimization.

More formally, given a 2-manifold surface M C R? and a parameter domain
2 C R2, the problem of surface parameterization is to find a mapping f : 2 — M
such that f is one-to-one and onto. Typically, the surface M is a triangulated
surface, with a set of vertices P; € R?® and triangles TU) = (Pj1,Pj2, Pj3). The
problem of isometric parameterization (or mapping) is to find the values of p,
such that f(p;) = P;, the triangles t&) = (Pj1,Pj2,P;3) do not overlap in (2,
and the angles and the areas of the triangles are preserved as much as possible.

We observe that the constraints of angle and area preservation in isomet-
ric parameterization are similar to angle optimization and density control in
mesh optimization, except that the requirement of 2 C R? is overly restrictive.
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,1 M

Reference triangle

Fig. 1. Atomic mapping from triangle on M; to triangle on Mo

However, by replacing {2 with the input surface and replacing M by a “virtual”
reference mesh with desired mesh quality and density (for example be composed
of equilateral triangles of user-specified sizes, where the triangles need not fit
together geometrically and hence we refer to it as a “virtual” mesh), we can
then effectively use isometric parameterization as a computational framework
for mesh optimization, which we describe as follows.

Let M; denote an ideal virtual reference mesh and Ms the triangulated surface
to be optimized. Let us first assume that M, is a planar surface with a global
parameterization &, and we will generalize the framework to curved surfaces in
the next section. In this context, the problem can be considered as reparame-
terizing M, based on the triangles and the metrics of M;. Consider an atomic
linear mapping ¢ = fo o f1~! from a triangle on M; onto a corresponding tri-
angle on My, as shown in Figure[Il where f1 and fy are both mappings from a
reference triangle. Let J; and J9 denote their Jacobian matrices with respect
to the reference triangle. The Jacobian matrix of the mapping ¢ is A = J2J;1
For g to be nearly isometric, A must be close to be orthogonal. We measure
the deviation of A from orthogonality using two energies: angle distortion and
area distortion. Angle distortion depends on the condition number of the matrix
A in 2-norm, i.e., ka(A) = ||Al]2]|A7Y||2. Area distortion can be measured by
det(A) = det(J2)/ det(J1), which is equal to 1 if the mapping is area preserving.

Let us define a function

sP+s7P ifs>0
() = { oo otherwise, (1)

where p > 0, so 7, is minimized if s = 1 and approaches oo if s < 0 or s — oo.
To combine the angle- and area-distortion measures, we use the energy

Ei(T, pa) = (1 — py)m1(k2(A)) + pat; (det(A)), (2)

where 4 is between 0 and 1 and indicates the relative importance of area
preservations versus angle preservation. For feasible parameterizations, E; is fi-
nite because det(A) > 0 and k2(A) > 1. To obtain a nearly isometric mapping,
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we must find &, = g(x;) for each vertex x; € M; to minimize the sum of Ej over
all triangles on My, i.e.,

Er(My,pa) = Z Er(T, pa). (3)
TeM;y
We refer to this minimization as nearly isometric parameterization of surfaces
(NIPS), which balances the preservation of angles and areas. This formulation
shares similarity with that of Degener et al. for surface parameterization [12],
who also considered both area and angle distortions but used a different energy.
Note that the special case with ys4 = 0 would reduce to the most isometric
parameterization (MIPS) of Hormann and Griener [18] and is closely related to
the condition-number-based optimization in [7].
The direct minimization of E; may seem difficult because of the presence
of ka(A). However, by using a result from [22] regarding the computation of
Dirichlet energy Ep(g) = trace(A” A) det(J;)/4 as well as the fact that

trace(AT A) _ 4Ep(yg)

T1(k2(A)) = kp(A) = det(A)  det(Jy)’

(4)
one can show that

1 (k2(A)) Zcot o[ 12, (5)

det

where a; and l; = §;_ — £, are defined as in Figure[] and i— and i+ denote
the predecessor and successor of 4 in the triangle.

To minimize E, we must evaluate its gradient with respect to §;. For a triangle
T, let liL = n x l; denote the 90° counter-clockwise rotation of the vector I; on
M. It can be verified that

OE(M, p14) @) _ )6) 4 ) ;)L
0, = Z (szi Ly — sV + 171 )a (6)
i€T()
where
2 cot av K 1 det(Jq) — det(J
4= (1—IU,A) + and tz — (1—/]/14) F ( 1) ( 2) . (7)

det(J>) det(J2) " 2" det(J1)% det(J)?

Equation (@) is a simple weighted sum of its incident edges and 90° counter-
clockwise rotation of opposite edges over all its incident triangles 77,

3 Mesh Optimization for Curved Surfaces

From Egs. (@) and (), it is obvious that 0F;/0&; does not depend on the
underlying parameterization &, of My, so it becomes straightforward to evaluate
it directly on a curved surface. In particular, at each vertex ¢ on My, let V; =
(/t\l |/t\2)3X2 denote the matrix composed of the unit tangents of My at the point.
To reduce error, we constrain the point to move within the tangent space of
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M> so that the displacements would be V;u;, where u; € R?. Because of the
linearity, from the chain rule we then have
OEr(My,pa) T
=V; Z ( i+ Vit

o WY -0 PP,

€T

where I; € R? as defined earlier. This equation constrains the search direction
within the local tangent space at vertex ¢ without having to project its neigh-
borhood onto a plane.

