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Abstract. This paper is concerned with the problem of finding a repre-
sentative sample of Pareto-optimal points in multi-objective optimization.
The Normal Boundary Intersection algorithm is a scalarization scheme for
generating a set of evenly spaced Efficient solutions. A drawback of this
algorithm is that Pareto-optimality of solutions is not guaranteed. The
contributions of this paper are two-fold. First, it presents alternate for-
mulation of this algorithms, such that (weak) Pareto-optimality of solu-
tions is guaranteed. This improvement makes these algorithm theoretically
equivalent to other classical algorithms (like weighted-sum or e-constraint
methods), without losing its ability to generate a set of evenly spaced Ef-
ficient solutions. Second, an algorithm is presented so as to know before-
hand about certain sub-problems whose solutions are not Pareto-optimal
and thus not wasting computational effort to solve them. The relationship
of the new algorithm with weighted-sum and goal programming method is
also presented.

Keywords: Multi-objective optimization, Efficient front generation,
Computationally efficient algorithm.

1 Introduction

There are usually multiple conflicting objectives in engineering problems (see for
example [BIT2IT3I3ITT]). Since the objectives are in conflict with each other there
is a set of Pareto-optimal solutions. The main goal of multi-objective optimiza-
tion is to seek Pareto-optimal solutions. Over the years there have been various
approaches toward fulfillment of this goal. Usually it is not economical to gen-
erate the entire Pareto-surface, due to the high computational cost for function
evaluations in engineering problems one aims for finding a representative sample
of Pareto-optimal points. It have been observed that convergence and diversity
are two conflicting criterion’s which are desired in any algorithm which tries to
generate the entire efficient front. There are many algorithms for generating the
Pareto-surface for general non-convex multi-objective problems. See for example
[AUTOI3] and the references therein.

Most classical generating multi-objective optimization methods use an it-
erative scalarization scheme of standard procedures such as weighted-sum or
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e-constraint method as discussed in [I0], the drawbacks of most of these ap-
proaches is that although there are results for convergence, diversity is hard to
maintain. Thus we see that systematic variation of parameters in these scalar-
ization techniques do not guarantee diversity in the solution sets as discussed
in ([1]). The Normal Boundary Intersection (NBI) algorithm [2] gave a break-
through by using scalarizing schemes that give a good diversity in the objec-
tive space. It start from equidistant points on the utopia plane (plane passing
through individual function minimizers) and then go along a certain direction.
The progress along the direction is measured by an auxiliary real variable. There
are also some other algorithms also which try to generate evenly spaced Efficient
solutions. Weck [7] developed adaptive weighted sum method for multi-objective
optimization. Messac [9] developed the Normal Constraint method for getting
even representation of the efficient frontier.

The developments in this paper are aimed at developing an improved algorithm
which like direction-based algorithms produces evenly spaced points on the Effi-
cient front and on the other hand like weighted-sum or e-constraint method does
not produce dominated points. This paper also proposes a way to jump over some
of non-convex regions in which no Pareto-optimal solution lies. This amounts to
solving a smaller number of sub-problems compared to existing methods.

The rest of the paper is structured as follows: in Section 2, the NBI algorithm
is briefly described and an improved algorithm is also presented. A method to
jump over dominated regions in non-convex cases is also presented. Section 3
discusses the relationship of the new algorithm with the weighted-sum and goal
programming method. Finally conclusions are presented in the last section.

2 NBI Algorithm: Original and a New Formulation

The NBI method was developed by Das et. al. [2] for finding a uniformly spread
Pareto-optimal solutions for a general nonlinear multi-objective optimization
problem. The weighted-sum scalarization approach has a fundamental drawback
of not being able to find a uniform spread of Pareto-optimal solutions, even if a
uniform spread of weight vectors are used. The NBI approach uses a scalarization
scheme with a property that a uniform spread in parameters will give rise to a
near uniform spread in points on the efficient frontier. Also, the method is inde-
pendent of the relative scales of different objective functions. The scalarization
scheme is briefly described below.
Let us consider the following multi-objective problem (MP):

minxegs F(x),

where S = {x|h(x)=0;9(x) <0,a <x <b}. (1)

Let F* = (f5, f5,..., f%) T be the ideal point of the multi-objective optimization
problem with m objective functions and n variables. Henceforth we shift the
origin (in objective space) to F* so that all the objective functions are non-
negative. Let the individual minimum of the functions be attained at x} for
each i = 1,2,...,m. The convex hull of the individual minima is then obtained.
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The simplex obtained by the convex hull of the individual minimum can be
expressed as @, where ¢ = (F(x7), F(x3),... F(x},)) is a m x m matrix and
B ={(b1,b2,....bm)" | i~ bi = 1}. The original study suggested a systematic
method of setting (3 vectors in order to find a uniformly distributed set of efficient
points. The NBI scalarization scheme takes a point on the simplex and then
searches for the maximum distance along the normal pointing toward the origin.

