
Non-trivial Black-Box Combiners for
Collision-Resistant Hash-Functions Don’t Exist

Krzysztof Pietrzak�

CWI Amsterdam
pietrzak@cwi.nl

Abstract. A (k, �)-robust combiner for collision-resistant hash-functions
is a construction which from � hash-functions constructs a hash-function
which is collision-resistant if at least k of the components are collision-
resistant. One trivially gets a (k, �)-robust combiner by concatenating
the output of any � − k + 1 of the components, unfortunately this is
not very practical as the length of the output of the combiner is quite
large. We show that this is unavoidable as no black-box (k, �)-robust
combiner whose output is significantly shorter than what can be achieved
by concatenation exists. This answers a question of Boneh and Boyen
(Crypto’06).

1 Introduction

A function H : {0, 1}∗ → {0, 1}v is a collision-resistant hash-function (CRHF),
if no efficient algorithm can find two inputs M �= M ′ where H(M) = H(M ′),
such a pair (M, M ′) is called a collision for H .1

In the last few years we saw several attacks on popular CRHFs previously
believed to be secure [18,19]. Although provably secure2 hash-functions exist
(see e.g. [3] and references therein), they are rather inefficient and rarely used in
practice. As we do not know which of the CRHFs used today will stay secure, it
is natural to investigate combiners for CRHFs. In its simplest form the problem
is the following: given two hash-functions

H1, H2 : {0, 1}∗ → {0, 1}v,

can we construct a new hash-function which is collision-resistant if either H1 or
H2 is? The answer is that of course we can, just concatenate the outputs:

H(X) = H1(X)‖H2(X). (1)
� Supported by DIAMANT, the Dutch national mathematics cluster for discrete in-

teractive and algorithmic algebra and number theory. This work was partially done
while the author was a postdoc at the Ecole Normale Supérieure, Paris.

1 This definition is very informal as there are some issues which make it hard to have a
definition for collision-resistant hash-functions which is theoretically and practically
satisfying, see [15] for recent discussion on that topic.

2 Provably secure means that finding a collision can be shown to be at least as hard
as solving some concrete (usually number theoretic) problem.

M. Naor (Ed.): EUROCRYPT 2007, LNCS 4515, pp. 23–33, 2007.
c© International Association for Cryptology Research 2007

24 K. Pietrzak

As any collision M, M ′ for H is also a collision for H1 and H2, if either H1 or
H2 is collision-resistant, so is H . Unfortunately the length of the output of H
is the sum of the output lengths of H1 and H2, this makes the combiner quite
unattractive for practical purposes.

1.1 The Boneh-Boyen and Our Result

Boneh and Boyen [2] ask whether one can combine CRHFs such that the output
length is (significantly) less than what can be achieved by concatenation. They
prove a first negative result in this direction, namely that there is no black-box
construction for combining CRHFs in such a way that the output is shorter than
what can be achieved by concatenation under the additional assumption that
this combiner queries each of the components exactly once. They ask whether
a similar impossibility result can be obtained in the general case where the
combiner is allowed to query the components several times. We answer this
question in the affirmative: any combiner for � functions with range {0, 1}v must
have output length at least (v − O(log(q)))� bits3, where q is the number of
oracle calls made by the combiner. Stated in asymptotic terms, if q ∈ 2o(v) is
subexponential, then the output length is in (1 − o(1))v�, and if q is constant
the output length is in v� − O(1), this must be compared to v� which is trivially
achieved by concatenation.

(k, �)-Robust Combiner. In this paper we will consider the more general ques-
tion whether secure and non-trivial (k, �)-robust combiners for collision-resistant
hash-functions exist. A (k, �)-robust combiner is collision-resistant, if at least k
(and not just one) of the components used are secure. We trivially get a (k, �)-
robust combiner by concatenating any � − k + 1 of the components,4 which
gives an output length of v(� − k + 1). We show that this cannot be signifi-
cantly improved as any (k, �)-robust combiner must have output length at least
(v − O(log(q)))(� − k + 1) − �.

The main technical contribution of this paper is Lemma 2, which generalizes
(and as a special case contains the statement of) Theorem 3 from [2]. Roughly,
this lemma states that there exist hash-functions and a collision for any combiner
with sufficiently short output, such that this collision does not trivially lead to
collisions for all5 of the hash-functions. The proof of this lemma follows from a
simple application of the probabilistic method, and in particular is much simpler
than the proof of Theorem 3 in [2].

An Information Theoretic Argument. There is a quite intuitive infor-
mation theoretic argument why (k, �)-robust combiners for CHRFs {0, 1}∗ →
{0, 1}v whose output is significantly shorter than v(� − k + 1) bits can’t exist.
We give this argument below, it will turn out that this simple approach gives
an impossibility result which is much weaker than what we prove in this paper.
This argument is shown only for motivational reasons and is not relevant for the
3 In this paper all logarithms are to base 2.
4 We’ll look at this construction in more detail in the next section.
5 Or for � − k + 1 of the hash-functions if we consider (k, �)-robust combiners.

Non-trivial Black-Box Combiners for CRHFs Don’t Exist 25

rest of the paper, the reader can skip the rest of this section if this does not seem
to be of interest.

