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Abstract. By the development of Semantic Web, increasing demands for vague
and distributed information representation have triggered a mass of theoretical
and applied researches of fuzzy and distributed ontologies, whose main logical
infrastructures are fuzzy and distributed description logics. However, current so-
lutions are proposed respectively on one of these two aspects. By integrating
E -connection into fuzzy description logics, this paper proposes a novel logical
approach to couple both fuzzy and distributed features within description logics.
The main contribution of these paper is to propose a discrete tableau algorithm to
achieve reasoning within this new logical system.
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1 Introduction

The Semantic Web stands for the idea of a future Web, in which information is given
well-defined meaning, better enabling intelligent Web information processing [1]. In
the Semantic Web, ontology is a crucial knowledge representation model to express
a shared understanding of information between users and machines, and description
logics (DLs for short) are often named as the logic infrastructure of ontologies [2].
Along with the evolvement from current Web to the Semantic Web, the management
of ill-structured, ill-defined or imprecise information plays a more and more important
role in applications of the Semantic Web, such as document retrieval [3], search en-
gine [4] and query refinement [5]. This trend calls for ontologies with capability to deal
with uncertainty. However, classical DLs are two-value-based languages. The need for
expressing uncertainty in the Semantic Web has triggered extending classical DLs with
fuzzy capabilities, yielding Fuzzy DLs (FDLs for short) [6,7,8,9]. Meanwhile, Working
with multiple distributed ontologies brings a growing body of work in distributed re-
search of description logic. In the distribution extension of classical DLs, Cuenca Grau
et al integrated the E-connections formalism [10] into OWL in a compact and natural
way by defining ”links” that stand for the inter-ontology relations [11]. Their extension
is largely based on reasoning technique in classical DLs with general TBoxes.

The main difficulty in achieving similar distributed extension within FDLs and com-
bining fuzzy and distributed features within DLs is that reasoning with general TBox
in FDLs is still a hard problem. In this year, we propose a discrete tableau algorithm
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to solve this problem [12], that can be considered as a base technique to achieve dis-
tributed reasoning in FDLs. In this paper, we will extend our discretization algorithm
in distributed case and combine E-connections to propose a distributed extension of
FDLs (here we focus on FSHIN [8], a complex FDL with inverse role, role hierarchy
and unqualified number restriction.) and a corresponding tableau reasoning algorithm
within this extension, hence achieve distributed reasoning within multiple FDL KBs.

2 E-Connection Between Fuzzy Description Logics

2.1 Fuzzy Links Between Two Knowledge Bases

Let K1 and K2 be two FSHIN KBs, I1 = 〈ΔI1 , ·I1〉 and I2 = 〈ΔI2 , ·I2〉 be their
fuzzy interpretations. E12 is a set of fuzzy links (denoted E12 and F12) that connect
these two K1 and K2. We define I12 = 〈ΔI12 , ·I12〉 as the fuzzy interpretation of E12,
where ΔI12 = ΔI1 × ΔI2 and for any E12 ∈ E12, ·I12 interprets it as a member-
ship function: ΔI1 × ΔI2 → [0, 1]. And to describe constraints among fuzzy links,
we propose fuzzy link axioms: E12 � F12, where E12 and F12 are fuzzy links. A in-
terpretation I12 satisfies the above fuzzy link axioms, iff for any d ∈ ΔI1 and any
d′ ∈ ΔI2 , EI12

12 (d, d′) ≤ F I12
12 (d, d′). An LBox L12 is a finite set of fuzzy link axioms,

I12 satisfies L12, iff it satisfies every axiom in L12.
These two FDL KBs K1 and K2 and their LBox L12 construct a simple Combined

Distributed FDL KB Σ = (K1, K2, L12). By introducing fuzzy link, we allow two new
concepts K1: ∃E12.C2 and ∀E12.C2 in K1, where E12 is a fuzzy link in E12 and C2 is
a fuzzy concept in K2. These two concepts are considered as normal fuzzy concepts in
K1, hence they can appear in TBox and ABox of K1.

For example, let K1 and K2 be two KBs about animal and person respectively. Dog1
and Person2 are fuzzy concepts in K1 and K2, and lovewith12 is a fuzzy link in L12.
By using fuzzy links, we can define a new fuzzy concept Friendlydog1 in K1’s TBox:

Friendlydog1 ≡ ∃lovewith12.P erson2 � Dog1 (1)

2.2 Combined Distributed Fuzzy Description Logic Knowledge Bases

In above subsection, we discuss the fuzzy links between two FDL KBs and give a simple
example of Combined Distributed FDL (CDFDL for short) KBs. Now we will give a
general definition of it.