The NBI subproblem (NBlg) for a given vector [ is as follows:

maX(X7t) t,
subject to 0 + th = F(x), (2)
x € S,

where 7 is the normal direction at the point @ pointing towards the origin. The
solution of the above problem gives the maximum ¢ and also the corresponding
Pareto-optimal solution, x. The method works even when the normal direction
is not an exact one, but a quasi-normal direction. The following quasi-normal
direction vector is suggested in Das et al. [2]: 7 = —®e, where e = (1,1,...,1)T
is a m x 1 vector. The above quasi-normal direction has the property that NBlg
is independent of the relative scales of the objective functions.

The main problem with NBI method is that the solutions of the sub-problems
need not be Pareto-optimal (not even locally). This method aims at getting
boundary points rather than Pareto-optimal points. Pareto-optimal points are a
subset of boundary points. These obtained point may or may not be a Pareto-
optimal point. Figure [l shows the obtained solutions (i.e. a, b, ¢, d, e, f, g, h)
corresponding to equidistant points (i.e. A, B, C, D, E, F, G, H) on the convex
hull (i.e. line AH).

It can be seen that points d, e and f are not Pareto-optimal but are still
found using the NBI method. It is because solutions of NBI sub-problem is only
constrained to lie on a line, however for any point x*, to be Pareto-optimal, the
existence of any point in the objective space which satisfies F'(z) < F(x*) need
to be checked (since such a point dominates F'(x*)).

Using the concept of the goal attaintment approach of Gembicki [6] we for-
mulate a modified algorithm (called as mNBI) in which we solve the following
sub-problem (mNBIg) for a given vector 3 is as follows:

maX(X7t) t,
subject to @3 + th > F(x), (3)
x € S,

This change in formulation increases the feasible space so as to check for points
which dominate the points on the line. Figure[2 shows the schematics. It can be
seen that the points d, e and f which are not Pareto-optimal will not be found
using the mNBI method. Points z, ¥ and z dominate the corresponding points
d, e and f (which results in larger value of ¢) and they are thus not optimal to
mN Blg. For the optimality of mNBIz subproblems we have the following result.
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Fig. 1. Schematic showing obtained so- Fig. 2. Schematic showing obtained so-
lutions using NBI method lutions using a modified NBI method

Lemma 1. Let (t*,2*) be the optimal solution of (3) subproblem then x* is
weakly efficient.

Proof: The proof follows from [6] by using @3 and t7 as the goal vector and
direction respectively. O

Another advantage of the mNBI algorithm is that since for non-convex problems
all boundary points need not be Pareto-optimal, for some non-convex regions we
can ignore (jump over the non-efficient regions in the objective space) solving
certain sub-problems. Figure 3] shows the sketch of our proposed method to this.
Suppose we start mNBIg from the individual minima A of f; and move on the
line AB (convex hull of individual minima). When we reach point C' the optimal
solution of mNBI gives the (weakly) efficient point x. Note that the optimal
solution of the NBI subproblem would have been y. From the constraints in
mNBI subproblem we can calculate whether or not the constraints are active at
optima. For example in this case the constraints &3 + ti > F(x) are not-active
since the optima x does not lies on the line. Now since the obtained solution
x will always weakly dominate the region z + R’} (Lemma [I]). Since we know
the direction 7 (constant for all sub-problems) we an easily find the point D
on the line AB (convex hull of individual minima, in general a simplex), which
corresponds to obtained solution .

Lemma 2. Let (t*,2*) be the optimal solution of [3). Let w := & + t*n. Let
7[S] € R™~! denote the projection (in the direction ) of any surface S C R™
onto the simplex obtained by convex hull of individual minima. Then the solution
of (3) for all 3 € n[(F(x) +R7Y)((w — RY)] is not Pareto-optimal.

Proof: The proof follows by noting that = weakly dominates the region (F'(x)+
R™") and that there exist no feasible point in (w — R’") that dominates w. O
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f1

Fig. 3. Schematic showing how to avoid solving certain sub-problems whose solutions
are not Pareto-optimal

For our example, all subproblems originating from region C'D do not give Pareto-
optimal solutions and thus we can ignore them. It is to be noted that this infor-
mation is obtained before solving the sub-problems. This amounts to solving a
smaller number of sub-problems compared to existing methods. This computa-
tional gain can be of significant interest in problems where the cost of function
evaluation is high.

