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Abstract. A high-resolution semi-discrete central-upwind scheme for
solving a two class Lighthill-Whitham-Richards (LWR) traffic flow model
is investigated in this paper. This scheme is based on combining a fourth-
order central weighted essentially nonoscillatory (CWENO) reconstruc-
tion with semi-discrete central-upwind numerical flux. The CWENO
re construction is chosen to improve the accuracy and guarantee the
non-oscillatory behavior of the present method. The strong stability pre-
serving Runge-Kutta method is used for time integration. The resulting
method is applied to simulating several tests such as mixture of the
two traffic flows. The simulated results illustrate the effectiveness of the
present method.

Keywords: Traffic flow model, central-upwind scheme, CWENO recon-
struction.

1 Introduction

Continuum traffic flow models are of great practical importance in many applica-
tions such as traffic simulation, traffic control, and, etc. The Lighthill-Whitham-
Richards (LWR) model proposed independently by Lighthill and Whitham [1]
and Richards [2] is the forerunner for all other continuum traffic flow models. In
recent years an amount of research was done in implementing and extending the
LWR model. Zhang [3] and Jiang et al. [4] proposed higher-order continuum mod-
els. Wong and Wong [5] presented a multi-class LWR traffic flow model(MCLWR
model). For numerical method, the Lax-Friedrichs scheme was used to solve the
MCLWR model in [5]. The Lax-Friedrichs scheme is only first-order accurate
and yields a relatively poor resolution due to the excessive numerical dissipa-
tion. Recently, the Godunov scheme was also employed to solve the LWR model
[6] and higher-order model [7]. However, the Godunov scheme needs to use ex-
act or approximate Riemann solvers, which make the scheme complicated and
time-consuming. Zhang, et al. [8] pointed out that the scalar LWR model and
those higher-order continuum models proposed so far contain hyperbolic par-
tial differential equations. One important feature of this type equation is that it

Y. Shi et al. (Eds.): ICCS 2007, Part I, LNCS 4487, pp. 17–24, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



18 J. Chen, Z. Shi, and Y. Hu

admits both smooth and discontinuous solutions such as shocks. However, the
lower order numerical methods may produce smeared solutions near discontinu-
ities due to excessive numerical viscosity. The high-order scheme can provide the
satisfactory resolution. Moreover, the problems in which solutions contain rich
smooth region structures can be resolved by the high-order scheme on a relatively
small number of grid points. To embody traffic phenomena described by traffic
flow model completely and resolve discontinuities well, a high-resolution shock-
capturing numerical method is required. A recent application of the weighted
essentially non-oscillatory (WENO) scheme can be found in [8,9].

In this paper we study another type shock-capturing scheme, the so-called
high-resolution semi-discrete central-upwind schemes originally introduced in
[10], which have attracted considerable attention more recently. These schemes
enjoy the advantages of high-resolution central schemes. They are free of Rie-
mann solvers, require no characteristic decompositions and retain high resolution
similar to the upwind results. At the same time, they have an upwind nature.
These features make the semi-discrete central-upwind schemes a universal, ef-
ficient and robust tool for a wide variety of applications. With regard to its
application to traffic flow problems, we have not yet seen any research works. In
this work the semi-discrete central-upwind scheme combined with fourth-order
central WENO (CWENO) reconstruction [11] is applied to a two class LWR
traffic flow model.

This paper is organized as follows. Section 2 presents the two class LWR
traffic flow model. In section 3 we describe our numerical method. Numerical
simulations are carried out in section 4. The conclusions are given in section 5.

