A Query Index for Stream Data Using Interval
Skip Lists Exploiting Locality

Jun-Ki Min

School of Internet-Media Engineering
Korea University of Technology and Education
Byeongcheon-myeon, Cheonan, Chungnam, Republic of Korea, 330-708
jkmin@kut.ac.kr

Abstract. To accelerate the query performance, diverse continuous que-
ry index schemes have been proposed for stream data processing systems.
In general, a stream query contains the range condition. Thus, by using
range conditions, the queries are indexed. In this paper, we propose an
efficient range query index scheme QUISIS using a modified Interval Skip
Lists to accelerate search time. QUISIS utilizes a locality where a value
which will arrive in near future is similar to the current value.

Keywords: Stream Data, Query Index, Locality.

1 Introduction

Stream data management systems may receive huge number of data items from
stream data source while large number of simultaneous long-running queries is
registered and active[Tl2]. In this case, if all registered queries are invoked when-
ever a stream data item arrives, the system performance degrades. Therefore,
Query indexes are built on registered continuous queries [3]. Upon each stream
data arrives, a CQ engine searches for matching queries using these indexes.

Existing query indexes simply maintain the all queries based on well known
index structures such as the binary search tree and R-tree. However, some appli-
cation of stream data processing such as stock market and temperature monitor-
ing has a particular property, which is a locality. For example, the temperature
in near future will be similar to the current temperature. Therefore, some or all
queries which are currently invoked will be reused in the near future. Therefore,
the locality of stream data should be considered in the query indexes.

In this paper, we present a range query index scheme, called QUISIS (QUery
Index for Stream data using Interval Skip lists). Our work is inspired by BMQ-
Index []. To the best of our knowledge, Interval Skip list [5] is the most efficient
structure to search intervals containing a given point. Thus, QUISIS is based on
the Interval Skip List in contrast to BMQ-Index. Using a temporal interesting
list (TIL), QUISIS efficiently finds out the query set which can evaluate a newly
arrived data item. The experimental results confirm that QUISIS is more efficient
than the existing query index schemes.

Y. Shi et al. (Eds.): ICCS 2007, Part I, LNCS 4487, pp. 245-{252] 2007.
© Springer-Verlag Berlin Heidelberg 2007

246 J.-K. Min

2 Related Work

Some stream data management systems used balanced binary search trees for
query indexes [6]. The query index allows to group query conditions combining
all selections into a group-filter operator. As shown in Figure [Il a group filter
consists of four data structure: a greater-than balanced binary tree, a less-than
balanced binary tree, an equality hash-table, and inequality hash table.

Group Filter for R a

Query Conditions > S — [=a1]
d=qd
1: Ra >landR.a<10 6=q5
2 Ra»s
q3:Ra>7 < |=
q4:Ra=4 ’
g5:R.a=6 [q1]

Fig. 1. An example for query indexes using binary search trees

When a data item arrives, balanced binary search trees and hash tables are
probed with the value of the tuples. This approach is not appropriate to general
range queries which have two bounded conditions. Each bounded condition is
indexed in individual binary search tree. Thus, by search of each individual
binary tree, unnecessary result may occur.

In addition, for query indexes, multi-dimensional data access methods such
as R-Tree [7I8] and grid files can be used [9]. In general, the range conditions
of queries are overlapped. These R-tree families are not appropriate for range
query indexes since many nodes should be traversed due to a large amount of
overlap of query conditions.

Recently, for the range query indexes, BMQ-Index has been proposed. BMQ-
Index consists of two data structures: a DMR list, and a stream table. DMR list
is a list <DNjy, DNy, ..., DN,,, DN,,.1 > of DMR nodes. Let Q = {q;} be a set
of queries. A DMR node DNj is a tuple <DR;, +DQSet, -DQSet>. DR; is a
matching region (b;_1, bj). +DQSet is the set of queries q such that 1y = b;_1
for each selection region (l, ux) of Q. -DQSet is the set of queries qj such that
ui = bj_ for each selection region (I, ux) of qi. Figure 2 shows an example of
BMQ-Index. A stream table keeps the recently accessed DMR node.

Let QSet(t) be a set of queries for data v, at time ¢ and v; be in the DNj,
and vy4q is in the DNy, ie., bj—1 < vy < bj and b1 < viq1 < by QSet(t+1)
can be derived as follows:

if j<h,QSet(t+1)=QSet(t)U [U i1 TDQSet;] — [U i1 —DQSet;]
if j>h, QSet(t+1) = QSet(t) UL —DQSet;] — [UI"} +DQSet;]
if j=h,QSet(t+1)=QSet(t)
(1)
The authors of BMQ-Index insist that only a small number of DRN nodes is
retrieved, if the forthcoming data is not in the region due to the data locality.