3 Relationship Between mNBI Subproblem and
Weighted Sum Method

Given a Pareto-optimal solution x*, let h(x) denote the augmented vector of

all constraints that are active at x*. We can think of the problem to be con-

strained only by h(x). Let w € R™, > w; = 1, denote positive weights for

the objectives. We consider the weighted linear combination problem as follows
maxx) w' F(x), ()
subject to h(x) = 0.

The problem ) will be denoted by LC,,. Part of first-order necessary KKT

conditions for optimality of (x*, \*) for LC,, is

VxF(x")w + Vxh(x")\* = 0. (5)
In a similar way, the mNBIg subproblem can be written as

min(x)t) —t,
subject to F(x) — @8 —tn <0, (6)
h(x) =0,
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Part of first-order KKT condition for optimality of (x*,t*, \(1)* X\(2)*) is

VxF(x*)AD* 4 Vxh(x*)A2* =0, .
—1—ax®* =, (7)

where AD* € R™, \(D* > ( represents the multipliers corresponds to the in-
equality constraints F(x) — &3 — ti < 0, and A(2* denote the multipliers of the
equality constraints h(x) = 0.

Claim. Suppose (x*,t*, \(V* A\(2)*) is the solution of mNBIz and >7" )\El)* #0.

Then LC,, with the weight vector w = - 1)\“)* AM* has the solution
i=1""
X, A" = : (1) AR
Xt

Proof: Dividing both sides of first part of () by the positive scalar .-, /\(1)*
and observing that h(x) = 0, the equivalence follows. O

Hence we can obtain the weighting of objectives that correspond to solution of
mNBIg subproblem. Note that if one uses the original NBI method to get the
equivalence, since the F(x)—®F—tn = 0 are equality constraints the components
of multiplier A(* € R™ can be positive or negative. Thus one could obtain
negative weights [2]. In such a case the solution of NBIg subproblem is non
Pareto-optimal. This is because irrespective of whether the solution lies in a
convex or a non-convex part of the boundary, it should satisfy the first-order
necessary KKT conditions if it is Pareto-optimal. However, this does not occurs
in mNBIg subproblems (the weights are always non-negative).

4 Relationship Between mNBI Subproblem and Goal
Programming

A solution to an mNBI subproblem is also a solution to a goal programming
problem.
Claim. Suppose (x*, t*, \(V* A(2)*) is the solution of mNBIg and >;" )\Z(-l)* £ 0.

If )\,(Cl)* is any strict positive component (note that all the components are non-
negative), then x* solves the following goal programming problem:

minx) Jr(x),
subject to f;(x) <, Vi # k, (8)
h(x) =0,

with for all ¢ # k the goals given by

i = fix) if AV 2 0
i any finite number > f;(x) if >\z('1)* —0
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Proof: Since (x*,t*, \(D* A()*) is the solution of mNBI; it satisfies the first-
order necessary KKT condition (). Dividing both sides of () by )\,(61)* > 0 we
obtain

i=n )\(1)* )\(2)*
Vxfexw+ > Vxfi(x?) (e T Vxh(x) 7 ) =0, (9)
i=1,i£k )‘k )‘k

(1)*
Now with :\\é”* > 0 as the multipliers of the m — 1 inequality constraints in
k

[), the goals ~; satisfy complementarity by definition since

~v; = fi(x) whenever /\51) # 0,
(1) .
N (fi%) =) = 0,Vi # k.

1)+
Ak

(10)

Using the above together with feasibility of x for (&), we obtain that the point

AL @)« . . »
(x*7 )\im A satisfies the first order necessary optimality conditions of (g]).
O

Note that as in the case of weighted-sum method if one uses the original NBI
method to get the equivalence, due to the presence of equality constraints F'(x)—
&f3 — th = 0, the components of multiplier A()* € R™ can be positive or neg-
ative. Thus one could obtain negative weights. In such a case the equivalence
of NBI and goal programming problem requires additional assumption that the
components of A(D* are of the same sign while no such assumptions are needed
in the mNBI method.

5 Conclusions

In this paper, we presented an efficient formulation of the NBI algorithm for
getting an even spread of efficient points. This method unlike NBI method does
not produce dominated points and is theoretically equivalent to weighted-sum or
e-constraint method This paper also proposes a way to reduce the number of sub-
problems to be solved for non-convex problems. We compare the mNBI method
with other popular methods like weighted-sum method and goal programming
methods using Lagrange multipliers. It turned out that mNBI method does
not require any unusual assumption compared to relationship of NBI method
with weighted-sum method and goal programming method. Lastly we would like
to mention that since some other class of methods like the Normal-Constraint
Method [9] or the Adaptive Weighted Sum Method [§] use similar line or inclined
search based constraint in their sub-problems, the solutions of the sub-problems
of these method are also in general not Pareto-optimal and hence the mNBI
method presented in this paper is superior to them.
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