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Abstract. This paper investigates the application of the Red-Black
Half-Sweep Gauss-Seidel (HSGS-RB) method by using the half-sweep
triangle finite element approximation equation based on the Galerkin
scheme to solve two-dimensional Poisson equations. Formulations of the
full-sweep and half-sweep triangle finite element approaches in using this
scheme are also derived. Some numerical experiments are conducted to
show that the HSGS-RB method is superior to the Full-Sweep method.
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1 Introduction

By using the finite element method, many weighted residual schemes can be used
by researchers to gain approximate solutions such as the subdomain, collocation,
least-square, moments and Galerkin (Fletcher [4,5]). In this paper, by using the
first order triangle finite element approximation equation based on the Galerkin
scheme, we apply the Half-Sweep Gauss-Seidel (HSGS) method with the Red-
Black ordering strategy for solving the two-dimensional Poisson equation.

To show the efficiency of the HSGS-RB method, let us consider the two-
dimensional Poisson equation defined as

∂2U

∂x2 +
∂2U

∂y2 = f(x, y), (x, y) ∈ D = [a, b] × [a, b] (1)

subject to the Dirichlet boundary conditions

U(x, a) = g1(x), a ≤ x ≤ b
U(x, b) = g2(x), a ≤ x ≤ b
U(a, y) = g3(y), a ≤ y ≤ b
U(b, y) = g4(y), a ≤ y ≤ b
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a) b)

Fig. 1. a) and b) show the distribution of uniform node points for the full- and half-
sweep cases respectively at n = 7

To facilitate in formulating the full-sweep and half-sweep linear finite element
approximation equations for problem (1), we shall restrict our discussion onto
uniform node points only as shown in Figure 1. Based on the figure, it has been
shown that the solution domain, D is discretized uniformly in both x and y
directions with a mesh size, h which is defined as

h =
b − a

m
, m = n + 1 (2)

Based on Figure 1, we need to build the networks of triangle finite elements in
order to facilitate us to derive triangle finite element approximation equations
for problem (1). By using the same concept of the half-sweep iterative applied
to the finite difference method (Abdullah [1], Sulaiman et al. [13], Othman &
Abdullah [8]), each triangle element will involves three node points only of type
• as shown in Figure 2. Therefore, the implementation of the full-sweep and half-
sweep iterative algorithms will be applied onto the node points of the same type
until the iterative convergence test is met. Then other approximate solutions at
remaining points (points of the different type) are computed directly (Abdullah
[1], Abdullah & Ali [2], Ibrahim & Abdullah [6], Sulaiman et al. [13,14], Yousif
& Evans [17]).

2 Formulation of the Half-Sweep Finite Element
Approximation

As mentioned in the previous section, we study the application of the HSGS-RB
method by using the half-sweep linear finite element approximation equation
based on the Galerkin scheme to solve two-dimensional Poisson equations. By
considering three node points of type • only, the general approximation of the
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a) b)

Fig. 2. a) and b) show the networks of triangle elements for the full- and half-sweep
cases respectively at n = 7

function, U(x, y) in the form of interpolation function for an arbitrary triangle
element, e is given by (Fletcher [4], Lewis & Ward [7], Zienkiewicz [19])

˜U [e](x, y) = N1(x, y)U1 + N2(x, y)U2 + N3(x, y)U3 (3)

and the shape functions, Nk(x, y), k = 1, 2, 3 can generally be stated as

Nk(x, y) =
1

detA
(ak + bkx + cky), k = 1, 2, 3 (4)

where,
detA = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2),

⎡

⎣

a1
a2
a3

⎤

⎦ =

⎡

⎣

x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1

⎤

⎦ ,

⎡

⎣

a1
a2
a3

⎤

⎦ =

⎡

⎣

a1
a2
a3

⎤

⎦ ,

⎡

⎣

a1
a2
a3

⎤

⎦ =

⎡

⎣

a1
a2
a3

⎤

⎦ ,

Beside this, the first order partial derivatives of the shape functions towards x
and y are given respectively as

∂
∂x (Nk(x, y)) = bk

det A
∂
∂y (Nk(x, y)) = ck

detA

}

k = 1, 2, 3 (5)

Again based on the distribution of the hat function, Rr,s(x, y) in the solution
domain, the approximation of the functions, U(x, y) and f(x, y) in case of the
full-sweep and half-sweep cases for the entire domain will be defined respectively
as (Vichnevetsky [16])