Definition 1. a CDFDL KB is a pair Σ = (KS , LS), where KS is a set of FDL KBs:
KS = {K1, . . . , Km}, and LS is a set of LBoxes that connect any two knowledge bases
in KS: LS = {Lij |1 ≤ i, j ≤ m and i �= j}. For any fuzzy concept Cj in Kj and
any fuzzy link Eij in Lij and , the following expressions are also considered as fuzzy
concepts in Ki: ∃Eij .Cj and ∀Eij .Cj .

An interpretation of a CDFDL KB is a pair I = ({Ii}, {Iij}) , where Ii is an in-
terpretation of Ki and correspondingly Iij is an interpretation of Lij . For any fuzzy
concept Cj (role Rj ) in Kj , Cj

I = Cj
Ij (Rj

I = Rj
Ij ); for any fuzzy link Eij in Iij ,
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Eij
I = Eij

Iij ; for any individual aj in Kj , aj
I = aj

Ij ; and for ∃Eij .Cj and ∀Eij .Cj ,
their interpretation are inductively defined as:

∃Eij .Cj
I(d) = sup d′∈ΔIi {min(Eij

Iij (d, d′), Cj
Ij (d′))} (2)

∀Eij .Cj
I(d) = inf d′∈ΔIi {max(1 − Eij

Iij (d, d′), Cj
Ij(d′))}

An interpretation I is a model of Σ = (KS , LS), iff I satisfies every Ki in KS

and every Lij in LS. In this paper, we will propose a discrete tableau algorithm to
decide satisfiability of CDFDL KBs Σ, which is based on the semantical discretization
technique discussed in the following section.

3 Semantical Discretization

In this section, we will propose a novel semantical discretization technique to achieve
such translations: if a CDFDL KB has a fuzzy model, we use the discretization to trans-
late it into a special model, in which any value of membership degree functions belongs
to a given discrete degree set S and its cardinality |S| is polynomial of the sum of
the cardinality |Ai| of the ABox Ai in every KB Ki. And we call it a discrete model
within S.

The main issue in semantical discretization is to decide the discrete degree set S. Let
us now proceed formally in the creation of S. Given Σ = (KS = {K1, . . . , Km}, LS =
{Lij|1 ≤ i, j ≤ m, i �= j}) , and Ki=〈Ti, Ri, Ai〉. Let Nd be the set of degrees
appearing in any ABox: Nd = {n|α �� n ∈ Ai, 1 ≤ i ≤ m}. From Nd, we define the
degree closure N∗

d = {0, 0.5, 1}∪Nd∪{n|1−n ∈ Nd} and order degrees in ascending
order: N∗

d = {n0, n1, . . . , ns}, where for any 0 ≤ i ≤ s, ni < ni+1. For any two back-
to-back elements ni, ni+1 ∈ N∗

d , we insert their median mi+1 = (ni + ni+1)/2 to get
S = {n0, m1, n1, . . . , ns−1, ms, ns}. We call S a discrete degree set w.r.t Σ. Obviously
for any 1 ≤ i ≤ s, mi + ms+1−i = 1 and ni−1 < mi < ni. Note that:

|S| = 2s + 1 = O(|Nd|) = O(
m∑

i=1

|Ai|). (3)

Lemma 1. For any Ki=〈Ti, Ri, Ai〉 and any discrete degree set S w.r.t Σ, if Ki has a
fuzzy model, it has a discrete model within S.

The proof of this lemma is an extension of the proof in FDL cases [12]. Meanwhile, to
verify the soundness of our discretization, we have the following lemma.

Lemma 2. For any Lij and any discrete degree set S w.r.t Σ, if Lij has a fuzzy model,
it has a discrete model within S.

Since a discrete model is also a fuzzy model of Σ, we get the following theorem to
guarantee the equivalence between existence of fuzzy models and discrete models.

Theorem 1. For any Σ = (KS = {K1 . . .Km}, LS = {Lij}) and any discrete degree
set S w.r.t Σ, Σ has a fuzzy model iff it has a discrete model within S.
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4 Discrete Tableau Algorithm

Before expressing discrete tableau algorithms formally, here we introduce some nota-
tions. It will be assumed that the concepts appearing in tableau algorithms are written in
NNF [13]. The set of subconcepts of a concept C is denoted as sub(C). For a CDFDL
KB Σ, we define sub(Ki) as the union of all sub(C), for any concept C appears in Ki.
And we use the symbols � and � as two placeholders for the inequalities ≥, > and ≤,
<, and the symbols ��−, �− and �− to denote their reflections, for example, ≥ and ≤
are reflections to each other. Finally we define 〈��, n〉 as a degree pair. Two degree pairs
are called conjugated, iff they satisfy the following conditions (see table 1).