2 The Tow-Class Model

The MCLWR model [5] describes the characteristics of traffic flow of M classes of
road users with different speed choice behaviors in response to the same density
when traveling on a highway section. There are some difficulties to compute the
eigenvalues and prove the hyperbolicity of the model for M > 3. In this paper,
we consider the two-class(M = 2) LWR traffic flow model, which can be written
in conservation form as

ut + f(u)x = 0 , (1)

where u is the vector of conserved variables and f(u) is the vector of fluxes.
These are given respectively by

u =
[
ρ1
ρ2

]
, f(u) =

[
ρ1u1(ρ)
ρ2u2(ρ)

]
,

where ρ1 and ρ2 are the densities for Class 1 and Class 2 traffic, respectively,
ρ = ρ1 + ρ2 is the total density, and u1(ρ) and u2(ρ) are the velocity-density
relationships. The two eigenvalues of the Jacobian are

λ1,2 = (u1(ρ) + ρ1u
′
1(ρ) + u2(ρ) + ρ2u

′
2(ρ) ±

√
Δ)/2 , (2)
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where

Δ = ((u1(ρ) + ρ1u
′
1(ρ)) − (u2(ρ) + ρ2u

′
2(ρ)))2 + 4ρ1ρ2u

′
1(ρ)u′

2(ρ) . (3)

Since Δ ≥ 0 and λ1,2 are real, the model is hyperbolic.

3 Numerical Scheme

For simplicity, let us consider a uniform grid, xα = αΔx, tn = nΔt, where
Δx and Δt are the uniform spatial and time step, respectively. The cell av-
erage in the spatial cell Ij = [xj−1/2, xj+1/2] at time t = tn is denoted by
un

j (t) = 1
Δx

∫
Ij

u(x, tn) dx. Starting with the given cell averages {un
j } , a piece-

wise polynomial interpolant is reconstructed

ũ(x) =
∑

j

pn
j (x)χj(x) . (4)

Here χj is the characteristic function of the interval Ij and pn
j (x) is a polyno-

mial of a suitable degree. Different semi-discrete central-upwind schemes will
be characteristic of different reconstructions. Given such a reconstruction, the
point-values of ũ at the interface points {xj+1/2} are denoted by u+

j+1/2 =
pn

j+1(xj+1/2, t
n) and u−

j+1/2 = pn
j (xj+1/2, t

n) . The discontinuities of the con-
struction (4) at the cell interfaces propagate with right- and left-sided local
speeds, which can be estimated by

a+
j+1/2 = max

{
λN

(
∂f
∂u

(
u−

j+1/2

))
, λN

(
∂f
∂u

(
u+

j+1/2

))
, 0

}

a−
j+1/2 = min

{
λ1

(
∂f
∂u

(
u−

j+1/2

))
, λ1

(
∂f
∂u

(
u+

j+1/2

))
, 0

}
. (5)

Here λ1, · · · , λN denote the N eigenvalues of ∂f/∂u. The semi-discrete central-
upwind scheme for the spatial discretization of equation (1) can be given by(see
[10] for the detailed derivation)

d

dt
uj(t) = −

Hj+1/2(t) − Hj−1/2(t)
Δx

, (6)

where the numerical fluxes Hj+1/2 is

Hj+1/2(t) =
a+

j+1/2f(u
−
j+1/2) − a−

j+1/2f(u
+
j+1/2)

a+
j+1/2 − a−

j+1/2

+
a+

j+1/2a
−
j+1/2

a+
j+1/2 − a−

j+1/2

[
u+

j+1/2 − u−
j+1/2

]
.

(7)

Note that different semi-discrete central-upwind schemes are typical of differ-
ent reconstructions. The accuracy of the semi-discrete scheme (6)-(7) depends
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on the accuracy of the reconstruction (4). One can use the second order piece-
wise linear reconstruction, the third-order piecewise quadratic reconstruction,
highly accurate essentially non-oscillatory (ENO) reconstruction, highly accu-
rate WENO reconstruction or highly accurate CWENO reconstruction. In this
work, we have used an fourth-order CWENO reconstruction proposed in [11] to
compute the point values u±

j+1/2. To simplify notations, the superscript n will be
omitted below. In each cell Ij , the reconstruction, pj(x), is a convex combination
of three quadratic polynomials, ql(x), l = j − 1, j, j + 1,

pj(x) = ωj
j−1qj−1(x) + ωj

jqj(x) + ωj
j+1qj+1(x) , (8)

where ωj
l are the weights which satisfy ωj

l ≥ 0 and
∑j+1

l=j−1 ωj
l = 1. The quadratic

polynomials ql(x), l = j − 1, j, j + 1, are given by

ql(x) = ũl + ũ′
l(x − xl) + ũ′′

l (x − xl)2, l = j − 1, j, j + 1 . (9)