A Query Index for Stream Data 247

stream

table
Query .
Conditions ! 4| S 6| 7 10 inf

ql: Ra>1 DN, DN, DN, = DN, DNy i DN, i DN,

andR.a< 10 (+q1} (+q2) (+g3) | (ql} | {-q2-q3)
q2:R.a>>5
q3:R.a>7 ql
q4:Ra=4 q2

q5:R.a=6 —|

q3

Fig. 2. An example of a BMQ-Index

However, BMQ-Index has some problem. First, if the forthcoming data is
quite different from the current data, many DRN nodes should be retrieved like
a linear search fashion. Second, BMQ-Index supports only (1, u) style conditions
but does not support general condition such as [l,u] and (1, u]. Thus, as shown
in Figure 2l ¢4 and ¢5 is not registered in BMQ-Index. In addition, BMQ-Index
does not work correctly on boundary conditions. For example, if v; is 5.5, the
QSet(t) is {q1,q2}. Then, if v;1q is 5, QSet(t+1) is also {ql,q2} by the above
equation. However, the actual query set for v;41 is ql.

3 QUISIS

In this section, we present the details of our proposed approach, QUISIS. As
mentioned earlier, QUISIS is based on Interval Skip Lists[5]. Thus, we first in-
troduce Interval Skip Lists, and then present our scheme.

3.1 Interval Skip Lists

Interval Skip Lists are similar to linked lists, except each node in the list has one
or more forward pointers. The number of forward pointers of the node is called
the level of the node. The level of a node is chosen at random. The probability
a new node has k level is:

0 fork < 1
P(k) = 2
) {(l—p)~pk_1 fork > 1 @

With p = 1/2, the distribution node levels will allocate approximately 1/2 of
the nodes with one forward pointer, 1/4 with two forward pointers, and so on.
A node’s forward pointer at level [points to the next node with greater that or
equal to [level.

In addition, nodes and forward pointers have markers in order to indicate the
corresponding intervals. Consider I = (A,B) to be indexed. End points A and B
are inserted in the list as nodes. Consider some forward edges from a node with
value X to a node with value Y (i.e., X < Y). A marker containing the identifier
of T will be placed on edge (X,Y) if and only if the following conditions hold:

248 J.-K. Min

— containment: I contains the interval (X,Y)
— maximality: There is no forward pointer in the list corresponding to an
interval (X', Y’) that lies within I and that contains (X,Y).

In addition, if a marker for I is placed on an edge, then the nodes of that edge
and have a value contained in I will also have a marker (called eqMarker) placed
on them for I.

The time complexity of Interval Skip Lists is known as O(log N) where N
is the number of intervals. Since we present the extended version of the search
algorithm in Section [3.2] we omit the formal description of the search algorithm
for Interval Skip Lists.

3.2 Behavior of QUISIS

In Figure Bl QUISIS is shown when the current data item is 5.5. Given search
key, the search procedure starts from Header in Interval Skip Lists. In stream
data environment, a locality such that a data in the near future is similar to
the current data occurs. By using this property, we devise the QUISIS based on
Interval Skip Lists.

Query Conditions

ql:Ra>landR.a<10
q2:R.a>5
q3:Ra>7
q4:Ra=4
q5:Ra=6

TINN

Fig. 3. An example of QUISIS

In order to keep the visited edges by the current data item, a temporal inter-
esting list (TIL) is used. TIL records the nodes with level from MAX level to
1 whose forward pointer with level [represents an interval contains the current
data item. As shown in Figure Bl the interval [5,6) represented by the node
pointed by TIL with level 1 contains the current data item 5.5.

In Figure [3 we can interpret Header and Null such that Header represents
the smallest value and Null represents the largest value. So Header is smaller
than -oo and Null is greater than oo in contrast to the conventional number
system. Thus, the intervals represented by the nodes in TIL have the property
such that:

Property 1. The interval by TIL with level 7 is contained in the interval by TIL
with level 7 + 1.

For example, [5,6) by TIL with level 1 is contained in [4,6) by TIL with level
2 and also is contained in [4,Null) by TIL with level 3. By using this property,
QUISIS reduces the search space efficiently compared with original Interval Skip
Lists.

