
Y. Shi et al. (Eds.): ICCS 2007, Part I, LNCS 4487, pp. 176–183, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Regularized Knowledge-Based Kernel Machine 

Olutayo O. Oladunni and Theodore B. Trafalis 

School of Industrial Engineering, The University of Oklahoma 
202 West Boyd, CEC 124 Norman, OK 73019 USA 

{tayo, ttrafalis}@ou.edu 

Abstract. This paper presents a knowledge-based kernel classification model 
for binary classification of sets or objects with prior knowledge. The prior 
knowledge is in the form of multiple polyhedral sets belonging to one or two 
classes, and it is introduced as additional constraints into a regularized knowl-
edge-based optimization problem. The resulting formulation leads to a least 
squares problem that can be solved using matrix or iterative methods. To evalu-
ate the model, the experimental laminar & turbulent flow data and the Reynolds 
number equation used as prior knowledge were used to train and test the pro-
posed model. 

1   Introduction 

In data mining applications, incorporation of prior knowledge is usually not consid-
ered because most algorithms do not have the adequate means for incorporating ex-
plicitly such types of constraints. In the case of Support Vector Machines (SVMs) 
model [1], Fung et al. [2], [3] developed explicit formulations for incorporating prior 
knowledge in the form of multiple polyhedral sets belonging to one or more catego-
ries into a linear and nonlinear classification model. 

The main motivation of this paper is to develop a nonlinear kernel approach based 
on the Tikhonov regularization scheme for knowledge-based classification discrimi-
nation. The proposed model problem is the kernel-based formulation of the multi-
classification model in [4] for a two-class classification problem. The feature of the 
proposed model is that it leads to a least squares problem that can be solved by solv-
ing a linear system of equations that reduces computational time. In contrast, Fung et 
al. [2], [3] solve a linear programming optimization problem. 

In this work, a combination of the prior knowledge sets together with the concept 
of the least squares SVM (LS-SVM) [5] and regularization based LS-SVM [6] results 
into a linear system of equations.  Our approach is different in the sense that, the pro-
posed minimization problem is an unconstrained optimization problem resulting into 
a smaller linear system of equations than those proposed in [5], [6]. By expressing the 
normal vector w as a linear combination of the data points, it turns out that in the least 
squares knowledge based formulation the prior knowledge(s) for nonlinear classifica-
tion is the precise implication of the prior knowledge(s) for linear classification. This 
differs from the knowledge based model by Fung et al. [3], where the prior knowl-
edge(s) for nonlinear classification is not the precise implication of the prior knowl-
edge(s) for linear classification. In their formulation, the knowledge constraints are 
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kernelized so as to fit a standard [7] linear programming formulation for nonlinear 
kernel classification. 

The regularized knowledge-based kernel classification model can be considered as 
a least squares knowledge based nonlinear kernel formulation of Fung et al. [3]. Note 
that the resulting regularized knowledge-based model problem minimizes the classical 
regularization objective function with strict L2 norm functions. This norm guarantees 
the differentiability of the objective function, and as result a linear system of equa-
tions is derived. In the knowledge based model by Fung et al. [3], the differentiability 
property is lost because in its model problem the functions are L1 norm functions, 
which further restrain the solution of the model problem and also requires an LP 
solver to obtain a solution. 

Benefits of the regularized knowledge-based kernel classification model includes: 
the reduction of a classification problem to a smaller linear system of equation, the 
ability to provide fast solutions which require no special solvers, the ability to provide 
explicit solution in terms of the given data and prior knowledge sets, and the ability to 
provide effective and robust classifiers as a result of the bounding planes within a 
cluster of points (margin increase). 

2   Prior Knowledge in Two-Class Classification 

Suppose that in addition to the points belonging to a class, there is prior information 
belonging to one or two categories.  The knowledge sets [2] in an n dimensional space 
are given in the form of a polyhedral set determined by the set of linear equalities and 
linear inequalities. The polyhedral knowledge set { | }nx R Bx b∈ ≤  or { | }nx R Bx b∈ =  
should lie in the halfspace { | 1}n Tx R x w γ∈ ≥ +  where ug nB R ×∈ , ug nB R ×∈ , ugb R∈  
and ugb R∈ are the prior information belonging to class 1. or u ug g  is the number of 
prior knowledge (equality or inequality) constraints in class 1. or v vd d  is the number 
of prior knowledge (equality or inequality) constraints in class 2. Therefore, the fol-
lowing implications must hold for a given (w, γ), where w is a normal vector and γ is 
the location of the optimal separating plane relative to the origin: 

{ } { }1  or 1T TBx b x w Bx b x wγ γ≤ ⇒ ≥ + = ⇒ ≥ + . (2.1) 

Using the nonhomogeneous Farkas theorem of the alternative [8] or, using duality in 
linear programming (LP) [9], equations (2.1) can be transformed into a set of knowl-
edge constraints [2]. 