Table 1. Conjugated pairs

〈<, m〉 〈≤,m〉
〈≥, n〉 n ≥ m n > m

〈>, n〉 ¬∃n1 ∈ S with n < n1 < m n ≥ m

Now we define the discrete tableau for Σ. Let RKi and OKi be the sets of roles and
individuals appearing in Ki. A discrete tableau T for Σ within a degree set S is a pair:
T = 〈{Ti}, {Eij}〉, Ti = 〈Oi, Li, Ei, Vi〉, 1 ≤ i, j ≤ m and i �= j, where

– Oi: a nonempty set of nodes;
– Li: Oi → 2Mi , Mi = sub(Ki) × {≥, >, ≤, <} × S;
– Ei: RKi → 2Qi , Qi = {Oi × Oi} × {≥, >, ≤, <} × S;
– Vi:OKi → Oi, maps any individual into a corresponding node in Oi.
– Eij : Eij → 2Qij , Qij = {Oi × Oj} × {≥, >, ≤, <} × S;

Any Ti has a forest-like structure, which is a collection of trees that correspond to
individuals in the ABox Ai. Every tree consists of nodes standing for the individuals,
and edges representing the relations between two nodes (individuals). Each node d is
labelled with a set L(d) of degree triples: 〈C, ��, n〉, which denotes the membership
degree of d being an instance of C �� n . A pair of triple 〈C, ��, n〉 and 〈C, ��−, m〉
are conjugated if 〈��, n〉 and 〈��−, m〉 are conjugated. In any Ti, for any d, d′ ∈ Oi,
a, b ∈ OKi , C, D ∈ sub(Ki) and R ∈ RKi , the following conditions must hold:

1. There does not exist two conjugated degree triples in Li(d);
2. There does not exist mistake triples: 〈⊥, ≥, n〉 (n > 0), 〈�, ≤, n〉 (n < 1), 〈⊥, >

, n〉, 〈�, <, n〉, 〈C, >, 1〉 and 〈C, <, 0〉 in Li(d);
3. If C � D ∈ T , then there must be some n ∈ S with 〈C, ≤, n〉 and 〈D, ≥, n〉 in

Li(d);
4. If 〈C, ��, n〉 ∈ Li(d), then 〈nnf(¬C), ��−, 1 − n〉 ∈ Li(d);
5. If 〈C � D, �, n〉 ∈ Li(d), then 〈C, �, n〉 and 〈D, �, n〉 ∈ Li(d);
6. If 〈C � D, �, n〉 ∈ Li(d), then 〈C, �, n〉 or 〈D, �, n〉 ∈ Li(d);
7. If 〈C � D, �, n〉 ∈ Li(d), then 〈C, �, n〉 or 〈D, �, n〉 ∈ Li(d);
8. If 〈C � D, �, n〉 ∈ Li(d), then 〈C, �, n〉 and 〈D, �, n〉 ∈ Li(d);
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9. If 〈∀R.C, �, n〉 ∈ Li(d),〈〈d, d′〉, �′, m〉 ∈ Ei(R), and 〈�′, m〉 is conjugated with
〈�−, 1 − n〉, then 〈C, �, n〉 ∈ Li(d′);

10. If 〈∀R.C, �, n〉 ∈ Li(d), then there must be a node d′ ∈ Oi with 〈〈d, d′〉, �−, 1 −
n〉 ∈ Ei(R) and 〈C, �, n〉 ∈ Li(d′);

11. If 〈∃R.C, �, n〉 ∈ Li(d), then there must be a node d′ ∈ Oi with 〈〈d, d′〉, �, n〉 ∈
Ei(R) and 〈C, �, n〉 ∈ Li(d′);

12. If 〈∃R.C, �, n〉 ∈ Li(d), 〈〈d, d′〉, �′, m〉 ∈ Ei(R), and 〈�′, m〉 is conjugated with
〈�, n〉, then 〈C, �, n〉 ∈ Li(d′);

13. If 〈∀P.C, �, n〉 ∈ Li(d), 〈〈d, d′〉, �′, m〉 ∈ Ei(R) for some R �∗ P with Trans
(R)=true and 〈�′, m〉 is conjugated with 〈�−, 1−n〉, then 〈∀R.C, �, n〉 ∈ Li(d′);