˜U(x, y) =
m

∑

r=0

m
∑

s=0

Rr,s(x, y)Ur,s (6)

˜f(x, y) =
m

∑

r=0

m
∑

s=0

Rr,s(x, y)fr,s (7)

and

˜U(x, y) =
m

∑

r=0,2,4

m
∑

s=0,2,4

Rr,s(x, y)Ur,s +
m−1
∑

r=1,2,5

m−1
∑

s=1,3,5

Rr,s(x, y)Ur,s (8)
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˜f(x, y) =
m

∑

r=0,2,4

m
∑

s=0,2,4

Rr,s(x, y)fr,s +
m−1
∑

r=1,3,5

m−1
∑

s=1,3,5

Rr,s(x, y)fr,s (9)

Thus, Eqs. (6) and (8) are approximate solutions for problem (1).
To construct the full-sweep and half-sweep linear finite element approxima-

tion equations for problem (1), this paper proposes the Galerkin finite element
scheme. Thus, let consider the Galerkin residual method (Fletcher [4,5], Lewis
& Ward [7]) be defined as

∫ ∫

D

Ri,j(x, y)E(x, y) dxdy = 0, i, j = 0, 1, 2, ..., m (10)

where, E(x, y) = ∂2U
∂x2 + ∂2U

∂y2 − f(x, y) is a residual function. By applying the
Green theorem, Eq. 10 can be shown in the following form

∮

λ

(

−Ri,j(x, y)∂U
∂y dx + Ri,j(x, y)∂U

∂x dy
)

−
∫ b

a

∫ b

a

(

∂Ri,j(x, y)
∂x

∂U

∂x
+

∂Ri,j(x, y)
∂y

∂U

∂y

)

dxdy = Fi,j

(11)

where,

Fi,j =
∫ b

a

∫ b

a

Ri,j(x, y)f(x, y) dxdy

By applying Eq. (5) and substituting the boundary conditions into problem
(1), it can be shown that Eq. (11) will generate a linear system for both cases.
Generally both linear systems can be stated as

−
∑ ∑

K∗
i,j,r,sUr,s =

∑ ∑

C∗
i,j,r,sfr,s (12)

where,

K∗
i,j,r,s =

∫ b

a

∫ b

a

(

∂Ri,j

∂x

∂Rr,s

∂x

)

dxdy +
∫ b

a

∫ b

a

(

∂Ri,j

∂y

∂Rr,s

∂y

)

dxdy

C∗
i,j,r,s =

∫ b

a

∫ b

a

(Ri,j(x, y)Rr,s(x, y)) dxdy

Practically, the linear system in Eq. (12) for the full-sweep and half-sweep cases
will be easily rewritten in the stencil form respectively as follows:

1. Full-sweep stencil ( Zienkiewicz [19], Twizell [15], Fletcher [5])
⎡

⎣

0 1 0
1 −4 1
0 1 0

⎤

⎦Ui,j =
h2

12

⎡

⎣

0 1 1
1 6 1
1 1 0

⎤

⎦ fi,j (13)
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2. Half-sweep stencil
⎡

⎣

1 0 1 0
0 −4 0 0
1 0 1 0

⎤

⎦Ui,j =
h2

6

⎡

⎣

1 0 1 0
0 5 0 1
1 0 1 0

⎤

⎦ fi,j , i = 1 (14)

⎡

⎣

0 1 0 1 0
0 0 −4 0 0
0 1 0 1 0

⎤

⎦Ui,j =
h2

6

⎡

⎣

0 1 0 1 0
1 0 6 0 1
0 1 0 1 0

⎤

⎦ fi,j , i �= 1, n (15)

⎡

⎣

0 1 0 1
0 0 −4 0
0 1 0 1

⎤

⎦Ui,j =
h2

6

⎡

⎣

0 1 0 1
1 0 5 0
0 1 0 1

⎤

⎦ fi,j , i = n (16)

The stencil forms in Eqs. (13) till (16), which are based on the first order triangle
finite element approximation equation, can be used to represent as the full-sweep
and half-sweep computational molecules.

Actually, the computational molecules involve seven node points in formu-
lating their approximation equations. However, two of its coefficients are zero.
Apart of this, the form of the computational molecules for both triangle finite
element schemes is the same compared to the existing five points finite difference
scheme, see Abdullah [1], Abdullah and Ali [2], Yousif and Evans [17].