{ } { }0, 1 0, 0  or 0, 1 0T T T TB u w b u u B u w b uγ γ+ = + + ≤ ≥ + = + + ≤ . (2.2) 

To formulate the nonlinear counterpart of the linear classification, the primal vari-
able w is replaced by its equivalent dual representation Tw A Yα= , where α  is the 
vector of dual variables, (1) (2)[  ]T T TA A A=  whose rows are the points belonging to 
classes 1 and 2, and Y  is a diagonal matrix whose diagonals are +1 for points in class 
1 and -1 for points in class 2. 
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Let m nA R ×∈ and n kB R ×∈ . The kernel ( , )K A B  maps m n n kR R× ××  into m kR × . The 

behavior of a kernel matrix strongly relies on Mercer’s condition [10], [11] for sym-
metric kernel functions, i.e., a kernel matrix is a positive semidefinite (PSD) matrix. 

Using the dual representation of w and applying the kernel definition, a more com-
plex classifier can be determined, and the nonlinear optimal separating hyperplane is 
given as:  

( , )T TK x A Yα γ= . (2.3) 

The implications for a given ( ,  ,  ,  )A Y α γ  now becomes the following [3]: 

{ } { }1  or 1T T T TBx b x A Y Bx b x A Yα γ α γ≤ ⇒ ≥ + = ⇒ ≥ + , (2.4) 

and the prior knowledge constraints can be rewritten as: 

{ } { }0, 1 0, 0  or 0, 1 0
T T T T T T

B u A Y b u u B u A Y b uα γ α γ+ = + + ≤ ≥ + = + + ≤ . (2.5) 

Notice that there is no kernel present in the prior knowledge, and as a result equation 
(2.4) is the precise implications of equations (2.1). In the subsequent section, when 
the prior knowledge constraint is incorporated into a classification model, the kernel 
will be employed to obtain nonlinear classifiers. 

3   Regularized Knowledge-Based Kernel Classification Machine 

Consider a problem of classifying data sets with prior knowledge in n
R  that are repre-

sented by a data matrix ( ) im niA R ×∈ , where 1, 2i = , and knowledge sets (1) (1){ | }x B x b≤  
or (1) (1){ | }x B x b=  belonging to class 1, (2) (2){ | }x B x b≤  or (2) (2){ | }x B x b=  belonging 
to class 2. Let (1)A  be a 1m n×  matrix whose rows are points in class 1, and 

1
m  is the 

number of data in class 1. Let (2)A  be a 2m n×  matrix whose rows are points in class 
2, and 2m  is the number of data in class 2. This problem can be modeled through the 
following optimization problem: 
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Where α  is the vector of dual variables; γ is the location of the optimal separating 
plane; λ  is a regularization parameter; [ , ]

T T T
a u u=  is a vector of all multipliers 

referring to class 1, and [ , ]
T T T

c v v=  is a vector of all multipliers referring to class 2. 
( , )TK K A A=  is a kernel matrix; matrix (1) (2)[  ]T T TA A A=  whose rows are the points 

belonging to classes 1 & 2 points respectively; Y  is a diagonal matrix whose diago-
nals are +1 for points in class 1 and -1 for points in class 2; and vector (1) (2)[  ]T T Te e e=  
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is a vector of ones. Matrices 
u

B &
v

B  are diagonal block matrices whose diagonals 
contain knowledge sets belonging to class 1 & 2. The diagonals of uB  are (1) ug nRB ×∈ , 

(1) ug nRB ×∈  and of vB  are ( 2) vd nRB ×∈ , ( 2 ) vd nRB ×∈ . Matrices 
bu

B &
bv

B are created 
where the diagonals of 

bu
B are (1) 1ugRb ×∈ , (1) 1ugRb ×∈ and of 

bv
B are ( 2 ) 1vdRb ×∈ , 

( 2 ) 1vdRb ×∈ . Matrices ( ) ( )[  ]
TT T

u u u
I I I=  & ( ) ( )[  ]

TT T

v v v
I I I=  are block matrices, where ( )u

I , 

( )u
I , ( )v

I , ( )v
I  ∈ n nR × are identity matrices. Vectors ue  & ve  consist of entries 

1 1,e e R∈  & 2 2,e e R∈ , where 1 1 2 2, , ,e e e e  are equal to one. Vectors ue , ve  are vectors 
of ones, where each entry corresponds to a vector (1) (1),b b  ( ( 2 ) ( 2),b b ) respectively. 