14. If 〈∃P.C, �, n〉 ∈ Li(d), 〈〈d, d′〉, �′, m〉 ∈ Ei(R) for some R �∗ P with Trans
(R)=true and 〈�′, m〉 is conjugated with 〈�, n〉, then 〈∃R.C, �, n〉 ∈ Li(d′);

15. If 〈≥ pR, �, n〉 ∈ Li(d), then |{d′|〈〈d, d′〉, �, n〉 ∈ Ei(R)|} ≥ p;
16. If 〈≥ pR, �, n〉 ∈ Li(d), then |{d′|〈〈d, d′〉, �′, m〉 ∈ Ei(R)}| < p, where 〈�′, m〉

is conjugated with 〈�, n〉;
17. If 〈≤ pR, �, n〉 ∈ Li(d), then |{d′|〈〈d, d′〉, �′, m〉 ∈ Ei(R)}| < p + 1, where

〈�′, m〉 is conjugated with 〈�−, 1 − n〉;
18. If 〈≤ pR, �, n〉 ∈ Li(d), |{d′|〈〈d, d′〉, �−, 1 − n〉 ∈ Ei(R)}| ≥ p + 1;
19. If 〈〈d, d′〉, ��, n〉 ∈ Ei(R), then 〈〈d′, d〉, ��, n〉 ∈ Ei(Inv(R));
20. If 〈〈d, d′〉, �, n〉 ∈ Ei(R) and R �∗ P , then 〈〈d, d′〉, �, n〉 ∈ Ei(P );
21. If a : C �� n ∈ Ai, then 〈C, ��, n〉 ∈ Li(Vi(a));
22. If 〈a, b〉 : R �� n ∈ Ai, then 〈〈Vi(a), Vi(b)〉, ��, n〉 ∈ Ei(R);
23. If a �= b ∈ Ai, then Vi(a) �= Vi(b).

From conditions 1-2, the discrete tableau contains no clash. Condition 3 deals with
general TBoxes: for any C � D ∈ T , we adopt a direct extension of reasoning tech-
nique in DLs: since any membership degree value in the discrete models belongs to S,
for any node d, we guess d : C=n and d : D=m, for some n,m ∈ S and n ≤ m.
Then we add 〈C, ≤, n〉 and 〈D, ≥, n〉 in L(d). Conditions 4-20 are necessary for the
soundness of discrete tableaus. Conditions 21-23 ensure the correctness of individual
mapping function V().

Additionally, we add some constraints to deal with fuzzy links. For any d ∈ Oi,
d′ ∈ Oj , Eij , Fij ∈ Lij and Cj ∈ sub(Kj), the following conditions must hold:

24. If 〈〈d, d′〉, �, n〉 ∈ Eij(Eij) and Eij � Fij ∈ Lij , then 〈〈d, d′〉, �, n〉 ∈ Eij(Fij);
25. If 〈∀Eij .Cj , �, n〉 ∈ Li(d),〈〈d, d′〉, �′, m〉 ∈ Eij(Eij), and 〈�′, m〉 is conjugated

with 〈�−, 1 − n〉, then 〈C, �, n〉 ∈ Lj(d′);
26. If 〈∀Eij .Cj , �, n〉 ∈ Li(d), then there must be a node d′ ∈ Oj with 〈〈d, d′〉, �−, 1

− n〉 ∈ Eij(Eij) and 〈C, �, n〉 ∈ Lj(d′);
27. If 〈∃Eij .Cj , �, n〉 ∈ Li(d), then there must be a node d′ ∈ Oj with 〈〈d, d′〉, �, n〉

∈ Eij(Eij) and 〈C, �, n〉 ∈ Lj(d′);
28. If 〈∃Eij .Cj , �, n〉 ∈ Li(d), 〈〈d, d′〉, �′, m〉 ∈ Eij(Eij), and 〈�′, m〉 is conjugated

with 〈�, n〉, then 〈C, �, n〉 ∈ Lj(d′);
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Condition 24 guarantees that tableau satisfies the restriction of LBoxes. Conditions 25-
28 are distributed extensions of classical conditions to deal with ∀ and ∃ restriction.

Theorem 2. For any Σ = (KS = {K1 . . .Km}, LS = {Lij}) and any discrete degree
set S w.r.t Σ, Σ has a discrete model within S iff it has a discrete tableau T within S.

