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Abstract. By the development of Semantic Web, increasing demands for vague
and distributed information representation have triggered a mass of theoretical
and applied researches of fuzzy and distributed ontologies, whose main logical
infrastructures are fuzzy and distributed description logics. However, current so-
lutions are proposed respectively on one of these two aspects. By integrating
&-connection into fuzzy description logics, this paper proposes a novel logical
approach to couple both fuzzy and distributed features within description logics.
The main contribution of these paper is to propose a discrete tableau algorithm to
achieve reasoning within this new logical system.
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1 Introduction

The Semantic Web stands for the idea of a future Web, in which information is given
well-defined meaning, better enabling intelligent Web information processing [1]. In
the Semantic Web, ontology is a crucial knowledge representation model to express
a shared understanding of information between users and machines, and description
logics (DLs for short) are often named as the logic infrastructure of ontologies [2]].
Along with the evolvement from current Web to the Semantic Web, the management
of ill-structured, ill-defined or imprecise information plays a more and more important
role in applications of the Semantic Web, such as document retrieval [3], search en-
gine [4]] and query refinement [3]. This trend calls for ontologies with capability to deal
with uncertainty. However, classical DLs are two-value-based languages. The need for
expressing uncertainty in the Semantic Web has triggered extending classical DLs with
fuzzy capabilities, yielding Fuzzy DLs (FDLs for short) [6,/7.[80]]. Meanwhile, Working
with multiple distributed ontologies brings a growing body of work in distributed re-
search of description logic. In the distribution extension of classical DLs, Cuenca Grau
et al integrated the £-connections formalism [[10] into OWL in a compact and natural
way by defining "links” that stand for the inter-ontology relations [11]]. Their extension
is largely based on reasoning technique in classical DLs with general TBoxes.

The main difficulty in achieving similar distributed extension within FDLs and com-
bining fuzzy and distributed features within DLs is that reasoning with general TBox
in FDLs is still a hard problem. In this year, we propose a discrete tableau algorithm

Y. Shi et al. (Eds.): ICCS 2007, Part I, LNCS 4487, pp. 196203 2007.
(© Springer-Verlag Berlin Heidelberg 2007



Distributed Reasoning with Fuzzy Description Logics 197

to solve this problem [[I2]], that can be considered as a base technique to achieve dis-
tributed reasoning in FDLs. In this paper, we will extend our discretization algorithm
in distributed case and combine £-connections to propose a distributed extension of
FDLs (here we focus on FSHZN [8]], a complex FDL with inverse role, role hierarchy
and unqualified number restriction.) and a corresponding tableau reasoning algorithm
within this extension, hence achieve distributed reasoning within multiple FDL KBs.

2 E-Connection Between Fuzzy Description Logics

2.1 Fuzzy Links Between Two Knowledge Bases

Let K7 and Ky be two FSHIN KBs, Z; = (A%, .71} and T, = (A2, .72) be their
fuzzy interpretations. Ej5 is a set of fuzzy links (denoted E2 and Fi2) that connect
these two K; and KCo. We define T1o = (AT12,.712) as the fuzzy interpretation of E1,
where ATz = ATt x ATz and for any Ej5 € Eig, 712 interprets it as a member-
ship function: A7t x AZ2 — [0,1]. And to describe constraints among fuzzy links,
we propose fuzzy link axioms: Fj5 T Fo, where Ej5 and F)o are fuzzy links. A in-
terpretation Z1o satisfies the above fuzzy link axioms, iff for any d € AZt and any
d e AT, E11212 (d,d') < Fé12 (d,d’"). An LBox L1 is a finite set of fuzzy link axioms,
T, satisfies Lo, iff it satisfies every axiom in L.

These two FDL KBs /C; and /C; and their LBox L1 construct a simple Combined
Distributed FDL KB X' = (K4, Ka, L12). By introducing fuzzy link, we allow two new
concepts K1: 3F12.C5 and VFE15.C5 in [Cp, where Fio is a fuzzy link in 12 and Cs is
a fuzzy concept in [Co. These two concepts are considered as normal fuzzy concepts in
K1, hence they can appear in TBox and ABox of ;.