We estimate the tangent space as in [23]. In particular, at each vertex v,
suppose v is the origin of a local coordinate frame, and m is the number of the
faces incident on v. Let IN be an 3 X m matrix whose ith column vector is the
unit outward normal to the ith incident face of v, and W be an m x m diagonal
matrix with W;; equal to the face area associated with the ith face. Let A denote
NWNT, which we refer to as the normal covariance matriz. A is symmetric
positive semi-definite with real eigenvalues. We use the vector space spanned
by the eigenvectors corresponding to the two smaller eigenvalues of A as the
tangent space. If the surface contains ridges or corners, we restrict the tangent
space to contain only the eigenvector corresponding to the smallest eigenvalues
of A at ridge vertices and make the tangent space empty at corners.

To solve the variational problem, one could use a Gauss-Seidel style iteration
to move the vertices. This approach was taken in some parameterization and
mesh optimization algorithms [3[7]. For simplicity, we use a simple nonlinear
Jacobi iteration, which moves vertex ¢ by a displacement of

Sierar (1) = sV 440

di=-VV{ 0, )
D ieTw) (Szi + Sii>

9)

This Jacobi-style iteration may converge slower but it can be more efficient than
the Gauss-Seidel style iteration, as it eliminates the need of reestimating the
tangent spaces at the neighbor vertices of v after moving a vertex v.

The concurrent motion of the vertices in the Jacobi-style iterations may lead
to mesh folding. To address this problem, we introduce an asynchronous step-size
control. For each triangle p;p;pj,, we solve for the maximum a < 1 such that

the triangle pga)p;a)p;a) does not fold, where pga) = p, + ad; [23]. We reduce
d; at vertex i by a factor equal to the minimum of the as of its incident faces.
After rescaling the displacement of all the vertices, we recompute o and repeat

the rescaling process until o = 1 for all vertices.

4 Experimental Results

In this section, we present some preliminary results using our method for static
2-D meshes and dynamic 3-D meshes.
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Table 1. Comparative results of optimizing 2-D meshes. CN-based is our method with
ua =0 and CNEA-based with g4 = 1. Symbol ‘-’ indicates mesh folding.

Minimum angle Maximum angle
Ul U2 U3 R1 R2 R3 Ul U2 U3 Rl R2 R3
Original  12.0 8.8 8.5 0.11 1.1 0.043 129.5 156.9 147.5 179.7 176.9 179.9
Laplacian  33.1 31.4 30.8 5.8 4.9 4.5 99.4 105.9 109.2 168.3 170.8 171.0
Angle-based 32.9 30.9 29.5 3.9 - - 96.0 103.7 105.9 170.3 - -
CN-based 36.0 36.1 34.6 12.6 8.9 10.3 96.8 100.1 105.6 153.2 157.3 156.2
CNEA-based 35.7 35.3 34.2 12.7 7.8 89 97.0 101.3 105.8 153.9 163.4 160.6
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Fig. 2. Sample meshes (a,c) before and (b,d) after mesh optimization

4.1 Optimization of 2-D Meshes

We first compare the effectiveness of our method against the length-weighted
Laplacian smoothing and the angle-based method of Zhou and Shimada [IT].
Because these existing methods are better established for planar meshes, we
perform our comparisons in 2-D. Table [Ilshows the minimum and maximum an-
gles of six different meshes before and after mesh optimization, including three
relatively uniform meshes (denoted by Ul, U2, and U3) and three meshes with
random points (denoted by R1, R2, and R3). In our methods, we consider the
virtual reference mesh to be composed of equilateral triangles with the average
area of the triangles. Figure 2 shows the original and the optimized meshes using
our method with g4 = 1 for Ul and R1. In nearly all cases, the condition-number
based method (i.e., 4 = 0) performs substantially better in minimum angles for
all cases, comparative or slightly better in maximum angles for uniform meshes,
and significantly better in maximum angles for the random meshes. The area-
equalizing optimization delivers slightly worse angles than condition-number
based optimization, but the former still outperforms edge-weighted Laplacian
smoothing and the angle-based methods while allowing better control of areas.

4.2 Optimization of Dynamic Meshes

In this test, we optimize a mesh that is deformed by a velocity field. Our test
mesh discretizes a sphere with radius 0.15 centered at (0.5,0.75,0.5) and contains
5832 vertices and 11660 triangles. The velocity field is given by
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Fig. 3. Example of optimized dynamic surfaces. Colors indicate triangle areas.

u(z,y, z) = cos(rt/T) sin?(mz)(sin(27z) — sin(27y)),
y(x,y, z) = cos(nt/T) sin?(ry) (sin(27z) — sin(272)),
2(x,y, z) = cos(rt/T) sin?(rz)(sin(27y) — sin(27z)), (10)

where T = 3, so that the shape is deformed the most at time ¢ = 1.5 and
should return to the original shape at time ¢ = 3. We integrate the motion of the
interface using the face-offsetting method in [23] while redistributing the vertices
using the initial mesh as the reference mesh. In this test the angles and areas of
the triangles were well preserved even after very large deformation. Furthermore,
the vertex redistribution introduced very small errors and the surface was able
to return to a nearly perfect sphere at time ¢ = 3.

5 Conclusion

In this paper, we proposed a new method for optimizing surface meshes using a
near isometry with reference meshes. We derived a simple discretization, which is
easy to implement and is well suitable for integration into large-scale numerical
simulations. We compared our method with some existing methods, showed sub-
stantial improvements in the maximum and minimum angles, and demonstrated
its effective use for moving meshes. As a future direction, we plan to extend our
method to optimize quadrilateral meshes and 3-D volume meshes.
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