From theorem 1 and 2, an algorithm that constructs a discrete tableau of Σ within
S can be considered as a decision procedure for the satisfiability of Σ. The discrete
tableau algorithm works on a completion forest FΣ with a set S �= to denote ” �=” relation
between nodes and a tag function W (): for any node x, W (x) denotes that x is an
individual in the W (x)-th KB. When W (x) = W (y) = i, x is labelled with Li(x) ⊆
Mi = sub(Ki) × {≥, >, ≤, <} × S; and the edge 〈x, y〉 is labelled Li(〈x, y〉)={〈R, ��
, n〉}, for some R ∈ RKi and n ∈ S. When W (x) = i �= W (y) = j, the edge
〈x, y〉 is labelled Lij(〈x, y〉)={〈E, ��, n〉}, for some E ∈ Eij and n ∈ S. The tableau
algorithm initializes FK to contain a root node xa for each individual a in any OKi , sets
W (xa) = i and labels xa with Li(xa) = {〈C, ��, n〉|a : C �� n ∈ Ai}. Moreover,
for any pair 〈xa, xb〉, Li〈xa, xb〉 = {〈R, ��, n〉|〈a, b〉 : R �� n ∈ Ai}, and for any
a �= b ∈ Ai, we add 〈xa, xb〉 ∈ S �=. The algorithm expands the forest FΣ either by
extending Li(x) for the current node x or by adding new leaf node y with expansion
rules in table 2.

In table 2, we adopt a optimized way to reduce ”� rules”: for any triple 〈C, �, n〉 ∈
Li(x) with ”�” , we use ¬�� rules to add its equivalence 〈nnf(C), �−, 1 − n〉 to
Li(x), and then deal it with � rules. Edges are added when expanding 〈∃G.C, �, n〉,
〈≥ pG, �, n〉 in Li(x), where G can be a fuzzy role or fuzzy link. A node y is called
an G-successor of another node x and x is called a G-predecessor of y, if 〈G, ��
, n〉 ∈ Li(ij)(〈x, y〉). Ancestor is the transitive closure of predecessor. And for any
two connected nodes x and y, we define DG(x, y)={〈��, n〉|P �∗ G, 〈P, ��, n〉 ∈
Li(ij)(〈x, y〉) or 〈Inv(P ), ��, n〉 ∈ Li(ij)(〈y, x〉)}. If DG(x, y) �= ∅, y is called a R-
neighbor of x. As inverse role and number restriction are allowed in SHIN , we make
use of pairwise blocking technique [14] to ensure the termination and correctness of
our tableau algorithm: a node x is directly blocked by its ancestor y iff (1) x is not
a root node; (2) x and y have predecessors x′ and y′, such that Li(x) = Li(y) and
Li(x′) = Li(y′) and Li(ij)(〈y′, y〉) = Li(ij)(〈x′, x〉). A node x is indirectly blocked
if its predecessor is blocked. A node x is blocked iff it is either directly or indirectly
blocked.

A completion forest FK is said to contain a clash, if for a node x in FK with W (x) =
i, (1)Li(x) contains two conjugated triples, or a mistake triple (see condition 2 in dis-
crete tableau restriction); or (2) 〈≥ pR, �, n〉 or 〈≤ (p−1)R, �−, 1−n〉 ∈ Li(x), and
there are p nodes y1, y2, . . . yp in FΣ : for any 1 ≤ k ≤ p, 〈R, �k, mk〉 ∈ Li(〈x, yk〉),
〈�k, mk〉 is conjugated with 〈�, n〉 and for any two nodes yk and yq, 〈yk, yq〉 ∈ S �=.
A completion forest FΣ is clash-free if it does not contain a clash, and it is com-
plete if none of the expansion rules are applicable. From pairwise blocking technique,
the worst-case complexity of our tableau algorithm is 2NEXPTIME [15]. And the
soundness and completeness of our tableau algorithm are guaranteed by the following
theorem.
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Table 2. Expansion rules of discrete Tableau

Rule name Description

Assume W (x) = i

KB rule: if C � D ∈ Ti and there is no n with 〈C, ≤, n〉 and 〈D, ≥, n〉 in Li(x);
then Li(x) → Li(x) ∪ {〈C, ≤, n〉 〈D, ≥, n〉} for some n ∈ S.