For example, let IC; and Ko be two KBs about animal and person respectively. Dog,
and Persons are fuzzy concepts in Ky and Ko, and lovewithys is a fuzzy link in Lqs.
By using fuzzy links, we can define a new fuzzy concept Friendlydog; in KC;’s TBox:

Friendlydogy = Flovewithqs.Persons M Dogy (1)

2.2 Combined Distributed Fuzzy Description Logic Knowledge Bases

In above subsection, we discuss the fuzzy links between two FDL KBs and give a simple
example of Combined Distributed FDL (CDFDL for short) KBs. Now we will give a
general definition of it.

Definition 1. « CDFDL KB is a pair ¥ = (Kg, Ls), where Kg is a set of FDL KBs:
Ks ={K1,...,Kmn}, and Lg is a set of LBoxes that connect any two knowledge bases
in Kg: Lg = {L;;|]1 < 4,57 < mandi # j}. For any fuzzy concept C; in K; and
any fuzzy link E;; in L;j and , the following expressions are also considered as fuzzy
concepts in K;: AE;;.C; and VE;;.C).

An interpretation of a CDFDL KB is a pair Z = ({Z;},{Z;;}) , where Z; is an in-
terpretation of K; and correspondingly Z;; is an interpretation of L;;. For any fuzzy
concept C; (role R; ) in K;, C;F = C;% (R;* = R;%); for any fuzzy link E;; in Z;,
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E;;f = E;;59; for any individual a; in K;, a;7 = a;%; and for 3E;;.C; and VE;;.C;,
their interpretation are inductively defined as:

3E;;.C; 7 (d) = sup gy oz {min(E;;79 (d, d'), C;% (d'))} (2)
VE,;.CiE(d) = inf e pz, {max(1 — E;;79 (d, d'), C;5 (d'))}

An interpretation Z is a model of X' = (Kg, Lg), iff Z satisfies every K; in Kg
and every L;; in Lg. In this paper, we will propose a discrete tableau algorithm to
decide satisfiability of CDFDL KBs Y, which is based on the semantical discretization
technique discussed in the following section.

3 Semantical Discretization

In this section, we will propose a novel semantical discretization technique to achieve
such translations: if a CDFDL KB has a fuzzy model, we use the discretization to trans-
late it into a special model, in which any value of membership degree functions belongs
to a given discrete degree set S and its cardinality |S| is polynomial of the sum of
the cardinality |.4;| of the ABox A; in every KB K;. And we call it a discrete model
within S.

The main issue in semantical discretization is to decide the discrete degree set S. Let
us now proceed formally in the creation of S. Given X' = (Kg = {Ky,...,Kn}, Ls =
{Li;|1 < i,j < m,i # j}),and K;=(7;, R;, A;). Let Ng be the set of degrees
appearing in any ABox: Ny = {n|la>xn € A;,1 < i < m}. From Ny, we define the
degree closure Nj = {0,0.5,1}UNyU{n|l—n € Ny} and order degrees in ascending

order: Nj = {no,n1,...,ns}, where forany 0 < i < s, n; < n;41. For any two back-
to-back elements n;, n;11 € N, we insert their median m; 11 = (n; + n,41)/2 to get
S ={nog,m1,n1,...,ns_1,Mms,ns}. We call S a discrete degree set w.r.t X. Obviously

forany 1 <@ <s,m; +msy1—; = 1l and n,_; < m; < n;. Note that:
5] =25 +1=0(Nag|) = 0> _ | Ai]). 3)
i=1
Lemma 1. For any K;=(7;, R;, A;) and any discrete degree set S w.r.t X, if K; has a
Sfuzzy model, it has a discrete model within S.

The proof of this lemma is an extension of the proof in FDL cases [12]. Meanwhile, to
verify the soundness of our discretization, we have the following lemma.

Lemma 2. For any L;j and any discrete degree set S w.r.t X, if L;; has a fuzzy model,
it has a discrete model within S.

Since a discrete model is also a fuzzy model of X, we get the following theorem to
guarantee the equivalence between existence of fuzzy models and discrete models.