3 Implementation of the HSGS-RB

According to previous studies on the implementation of various orderings, it
is obvious that combination of iterative schemes and ordering strategies which
have been proven can accelerate the convergence rate, see Parter [12], Evans and
Yousif [3], Zhang [18]. In this section, however, there are two ordering strategies
considered in this paper such as the lexicography (NA) and red-black (RB)
being applied to the HSGS iterative methods, called as HSGS-NA and HSGS-
RB methods respectively. In comparison, the Full-Sweep Gauss-Seidel (FSGS)
method with NA ordering, namely FSGS-NA, acts as the control of comparison
of numerical results.

It can be seen from Figure 3 by using the half-sweep triangle finite element
approximation equations in Eqs. (14) till (16), the position of numbers in the
solution domain for n = 7 shows on how both HSGS-NA and HSGS-RB methods
will be performed by starting at number 1 and ending at the last number.

4 Numerical Experiments

To study the efficiency of the HSGS-RB scheme by using the half-sweep linear
finite element approximation equation in Eqs. [14] till [16] based on the Galerkin
scheme, three items will be considered in comparison such as the number of
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a) b)

Fig. 3. a) and b) show the NA and RB ordering strategies for the half-sweep case at
n = 7

Table 1. Comparison of number of iterations, execution time (in seconds) and maxi-
mum errors for the iterative methods

Number of iterations
Mesh sizeMethods

32 64 128 256
FSGS-NA 1986 7368 27164 99433
HSGS-NA 1031 3829 14159 52020
HSGS-RB 1027 3825 14152 52008

Execution time (seconds)
Mesh sizeMethods

32 64 128 256
FSGS-NA 0.14 2.08 30.51 498.89
HSGS-NA 0.03 0.63 9.08 218.74
HSGS-RB 0.03 0.56 8.19 215.70

Maximum absolute errors
Mesh sizeMethods

32 64 128 256
FSGS-NA 1.4770e-4 3.6970e-5 9.3750e-6 2.8971e-6
HSGS-NA 5.7443e-4 1.6312e-4 4.4746e-5 1.1932e-5
HSGS-RB 5.7443e-4 1.6312e-4 4.4746e-5 1.1932e-5

iterations, execution time and maximum absolute error. Some numerical exper-
iments were conducted in solving the following 2D Poisson equation (Abdullah
[1])

∂2U

∂x2 +
∂2U

∂y2 =
(

x2 + y2) exp(xy), (x, y) ∈ D = [a, b] × [a, b] (17)
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Then boundary conditions and the exact solution of the problem (17) are defined
by

U(x, y) = exp(xy), (x, y) = [a, b] × [a, b] (18)

All results of numerical experiments, obtained from implementation of the
FSGS-NA, HSGS-NA and HSGS-RB methods, have been recorded in Table 1.
In the implementation mentioned above, the convergence criteria considered the
tolerance error, ε = 10−10.

5 Conclusion

In the previous section, it has shown that the full-sweep and half-sweep triangle
finite element approximation equations based on the Galerkin scheme can be
easily represented in Eqs. (13) till (16). Through numerical results collected in
Table 1, the findings show that number of iterations have declined approximately
47.70− 48.29% and 47.68− 48.09% correspond to the HSGS-RB and HSGS-NA
methods compared to FSGS-NA method. In fact, the execution time versus mesh
size for both HSGS-RB and HSGS-NA methods are much faster approximately
56.76 − 78.57% and 56.15 − 78.57% respectively than the FSGS-NA method.
Thus, we conclude that the HSGS-RB method is slightly better than the HSGS-
NA method. In comparison between the FSGS and HSGS methods, it is very
obvious that the HSGS method for both ordering strategies is far better than the
FSGS-NA method in terms of number of iterations and the execution time. This
is because the computational complexity of the HSGS method is nearly 50% of
the FSGS-NA method. Again, approximate solutions for the HSGS method are
in good agreement compared to the FSGS-NA method. For our future works,
we shall investigate on the use of the HSGS-RB as a smoother for the halfsweep
multigrid (Othman & Abdullah [8,9]) and the development and implementa-
tion of the Modified Explicit Group (MEG) (Othman & Abdullah [10], Othman
et al. [11])and the Quarter-Sweep Iterative Alternating Decomposition Explicit
(QSIADE) (Sulaiman et al. [14]) methods by using finite element approximation
equations.
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