The following rules are applied to nodes x which is not indirectly blocked.
¬�� rule: if 〈C, ��, n〉 ∈ Li(x) and 〈nnf(¬C), ��−, n〉 /∈ Li(x);

then Li(x) → Li(x) ∪ {〈nnf(¬C), ��−, n〉}.
�� rule: if 〈C � D, �, n〉 ∈ Li(x), and 〈C, �, n〉 or 〈D, �, n〉 /∈ Li(x);

then Li(x) → Li(x) ∪ {〈C, �, n〉, 〈D, �, n〉}.
�� rule: if 〈C � D, �, n〉 ∈ Li(x), and 〈C, �, n〉, 〈D, �, n〉 /∈ Li(x)

then Li(x) → Li(x) ∪ {T}, for some T ∈ {〈C, �, n〉, 〈D, �, n〉}
∀� rule: if 〈∀R.C, �, n〉 ∈ Li(x), R ∈ RKi , there is a R-neighbor y of x with 〈�′, m〉 ∈

DR(x, y), which is conjugated with 〈�−, 1 − n〉, and 〈C, �, n〉 /∈ Li(y);
then Li(y) → Li(y) ∪ {〈C, �, n〉}.

∀L� rule: if 〈∀R.C, �, n〉 ∈ Li(x), R ∈ Eij , there is a R-neighbor y of x with 〈�′, m〉 ∈,
DR(x, y) which is conjugated with 〈�−, 1 − n〉, and 〈C, �, n〉 /∈ Lj(y);
then Lj(y) → Lj(y) ∪ {〈C, �, n〉}.

∀+� rule: if 〈∀P.C, �, n〉 ∈ Li(x), R ∈ RKi , there is a R-neighbor y of x with R �∗ P ,
Trans(R)=True and 〈�′, m〉 ∈ DR(x, y), 〈�′, m〉 is conjugated with 〈�−, 1 − n〉
and 〈∀R.C, �, n〉 /∈ Li(y);
then L(y)i → L(y)i ∪ {〈∀R.C, �, n〉}.

≤ p� rule: if 〈≤ pR, �, n ∈ Li(x); there is p + 1 R-successors y1, y2, . . . , yp+1 of x with
〈R, �i, mi〉 ∈ Li(〈x, yi〉) and 〈�i, mi〉 is conjugated with 〈�−, 1 − n〉
for any 1 ≤ i ≤ p + 1; and 〈yi, yj〉 /∈ S �= for some 1 ≤ i < j ≤ p + 1
then merge two nodes yi and yj into one : L(yi) → L(yi) ∪ L(yj);
∀x, L(yi, x) → L(yi, x) ∪ L(yj , x), 〈yj , x〉 ∈ S �=, add 〈yi, x〉 in S �=

The following rules are applied to nodes x which is not blocked.
∃� rule: if 〈∃R.C, �, n〉 ∈ Li(x); R ∈ RKi ; there is not a R-neighbor y of x

with 〈�, n〉 ∈ DR(x, y) and 〈C, �, n〉 ∈ Li(y).
then add a new node z with W (z) = i,〈R, �, n〉 ∈ Li(〈x, z〉) and 〈C, �, n〉 ∈ Li(z).

∃L� rule: if 〈∃R.C, �, n〉 ∈ Li(x); R ∈ Eij ; there is not a R-neighbor y of x
with 〈�, n〉 ∈ DR(x, y) and 〈C, �, n〉 ∈ Lj(y).
then add a new node z with W (z) = j,〈R, �, n〉 ∈ Lij(〈x, z〉) and 〈C, �, n〉 ∈ Lj(z).

≥ pR� rule: if 〈≥ pR, �, n〉 ∈ Li(x), there are not p R-neighbors y1, y2, . . . , yp of x
with 〈R, �, n〉 ∈ Li(〈x, yi〉) and for any i �= j, 〈yi, yj〉 ∈ S �=.
then add p new nodes z1, z2, . . . , zp with 〈R, �, n〉 ∈ Li(〈x, zi〉) ,
and for any two node zi and zj add 〈zi, zj〉 in S �=.

Theorem 3. For any Σ = (KS = {K1 . . .Km}, LS = {Lij}) and any discrete degree
set S w.r.t Σ has a discrete tableau within S iff the tableau algorithm can construct a
complete and clash-free completion forest.

5 Conclusion

By integrating E-connection into FDLs, this paper proposes a novel logical approach
to couple both fuzzy and distributed features within DLs. To achieve reasoning sup-
port within this new logical form CDFDL, we extend our semantical discretization in
distributed case and design a discrete tableau reasoning algorithm. Our work can be
considered as a logical foundation to support reasoning with multiple distributed fuzzy
ontologies.
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