Theorem 1. Forany ¥ = (Ks ={K1... K}, Ls = {L;;}) and any discrete degree
set Sw.rt X, X has a fuzzy model iff it has a discrete model within S.
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4 Discrete Tableau Algorithm

Before expressing discrete tableau algorithms formally, here we introduce some nota-
tions. It will be assumed that the concepts appearing in tableau algorithms are written in
NNF [13]. The set of subconcepts of a concept C' is denoted as sub(C'). For a CDFDL
KB X, we define sub(K;) as the union of all sub(C'), for any concept C appears in ;.
And we use the symbols > and <1 as two placeholders for the inequalities >, > and <,
<, and the symbols >x—, >~ and <~ to denote their reflections, for example, > and <
are reflections to each other. Finally we define (<1, n) as a degree pair. Two degree pairs
are called conjugated, iff they satisfy the following conditions (see table [I}).

Table 1. Conjugated pairs

(<,m) (<,m)
(>,n) n>m n>m
(>,n) 7In; € Swithn <ni <mn>m

Now we define the discrete tableau for X. Let Rx, and Oy, be the sets of roles and
individuals appearing in KC;. A discrete tableau T for X' within a degree set .S is a pair:
T = <{Tl}, {51]}>, Ti = <Oz, Ei, gi, Vz>, 1 S i,j S m and 7 7’5 j, where

— O;: anonempty set of nodes;

- L 0; — 2Mi M; = sub(K;) x {>,>,<, <} x S,

- &Ry, = 29,Q; ={0; x O;} x {>,>,<,<} x S,

— Vi:Ox, — O;, maps any individual into a corresponding node in O;.
- giji Eij — QQij, Qij = {Ol X OJ} X {Z,>,§,<} x S,

Any T; has a forest-like structure, which is a collection of trees that correspond to
individuals in the ABox A;. Every tree consists of nodes standing for the individuals,
and edges representing the relations between two nodes (individuals). Each node d is
labelled with a set £(d) of degree triples: (C, <, n), which denotes the membership
degree of d being an instance of C' <1 n . A pair of triple (C,<1,n) and (C,><1",m)
are conjugated if (>, n) and (<, m) are conjugated. In any T;, for any d,d’ € O;,
a,b € Ok,, C,D € sub(K;) and R € R, the following conditions must hold:

1. There does not exist two conjugated degree triples in £, (d);

2. There does not exist mistake triples: (L, > n) (n > 0), (T,<,n) (n < 1), (L
n), (T, <,n), (C,>,1) and (C, <,0) in £L;(d);

3. If C C D € T, then there must be some n € S with (C, <,n) and (D, >, n) in

4. If (C,>,n) € L;(d), then (nnf(=C),x",1 —n) € L;(d);

5. If(CND,>,n) € Li(d), then (C,>,n) and (D,>,n) € L;(d);
6. If (C M D, <,n) € L;(d), then (C,<1,n) or (D, <1, n) € L;(d);
7. If(CUD,>,n) € Li(d), then (C,>,n) or (D,>,n) € L;(d);
8. If (CUD,<,n) e L;(d), then (C, <,n) and (D, <,n) € L;(d);
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9. If (VR.C,1>,n) € L;(d),{(d,d"),>',m) € &(R), and (>>', m) is conjugated with

(>7,1—n), then (C,>,n) € L;(d');

10. If (VR.C,<,n) € L;(d), then there must be a node d’ € O, with ((d,d’), <~,1 —

n) € &(R) and (C, <, n) € L;(d);
11. If (3R.C,1>,n) € L;(d), then there must be a node d’ € O; with ((d,d’),>,n) €
Ei(R) and (C,>,n) € L;(d);

12. If (3R.C, <, n) € Li(d), {{d,d"),>',m) € E(R), and (', m) is conjugated with
(<,n), then (C, <, n) € L;(d);

13. If (YP.C,>,n) € L;(d), {{d,d"),>>',m) € &(R) for some R C* P with Trans
(R)=true and (1>, m) is conjugated with (>, 1—n), then (VR.C, 1>, n) € L;(d');

14. If (AP.C,<,n) € Li(d), ({(d,d"),>',m) € &(R) for some R C* P with Trans
(R)=true and (>>', m) is conjugated Wlth (<1,n), then (FR.C, <1, n) € L;(d');