A Query Index for Stream Data 249

QSet //a query set for previous key
TIL // a list points to the nodes of QUISIS
Procedure findQuery(key)

begin

1. if(TIL[1]->value = key) {

2. for(i = TIL[1]->level; i > 1; i——) QSet := QSet - TIL[1]->markers]i]
3. QSet := QSet U TIL[1]->eqMarker

4. } else if(TIL[1]->value < key and

(TIL[1]->forward[1] = NULL or key < TIL[1]->forward[1]->key)) {
5 QSet := QSet - TIL[1]->eqMarker
6. for(i = TIL[1]->level; i >1; i-) QSet := QSet U TIL[1]->markers]i]
7. }else{
8 QSet := QSet - TIL[1]->eqMarkers
9 if(TIL[1]->forward[1l] = NULL or key > TIL[1]->forward[1]->value) {

10. for(i := 1; i < maxLevel ; i++)

11. if(TIL[i]->forward[i] = NULL or key < TIL[i]->forward[i]->value) break
12. else QSet = QSet - TIL[i]->markers]i]

13. }else{

14. for(i = 1; i < maxLevel; i++)

15. if(TIL[i|= Header and key > TIL[i]->value) break

16. else QSet := QSet - TIL[i]->markers[i]

}
18. anode := TIL[——i]
19. while(i > 1) {

20. while(anode->forward[i] # NULL and anode->forward[i]->value le key)
anode = anode->forward[i]
21. if(anode # Header and anode->value # key) QSet := QSet U anode->markers]i]
22. else if(anode # Header) QSet := QSet U anode->eqMarker][i]
23. TIL[i] = anode;
24. ir=i-1
25.
26. }
27. return QSet
end

Fig. 4. An algorithm of the event handler for endElement

In order to exploit TIL, we devised the procedure findQuery() using the Prop-
erty Il An outline of an implementation of findQuery() is shown in Figure [l

Basically, the behavior of the procedure findQuery() is changed according to
the condition of newly arrived data value (i.e., key) and the interval [vy, u1) by
TIL with level 1.

If key is equal to vy of the node n pointed by TIL with level 1 (Line 1-3 in
Figure @), all markers on the edges starting from n are removed (Line 2) since
QSet may contain queries whose intervals are (v, -). Instead, eqMarker of n is
added (Line 3) since eqMarker of n contains the queries whose interval contains
v, and the queries in eqMarker are on that edges which are ended or started at
n. For example, when the data was 5.5, QSet was {ql,q2} and a new data item
5 arrives, the TIL[1] is the node 5. Thus, {q2} is removed from QSet by Line 2.
And since eqMarker of the node 5 is), the final query result is {q1}.

If key is in (v1, u1)(Line 4-6 in Figure M), the queries in eqMarker of n are
removed since the QSet may contain queries whose intervals are (-, v1]. Instead,
all markers on the edges starting from n are added.

If key is not in (vy,u1) (Line 7-27 in Figure @), the procedure looks for the
interval [v;, u;) by TIL with level ¢ which contains key (Line 8-17). This step is
separated into two cases: key > uy (Line 9-12) and key < v; (Line (Line 13-17).
Also, in this step, markers on the edges with level from 1 to i-1 are removed

250 J.-K. Min

from QSet (Line 12 and 16). And then, the procedure gathers queries starting
from the node (i.e., anode) whose value is v; (Line 19-25). In this case, since the
marker on the edge of anode with level i is already in QSet, level i decreases
(Line 18).

If the interval represented by a forward pointer of anode with level i does
not contain key, a search procedure traverses to the next node pointed by the
forward pointer of a node with a level ¢ (Line 21). If the value of anode is equal to
key, eqMarker of anode is added (Line 22). Otherwise the marker on the forward
pointer is added (Line 21). Then, the anode is set to TIL[¢](Line 23) and i is
dropped into 7 — 1(Line 24). The search procedure continues until the level [is
to be 1.

For example, when the data was 5.5, QSet was {ql,q2} and a new data item
13 arrives, [4, Null) represented by TIL[3] contains 13. Therefore, the procedure
removes the search overhead starting from Header. {q2} and {ql} which are
markers of TIL[1] and TIL[2], respectively, are removed from QSet (Line 9-12).
Then, the procedure gathers queries starting from the node 4 with level 2 (Line
18). Since [4,6) does not contain 13, the procedure looks for next interval [6,
Null) represented by node 6 with level 2. Since 13 is in [6, Null) but not equal
to 6, a marker g2 is added. And TIL[2] points the node 6. Then, the procedure
searches the list from the node 6 with level 1. Since [10, inf) contains 13, a
marker {q3} is added. Finally, QSet is {q2, q3}.

In aspect of using the data locality, our proposed scheme QUISIS is similar
to BMQ-Index. However, since QUISIS is based on Interval Skip Lists, QUI-
SIS is much more efficient than BMQ-Index in general cases. Our experiments
demonstrate the efficiency of QUISIS.

4 Experiments

In this section, we show the efficiency of QUISIS compared with the diverse
query index techniques: BMQ-Index and Interval Skip Lists. The experiment
performed on Windows-XP machine with a Pentium IV-3.0Ghz CPU and 1GB
RAM. We evaluated the performance of QUISIS using the synthetic data over
various parameters. We implemented a revised version of BMQ-Index which
works correctly on the boundary conditions. The default experimental environ-
ment is summarized in Table[Il In Table[I] length of query range (W) denotes the
average length of query condition normalized by the attribute domain and fluctu-
ation level (FL) denotes the average distance of two consecutive data normalized
by the attribute domain. Therefore, as FL decrease, the locality appears severely.