Here ũ′′
l = ul+1−2ul+ul−1

�x2 , ũ′
l = ul+1+ul−1

2�x and ũl = ul − ũ′′
l

24 . The weights ωj
l are

defined as

ωj
l =

αj
l

αj
j−1 + αj

j + αj
j+1

, αj
l =

Cl

(ε + ISj
l )2

, l = j − 1, j, j + 1 , (10)

where Cj−1 = Cj+1 = 3/16, Cj = 5/8. The constant ε is used to prevent the
denominators from becoming zero and is taken as ε = 10−6. The smoothness
indicators, ISj

l , are calculated by

ISj
j−1 =

13
12

(uj−2 − 2uj−1 + uj)2 +
1
4
(uj−2 − 4uj−1 + 3uj)2 ,

ISj
j =

13
12

(uj−1 − 2uj + uj+1)2 +
1
4
(uj−1 − uj+1)2 ,

ISj
j+1 =

13
12

(uj − 2uj+1 + uj+2)2 +
1
4
(3uj − 4uj+1 + uj+2)2 . (11)

The time discretization of the semi-discrete scheme is achieved by third-order
strong stability preserving Runge-Kutta solver [12].

4 Numerical Examples

In this section, we choose several numerical examples presented in [9] as out test
case. The results demonstrate the performance of the present method for the
two-class LWR traffic flow model. In all examples, the following velocity-density
relationships are chose:

u1(ρ) = u1f (1 − ρ/ρm), u2(ρ) = u2f (1 − ρ/ρm) , (12)

where ρm is maximal density and u1f and u2f are the free flow velocity for Class
1 and Class 2 traffic, respectively. Moreover, the variables of space, time, density
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and velocity are scaled by L, T , ρm and uf , where L is the length of the road, T is
computational time and uf = max(u1f , u2f ). A variable is also non-dimensional
if it is not followed by its unit.

Example 1: Mixture of the two traffic flows.
The computational parameters are L = 6000m, T = 400s, Δx = 60m, Δt =
0.4s, u1f = 14m/s and u2f = 20m/s. The initial data is taken as the following
Riemann problem:

u(x, 0) =

{
(0, 0.4) , x < 0.1 ,

(0.4, 0) , x > 0.1 .
(13)

In this test Class 2 traffic will mix in Class 1 traffic, which causes the increase of
total density. Its solution contains a shock, a constant region and a rarefaction.
The total density computed by the presented method is shown in Fig. 1. To
illustrate the advantage of using high-order schemes, the Godunov scheme with
the Rusanov approximate Riemann solver [13,14] is also adopted to compute
the same problem using the same parameters. Here and below, this scheme is
abbreviated to GR. The scheme presented in this paper is abbreviated to CP4.
The result computed by GR scheme is presented in Fig. 2. This comparison
demonstrates the clear advantage of SD4 scheme over GR scheme. The SD4
scheme has the higher shock resolution and smaller numerical dissipation.
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Fig. 1. Example 1: The total density. The solution is computed with CP4 scheme.

Example 2: Separation of the two traffic flows.
The parameters are L = 8000m, T = 400s, Δx = 80m, Δt = 0.4s, u1f = 10m/s
and u2f = 20m/s. The Riemann initial data is used:

u(x, 0) =

{
(0.2, 0) , x < 0.1 ,

(0, 0.2) , x > 0.1 .
(14)
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Fig. 2. Example 1: The total density. The solution is computed with GR scheme.
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Fig. 3. Example 2: The total density. The solution is computed with CP4 scheme.