The (α , γ) taken from a solution of (3.1) generates the nonlinear separating surface 
(2.3). Problem (3.1) was formulated using the concept of penalty functions [9], and it is 
called the nonlinear Tikhonov regularization [12] knowledge-based kernel machine 
classification model (NTRKKM). It is a binary classification formulation of the multi-
classification model in [4] to accommodate nonlinearly separable patterns with knowl-
edge sets, and explicit solutions in dual space in terms of the given data can be derived. 
Problem (3.1) is slightly different from the knowledge based model by Fung et al. [4], 
which is a linear programming formulation. The difference lies in the selection of the 
norm distance and the squared error with regularization term (least squares). 

Below is the explicit solution to NTRKKM in terms of the given data: 

( )h d tγ α= − . (3.2) 

1 ,  where mM z M z Rα α α−= ⇒ = ∈ . (3.3) 

Note that h , d, t, M , z  are defined as follows. 

1T T T T T
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h e YYe e e B UB e e e B VB e

−
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. (3.7) 

Minimizing the L2 norm of α  guarantees a solution for a positive tradeoff constant. 
It is evident from matrix M that only the diagonals change with any change in the trade-
off constant, implying we can always get a diagonally dominant matrix M which can 
ensure a solution. However, if the first term in M is replaced with a kernel matrix, then 
for any constant, all elements in matrix M also increase. Therefore, we cannot guarantee 
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a diagonally dominant matrix M and hence we cannot always guarantee a solution when 
minimizing the square norm of the linear combination of w in dual space. 

Assume that U, V and M  are invertible matrices. Solution (3.3) provides an esti-
mate of the dual variables. Such a linear system is easier to solve than a quadratic or 
linear programming formulation. Methods for solving the system include matrix de-
composition methods, or iterative based methods [9], [13]. Its solution involves the 
inversion of an m m×  dimensional matrix. 

The decision function for classifying a point x is given by: 

(1)

(2)

1,  if point ( ) is in class  
( ) ( , )

1,  if point ( ) is in class 

T T
x A

D x sign K x A Y
x A

α γ
+

= − =
−

⎧⎪⎡ ⎤ ⎨⎣ ⎦ ⎪⎩
. (3.8) 

4   Laminar/Turbulent Flow Pattern Data Set 

The fluid flow data uses flow rate, density, viscosity, borehole diameter, drill collar 
diameter and mud type to delineate the flow pattern (laminar, +1; turbulent, -1) of the 
model. There are 92 data-points and 5 attributes, 46 instances for laminar flow pattern 
and 46 instances turbulent flow pattern [14], [15], [16]. The attributes are as follows: 
ρ , density of fluid (lbm/gal – continuous variable); q , flow rate (gal/min – continu-
ous variable); (d2+d1), summation of borehole and drill collar (OD) diameter (in – 
continuous variable); μp, plastic viscosity (cp – continuous variable); Mud type, water 
based mud (1) oil based mud (2) (categorical variable). 

Prior Knowledge: In addition to the fluid flow data, the Reynold’s equation [17] for a 
Bingham plastic model is used as prior knowledge to develop a knowledge based 
classification model. As additional constraints, the prior knowledge will represent the 
transition equations which delineates laminar from turbulent flows. Since the flow 
pattern data are scaled by taking the natural logarithm of each instance, the prior 
knowledge needs to be scaled by also considering a natural logarithm transformation 
of the equations. Below is the equivalent logarithmic transformation for Reynold’s 
equation [17]: 

2 1

2 1

ln( ) ln( ) ln( ) ln( ) 1.9156 1 (Laminar)

ln( ) ln( ) ln( ) ln( ) 1.9156 1 (Turbulent)

T

p

T

p

q d d x w

q d d x w

ρ μ ε γ

ρ μ ε γ

+ − + − ≤ − → − ≥ +
⇒

+ − + − ≥ + → − ≤ −

⎧
⎨
⎩

, (4.1) 

where ε is a deviation factor, a small fraction perturbing the critical Reynold’s num-
ber. The dataset where divided up as follows; 50% of the whole data is used as train-
ing data, while the remaining 50% was used as testing data. 