Table 1. Table of Symbols

Parameter value
Attribute domain 1 ~ 1,000,000
of Queries 100,000
Length of query range (W) 0.1% (= 1,000)
of Data 1,000 ~ 10,000

Fluctuation level (FL) 0.01% (= 100)

A Query Index for Stream Data 251

[—#— BMQ-Index ——Inierval Skip List, —&—QUISIS

1200

£

M

1000 2000 300 4000 5000 6000 7000 S000 9000 10000
Hof dua

(a) FL. = 0.01%

—+—BMQ-Index —#— Interval Skip Lists —&— QUISIS

5000
4500
4000

3000
2500
2000
1500

1000
500
0

1000 2000 3000 4000 S000 6000 7000 OO0 9000 10000

time(milliseconds)

#of data

(b) FL = 0.1%

—e— BMQ-Index —8— Interval Skip Lists —— QUISIS|

0
S
£ 15 KM
s
o

1000 2000 3000 4000 5000 6000 7000 000 9000 10000

#of du

(@) TL=1%

Fig. 5. The results with varying the number of data

We empirically performed experiments with varying parameters. However,
due to the space limitation, we show only the experimental result when values
of FL are 0.01%, 0.1% and 1%.

Our proposed index scheme QUISIS shows the best performance except the
case when FL is 0.01%. Figure Bl(a), BMQ-Index shows the best performance
when FL is 0.01% (i.e., high locality) due to its simple structure. In BMQ-
Index, if the forthcoming data is different from the current data, many DMR
nodes should be retrieved. Therefore, BMQ-Index shows the worst performance
when FL is 0.1% (see Figure BH(b)) and 1% (see Figure BH(c)). In other words,
BMQ-Index only fits on the high locality cases. In contrast to BMQ-Index, QUI-
SIS shows good performance over all cases since QUISIS efficiently retrieves the
query set using TIL and removes the overhead searching from Header. The per-
formance of Interval Skip Lists does not affected by FL. As shown in Figure[GH(c),
Interval Skip Lists shows the good performance when FL = 1.0%. Particulary,
when FL are 0.1% and 1%, Interval Skip Lists is superior to BMQ-Index.

Consequently, QUISIS is shown to provide reasonable performance over di-
verse data locality.

252 J.-K. Min

5 Conclusion

In this paper, we present an efficient scheme for query indexing, called QUISIS
which utilizes the data locality. QUISIS is based on Interval Skip Lists. In order
to maintain the current locality, TIL (temporal interesting list) is equipped. To
show the efficiency of QUISIS, we conducted an extensive experimental study
with the synthetic data. The experimental results demonstrate that QUISIS is
superior to existing query index schemes.

References

1. Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa, I.,
Srivastava, U., Thomas, D., Varma, R., Widom, J.: STREAM: The Stanford Stream
Data Manager. IEEE Data Engineering Bulletin 26 (2003)

2. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M.,
Hong, W., Krishnamurthy, S., Madden, S., Reiss, F., Shah, M.A.: TelegraphCQ:
Continuous Dataflow Processing. In: ACM SIGMOD Conference. (2003)

3. Ross, K.A.: Conjunctive selection conditions in main memory. In: PODS Conference.
(2002)

4. Lee, J., Lee, Y., Kang, S., Jin, H., Lee, S., Kim, B., Song, J.: BMQ-Index: Shared
and Incremental Processing of Border Monitoring Queries over Data Streams. In:
International Conference on Mobile Data Management (MDM’06). (2006)

5. Hanson, E.N., Johnson, T.: Selection Predicate Indexing for Active Databases Using
Interval Skip Lists. Information Systems 21 (1996)

6. Madden, S., Shah, M.A., Hellerstein, J.M., Raman, V.: Continuously adaptive con-
tinuous queries over streams. In: ACM SIGMOD Conference. (2002)

7. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: ACM
SIGMOD Conference. (1984)

8. Brinkhoff, T., Kriegel, H., Scheneider, R., Seeger, B.: The R*-tree: An Efficient and
Robust Access Method for Points and Rectangles. In: ACM SIGMOD Conference.
(1990)

9. Choi, S., Lee, J., Kim, S.M., Jo, S., Song, J., Lee, Y.J.: Accelerating Database Pro-
cessing at e-Commerce Sites. In: International Conference on Electronic Commerce
and Web Technologies. (2004)

	Introduction
	Related Work
	QUISIS
	Interval Skip Lists
	Behavior of QUISIS

	Experiments
	Conclusion