15. If (> pR,>,n) € L;(d), then |{d'|((d,d"),>,n) € E(R)|} > p;

16. If (> pR, <,n) € L;(d), then [{d'|{({d,d"),>',m) € &(R)}| < p, where (>>', m)
is conjugated with (<1, n);

17. If (< pR,1>,n) € /.Zi(d), then |{d'|((d,d"),>",m) € &(R)} < p+ 1, where
(', m) is conjugated with (>~,1 — n);

18. If (< pR,<,n) € Li(d), {d'|{{d,d"),<,1—n) € &(R)} >p+1;

19. If ({d,d"),><,n) € E(R), then ((d',d),>x,n) € & (Inv(R));

20. If ({(d,d"),1>,n) € &(R) and R C* P, then ({(d,d’),>,n) € &(P);

21. Ifa: C'xan € A, then (C,x,n) € L;(Vi(a));

22. If {(a,b) : Rxin € A;, then ((V;(a), V;(b)), 1, n) € &E(R);

23. If a # b € A;, then V;(a) # Vi(b).

From conditions 1-2, the discrete tableau contains no clash. Condition 3 deals with
general TBoxes: for any C' C D € 7, we adopt a direct extension of reasoning tech-
nique in DLs: since any membership degree value in the discrete models belongs to S,
for any node d, we guess d : C'=n and d : D=m, for some n,m € S and n < m.
Then we add (C, <,n) and (D, >,n) in £(d). Conditions 4-20 are necessary for the
soundness of discrete tableaus. Conditions 21-23 ensure the correctness of individual
mapping function V().

Additionally, we add some constraints to deal with fuzzy links. For any d € O,
d' € Oy, E;j, Fij € Lij and C; € sub(KC;), the following conditions must hold:

24. If <<d, d/>7 >7n> S gij(Eij) and Eij C Fij S Lij, then <<d, d/>7 >7n> S gij(Fij);

25. If <VEZ']‘.C]‘, >, n> S ,Cz(d),«d, d/>, >, m> € gij(Eij), and <l>/, m) is conjugated
with (>7,1 — n), then (C,>,n) € L;(d);

26. If (VE;;.C;, <,n) € L;(d), then there must be a node d’ € O, with ((d,d'), <", 1
— n> S gij(Eij) and (C, <17n> € Ej(d/);

27. If (3E;;.C;, >, n) € L;(d), then there must be a node d’ € O; with ((d,d’), >, n)
€ &j(Eij)and (C,>,n) € L;(d);

28. If (3E;;.C;, <, n) € Li(d), ((d,d'),>",m) € &;(E;;), and (>, m) is conjugated
with (<, n), then (C, <, n) € L;(d');
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Condition 24 guarantees that tableau satisfies the restriction of LBoxes. Conditions 25-
28 are distributed extensions of classical conditions to deal with V and 3 restriction.

Theorem 2. Forany ¥ = (Ks ={K1...Kn}, Ls = {L;;}) and any discrete degree
set Sw.r.t X, X has a discrete model within S iff it has a discrete tableau T within S.

From theorem 1 and 2, an algorithm that constructs a discrete tableau of X' within
S can be considered as a decision procedure for the satisfiability of . The discrete
tableau algorithm works on a completion forest F s> with a set S7 to denote *#” relation
between nodes and a tag function W(): for any node x, W (x) denotes that x is an
individual in the W (x)-th KB. When W (z) = W (y) = i, x is labelled with £;(x) C
M; =sub(K;) x {>,>,<,<} x S; and the edge (z,y) is labelled £;({z, y))={(R, >
,n)}, for some R € R, and n € S. When W(z) = i # W(y) = j, the edge
(z,y) is labelled L;;((x,y))={(E,pq,n)}, for some E € E;; and n € S. The tableau
algorithm initializes Fc to contain a root node x,, for each individual a in any O, sets
W (z,) = i and labels z, with £;(z,) = {(C,>x,n)|a : C' < n € A;}. Moreover,
for any pair (x4, zp), Li(Ta, ) = {(R,>x,n)[{a,b) : R < n € A;}, and for any
a#bec A, weadd (z,,7,) € S7. The algorithm expands the forest F 5 either by
extending £;(x) for the current node x or by adding new leaf node y with expansion
rules in table 2