Note that u2 = 16m/s > u1f and thus Class 1 drivers can not keep up with
Class 2 drivers. A vacuum region is formed between Class 1 and Class 2 traffic.
This test has solution consisting of a right shock, a constant region and a left
rarefaction. Figs. 3 and 4 show the results obtained with CP4 and GR scheme,
respectively. It can be seen that discontinuities are well resolved by CP4 scheme.

Example 3: A close following of the two traffic flows.
The parameters are L = 4000m, T = 240s, Δx = 80m, Δt = 0.4s, u1f = 14m/s
and u2f = 20m/s. The Riemann initial data is used:

u(x, 0) =

{
(0.2, 0) , x < 0.1 ,

(0, 0.44) , x > 0.1 .
(15)

The high resolution properties of CP4 scheme are illustrated in Fig. 5.
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Fig. 4. Example 2: The total density. The solution is computed with GR scheme.
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Fig. 5. Example 3: The total density. The solution is computed with CP4 scheme.

5 Conclusions

As an attempt to simulate traffic flow by high-resolution finite difference schemes,
we have applied the semi-discrete central-upwind scheme to a two class LWR
traffic flow model in this paper. The numerical results demonstrate that the semi-
discrete central-upwind scheme resolve the shock and rarefaction waves well. This
universal, efficient and high-resolution scheme will be implemented and applied
to higher-order continuum models and multi-class models to simulate traffic flow
in our future work.



24 J. Chen, Z. Shi, and Y. Hu

References

1. Lighthill, M. J., Whitham, G. B.: On kinematic waves (II)-A theory of traffic flow
on long crowed roads. Proc. R. Sco. London, Ser. A 22 (1955) 317-345

2. Richards, P. I.: Shock waves on the highway. Oper. Res. 4 (1956) 42-51
3. Zhang, H. M.: A non-equilibrium traffic model devoid of gas-like behavior. Trans-

portation Research B 36 (2002) 275-290
4. Jiang, R., Wu, Q. S., Zhu, Z. J.: A new continuum model for traffic flow and

numerical tests. Transportation Research B 36 (2002) 405-419
5. Wong, G. C. K., Wong, S. C.: A multi-class traffic flow model-an extension of LWR

model with heterogeneous drivers. Transportation Research A 36 (2002) 827-841
6. Lebacque, J. P.: The Godunov scheme and what it means for first order traffic flow

models. In: Lesort, J. B. (eds.): Proceedings of the 13th International Symposium
on Transportation and Traffic Theory. Elsevier Science Ltd., Lyon France (1996)
647-677

7. Zhang, H. M.: A finite difference approximation of a non-equilibrium traffic flow
model. Transportation Research B 35 (2001) 337-365

8. Zhang, M. P., Shu, C.-W., Wong, G. C. K., Wong, S. C.: A weighted essentially non-
oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic
flow model. Journal of Computational Physics 191 (2003) 639-659

9. Zhang, P., Liu, R. X., Dai, S. Q.: Theoretical analysis and numerical simulation on
a two-phase traffic flow LWR model. Journal of university of science and technology
of China 35 (2005) 1-11

10. Kurganov, A., Noelle, S., Petrova, G.: Semi-discrete central-upwind schemes for hy-
perbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput.
23 (2001) 707-740

11. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems
of conservation laws. Math. Model. Numer. Anal. 33 (1999) 547-571

12. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability preserving high order time
discretization methods. SIAM Rev. 43 (2001) 89-112

13. Toro, E. F.: Riemann Solvers and Numerical Methods for Fluid Dynamics.
Springer-Verlag, Berlin Heidelberg New York (1997)

14. Rusanov, V. V.: Calculation of interaction of non-steady shock waves with obsta-
cles. J. Comput. Math. Phys. 1 (1961) 267-279


	Introduction
	The Tow-Class Model
	Numerical Scheme
	Numerical Examples
	Conclusions