5   Computational Results 

In this section, the results of the analyzed data sets and prior sets described in section 4, 
are presented and discussed. The NTRKKM model is used to train the data sets with 
prior knowledge. To demonstrate the uniqueness of the formulations, a comparison  
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between the models above was conducted. The comparisons were made by evaluating 
a performance parameter (misclassification error) defined below: 

1
Total number of correctly classified points

Total number of observed points
β = −

⎛ ⎞
⎜ ⎟
⎝ ⎠

. (5.1) 

β  represents the overall misclassification error rate, i.e., the fraction of misclassified 

points for a given data set. For 100% classification, 0β = . The tradeoff constant con-

sidered is within the interval 0 – 100, and the deviation factor ε = 0.01. Further com-
parisons were made between the NTRKKM model, LTRKSVM [16] model problem, 
the traditional SVM [1], [14], and the mixed integer programming kernel based classi-
fiers (MIPKCps & MIPKCp, [15]). The polynomial kernel, ( ), ( 1)T P

i ik x x x x= + , where p is 

the degree of the polynomial (p = 2) was used. 
Results of the fluid flow pattern data with prior knowledge information trained on 

the NTRKKM model, and compared with the LTRKSVM, SVM, MIPKCps, & 
MIPKCp model, are shown in Tables 1 & 2. It should be noted that β  (error rate) in 

the Tables are defined by (5.1), and the computing (cpu) time is measured in seconds. 
All computations and experiments were performed using MATLAB [18] for 
NTRKKM, LTRKSVM & SVM model [19], and CPLEX OPL [20] for the mixed 
integer programming kernel based models. 

Table 1. Sample and Average random sample validation test error rate for NTRKKM on Fluid 
Flow Pattern Data (varying tradeoff, λ) 

 

Table 2. Average error, accuracy & cpu. time of NTRKKM, LTRKSVM, MIPKC & SVM 
models 

 

Tables 1 & 2 contain results for the NTRKKM, LTRKSVM, MIPKCps, MIPKCp, & 
SVM model on the fluid flow pattern classification data. The models in comparison 
generally report promising error rates. The NTRKKM model reports the smallest error 
(0). This means that the testing data set was correctly classified (100% classification). 
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The error rate (0.0139) for the model with prior knowledge (LTRKSVM) performs in 
the same capacity as the data driven mixed integer programming model (MIPKCps). 
The computation time of both the NTRKKM and LTRKSVM model are comparable, 
and both clearly outperform the other learning models. The SVM models reports the 
next best computation time and the MIPKC model reports the worst time. 

The fast solution of the LTRKSVM model is due the formulation of the problem 
that is analyzed analytically in the primal (input) space, i.e., the dimension n of the 
classification problem is equal to the number of attributes (variables) of the data set; 
in our case n = 5. The fast solution of the NTRKKM model is due to the small number 
of data in the test set (m = 46 test observations) and when possible, the avoidance of 
iterative methods in computing its solution. The next best computation time to the 
NTRKKM model is the one of the SVM model. Its fast solution is also due to the 
small number of test observations (m = 46 test observations). Note that in this case 
iterative methods are employed to find its solution. The MIPKCps, MIPKCp models 
require more time because their formulation is based on integer and mixed integer 
programming techniques which generally perform more computations in obtaining a 
solution than its linear counterparts such as SVM, LTRKSVM and NTRKKM. 

6   Conclusion 

In this paper, a binary classification model called the nonlinear classification Tikhonov 
regularization knowledge-based kernel machine (NTRKKM) is described. This model 
problem is an unconstrained optimization problem for discriminating between two 
disjoint sets. The proposed model can be considered as a least squares formulation of 
Fung et al. [3] knowledge-based nonlinear kernel model. The model was applied to the 
laminar/turbulent fluid flow data. Comparisons were made with the linear and nonlin-
ear counterpart formulations, and best statistics were obtained by performing training 
on the NTRKKM model. The NTRKKM model can be applied to determine the flow 
patterns of fluid flow with different rheology. The fluid model in this paper is a  
non-Newtonian fluid, pseudoplastic model (Bingham plastic) with two flow patterns 
(laminar & turbulent flows). The same concept can be applied to a Newtonian or non-
Newtonian fluid with three flow patterns (laminar, transition and turbulent). 
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