In table 2] we adopt a optimized way to reduce <1 rules”: for any triple (C, <1, n) €
L;(x) with ”<” , we use =™ rules to add its equivalence (nnf(C),<~,1 — n) to
L;(x), and then deal it with > rules. Edges are added when expanding (3G.C, >, n),
(> pG,>,n) in L;(x), where G can be a fuzzy role or fuzzy link. A node y is called
an G-successor of another node = and z is called a G-predecessor of y, if (G,
,n) € L) ({z,y)). Ancestor is the transitive closure of predecessor. And for any
two connected nodes = and y, we define Dg(z,y)={{><,n)|P C* G,(P,>x,n) €
Liijy((z,y)) or (Inv(P),>x,n) € Li5)((y,x))}. If Dg(x,y) # 0, y is called a R-
neighbor of x. As inverse role and number restriction are allowed in SHZN', we make
use of pairwise blocking technique [[14] to ensure the termination and correctness of
our tableau algorithm: a node z is directly blocked by its ancestor y iff (1)  is not
a root node; (2) = and y have predecessors x’ and y’, such that £;(x) = L£;(y) and
Li(x") = Li(y') and L5 (V' y)) = Ligi;)((z',x)). A node x is indirectly blocked
if its predecessor is blocked. A node x is blocked iff it is either directly or indirectly
blocked.

A completion forest Fx is said to contain a clash, if for a node x in Fc with W (z) =
i, (1)L;(x) contains two conjugated triples, or a mistake triple (see condition 2 in dis-
crete tableau restriction); or (2) (> pR, <,n)or (< (p—1)R,<~,1—n) € L;(z), and
there are p nodes y1,y2,...yp in Fx: forany 1 < k < p, (R, >r, mi) € L;((z,yk)),
(>, my) is conjugated with (<1, n) and for any two nodes i and y,, (yx,y,) € S7.
A completion forest F'x; is clash-free if it does not contain a clash, and it is com-
plete if none of the expansion rules are applicable. From pairwise blocking technique,
the worst-case complexity of our tableau algorithm is 2NEXPTIME [13]. And the
soundness and completeness of our tableau algorithm are guaranteed by the following
theorem.
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Table 2. Expansion rules of discrete Tableau

Rule name Description
Assume W (z) =

KB rule: if C'C D € 7; and there is no n with (C, <,n) and (D, >,n) in L;(z);
then £;(z) — Li(z) U{(C,<,n) (D, >,n)} for somen € S.
The following rules are applied to nodes = which is not indirectly blocked.
™ rule: if (C,><,n) € ll (x) and <nnf(ﬁC) >, n) & Li(w);
then £;(z) — L;(z) U {(nnf(=C), n)}
" rule: if (C 1 D, >, n) € Li(x), and(C >, n)or(D >,n) & Li(x);
then £;(z) — Li(z) U{(C,>,n), <D >,n)}.
Li(z),
) u{T

" rule: if (C U D, >, n) € and (C,>,n),(D,>,n) ¢ L;(x)
then £;(z) — (z }, for some T' € {C,>,n),(D,>,n)}
V" rule: if (VR.C,1>,n) € Li(z), R € R, there is a R-neighbor y of z with (>',m) €

Dg(z,y), which is conjugated with (>7,1 —n), and (C,>,n) ¢ Li(y);
then Li(y) — Li(y) U {(C,>,n)}.

VI rule: if (VR.C, >, n) € Li(z), R € Eij , there is a R-neighbor y of 2 with (>, m) €,
Dpg(x,y) which is conjugated with (>~,1 — n), and (C,>,n) ¢ L;(y);
then £;(y) — Lj(y) U{(C,>,n)}.

VT rule: if (VP.C,>,n) € Li(x ) R € R, there is a R-neighbor y of « with R C* P
Trans(R)—True dnd D m) € Dg(z,y), (', m) is conjugated with (>, 1 — n)
and (VR. C >, n
then£ )i — VRC >,n)}.

< p” rule: if (< pR >, n e L ( ); there is p + 1 R-successors Y1, Yz, - - ., Yp+1 Of & with
(R,>i,m;) € Li((x,y:)) and (>, m;) is conjugated with (17,1 —n)
forany 1 <4 <p+ 1;and (yi,y;) ¢ S7 forsome1 <i<j<p+1
then merge two nodes y; and y; into one : £(y;) =z L(y:) U £(y])
Vﬂ? ‘C‘(yh ) - [‘(yh )U‘c(ij ) <yja > € S add <yb’ >lIlS

The following rules are applied to nodes x which is not blocked.
3% rule: if (3R.C,>,n) € Li(x); R € R,; there is not a R-neighbor y of =
with (>, n) € Dr(z,y) and (C,>,n) € Li(y).
then add a new node z with W (z) = ,(R,>,n) € L;({z, z)) and (C,>,n) € Li(z).
35> rule: if (GR.C, >, n) € Li(x); R € B,j; there is not a R-neighbor y of x
with (>, n} € DR(I y) and (C,>,n) € L;(y).
then add a new node z with W (z) = 7,(R,>,n) € L;;({(z,z)) and (C,>,n) € L;(z).
> pR” rule: if (> pR,>,n) € L;(x), there are not p R- neighbors y1, 2, ..., yp of &
with (R,>,n) € L;((z,y;)) and for any ¢ # 7, (ys,y;) € S7.
then add p new nodes 21, 22, . . ., zp with (R, >, n> €L (( Zi))
and for any two node z; and z; add (2, z;) in S

Theorem 3. Forany ¥ = (Kg = {K1...Kn}, Ls = {Li;}) and any discrete degree
set S w.r.t X has a discrete tableau within S iff the tableau algorithm can construct a
complete and clash-free completion forest.

5 Conclusion

By integrating £-connection into FDLs, this paper proposes a novel logical approach
to couple both fuzzy and distributed features within DLs. To achieve reasoning sup-
port within this new logical form CDFDL, we extend our semantical discretization in
distributed case and design a discrete tableau reasoning algorithm. Our work can be
considered as a logical foundation to support reasoning with multiple distributed fuzzy
ontologies.



Distributed Reasoning with Fuzzy Description Logics 203

References

10.

11.

12.

13.

14.

15.

. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284 (2001)

34-43

. Horrocks, 1., Patel-Schneider, P.: Reducing owl entailment to description logic satisfiability.

In: Proceeedings of the International Workshop on Description Logics (DL-05). (2003) 1-8

. Parry, D. Fuzzy Logic and the Semantic Web. In: A fuzzy ontology for medical document

retrieval. Elsevier Science, Oxford, UK (2006)

. Widyantoro, D.H., Yen, J.: A fuzzy ontology-based abstract search engine and its user stud-

ies. In: FUZZ-IEEE. (2001) 1291-1294

. Widyantoro, D., Yen, J.: Using fuzzy ontology for query refinement in a personalized ab-

stract search engine. In: Proceedings of Joint 9th IFSA World Congress and 20th NAFIPS
International Conference, Vancouver, Canada (2001)

. Straccia, U.: A fuzzy description logic. In: Proceedings of AAAI-98, 15th National Confer-

ence on Artificial Intelligence, Madison, Wisconsin (1998) 594-599

. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J., Horrocks, I.: Fuzzy owl: Uncertainty and

the semantic web. In: Proceedings of International Workshop of OWL: Experiences and
Directions, Galway (2005)

. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J., Horrocks, 1.: The fuzzy description logic shin.

In: Proceedings of International Workshop of OWL: Experiences and Directions, Galway
(2005)

. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J., Horrock, I.: A Fuzzy Description Logic for

Multimedia Knowledge Representation. In: Proc. of the International Workshop on Multi-
media and the Semantic Web. (2005)

Kutz, O., Lutz, C., Wolter, F., Zakharyaschev, M.: E-connections of abstract description
systems. Artificial Intelligence 156 (2004) 1-73

Cuenca Grau, B., Parsia, B., Sirin, E.: Working with multiple ontologies on the semantic
web. In: Proceedings of the 3thrd International Semantic Web Conference. (2004)

Li, YH., Xu, B.W,, Lu, J.J., Kang, D.Z.: Discrete tableaus for fshi. In: Proceedings of 2006
International Workshop on Description Logics - DL2006, The Lake District of the UK (2006)
Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia
Logica 69 (2001) 5-40

Horrocks, 1., Sattler, U.: A description logic with transitive and inverse roles and role hierar-
chies. Journal of Logic and Computation 9 (1999) 385-410

Horrocks, 1., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In:
Proceedings of of LPAR99. (1999)



	Introduction
	E-Connection Between Fuzzy Description Logics
	Fuzzy Links Between Two Knowledge Bases
	Combined Distributed Fuzzy Description Logic Knowledge Bases

	Semantical Discretization
	Discrete Tableau Algorithm
	Conclusion