Basically, the argument uses the fact that one can encode a collision for any
function with output length w using roughly w bits6 and if the function is uni-
formly random, then w bits are also necessary. Now if a combiner with short
output is instantiated with uniformly random functions, (the encoding of) a
collision for the combiner will simply be too short to encode the information
necessary to find collisions for the components. A bit more precisely, for (1, 2)-
robust combiners this argument goes as follows. Assume we are given a combiner
C for two functions {0, 1}∗ → {0, 1}v whose output length is 2v − t (i.e. t bits
less than concatenation). Now we simply sample two uniformly random functions
H1, H2 : {0, 1}∗ → {0, 1}v and output a collision M, M ′ for CH1,H2 , such a colli-
sion can be encoded using 2v−t bits. To encode a collision for a random function
{0, 1}∗ → {0, 1}v, v bits are necessary and sufficient. Thus given the collision for
the combiner, we still lack about t/2 bits of information (i.e. we have that much
min-entropy) about a collision for one of the Hi’s, and would have to make about
2t/2 more queries to this Hi in order to find a collision.This argument only rules
out very strong combiners, where from any collision on the combiner we expect
to get a collision for both components very efficiently. For example it does not
rule out the possibility of (1, 2)-robust combiners with range 3v/2 (which we can
consider significantly less than 2v), where each collision for the combiner gives
collisions for both components if we are ready to invest an additional O(2v/4)
queries. Such a combiner would still be sufficient if we are willing to assume that
at least one of the components we combine has security (slightly more than)
2v/4. This assumption is very mild, as usually v is something like 160 or 256,
such that the birthday bound 2v/2 is infeasible, but if a collision can be found
after 2v/4 queries, the CRHF would be considered completely broken. More gen-
erally, the above argument does not rule out (1, 2)-robust combiners with output
length 2v − t for a t where 2t/2 queries are considered feasible (for an attacker).
In contrast, the theorem proven in this paper rules out (1, 2)-robust combiners
with output length 2v − t, unless the combiner itself makes 2t/2 invocations to
the components.

6 The following is a possible encoding. To define the encoding choose values X1, X2, . . .
in {0, 1}w+1 uniformly at random. Now given a function f : {0, 1}∗ → {0, 1}w (which
can be chosen adversarialy, but independent of the Xi’s) let i be minimal such that
f(Xi) has at least 2 preimages in {0, 1}w+1 and output any X ∈ {0, 1}w+1 where
X �= Xi and f(X) = f(Xi). The expectation of i is at most 2 (as the probability that
f(Z) has only one preimage in {0, 1}w+1 for a random Z is at most 1/2). Thus given
X, we must make an expected number of at most 3 queries to f to find a collision
(i.e. first compute f(X) and then try f(X1), f(X2), . . . until f(X) = f(Xi)). If we
only have w + 1 − c (not w + 1) bits for the encoding, we can simply omit the last
c bits in the encoding just described, and when decoding trying all 2c possibilities
for this bits, thus we need an expected number of 2 + 2c evaluations of f to find a
collision given w + 1 − c bits of X, which is better than no information at all if c is
less than w/2.

26 K. Pietrzak

1.2 Related Work

Combiners. The idea of combining two or more cryptographic components in
order to get a system which is secure whenever at least one of the underlying
primitives is secure is quite old.7 The early results are on symmetric encryption
schemes [1,6,11]. Combiners for asymmetric primitives were constructed by Dodis
and Katz [5] (for CCA secure encryption schemes) and Harnik et al. [7] (for key-
agreement). The general notion of a combiner was put forward by Herzberg
[8] who calls them “tolerant combiners”. In recent works one often calls them
“robust combiners”, a term introduced in [7]. Combiners have been generalized
in several ways:

(k, �)-Robust Combiners: [7] put forward the notion of (k, �)-robust combin-
ers as discussed in the last section. Such combiners are only guaranteed to
be secure if at least k (and not just one) of the � components used is secure.
Interestingly, for natural primitives as statistically hiding commitments [8]
and oblivious transfer [7,13] only 2-3 but no 1-2 combiners are known.

Cross-Primitive Combiners: In a cross-primitive combiner the combined
primitive is different from the components used, one can think of this as
simultaneously being a reduction and a combiner. This notion was introduced
by Meier and Przydatek [12] who construct a 1-2 private information retrieval
to oblivious transfer cross-primitive combiner, which is interesting as normal
1-2 combiners for oblivious transfer might not exist [7].

Efficiency and Other Parameters: In practice the mere existence of a
combiner is not enough, as the parameters of a combiner are important.
Efficiency is always of concern, fortunately for most primitives where com-
biners are known to exist, also efficient realizations are known [7,8], with bit-
commitments being a notable exception [8] to that rule. Besides efficiency,
for different primitives also other parameters are important, in particular
this paper is about the output-length of combiners for CRHFs.

Collision Resistance. collision-resistant hash-functions are very important
and subtle [15] cryptographic primitives which have attracted a lot of research,
even more in the recent years as widely used (presumably) collision-resistant
hash-functions as MD5 or SHA-1 have been broken [18,19]. Here we only mention
some of the generic results on CRHFs.

Simon shows that collision-resistant hash-functions cannot be constructed
from one-way functions via a black-box reduction [17]. On the positive side,
Naor and Yung [14] show that for some applications (in particular for signature
schemes) collision resistance is not necessary, as universal one-way hash-functions
are enough. Those can be constructed from one-way functions [10,16].

Merkle and Damg̊ard show that by iterating a CRHF with fixed input length,
one gets a CRHF for inputs of arbitrary length. Most CRHFs used today follow
7 We also see many combiners in the physical world, for example one often has several

different locks on a door. This does not to simply increase the time a burglar needs
to break the k locks by a factor of k, but there’s hope that some particular lock
might turn out to be much harder to come by than the others.

Non-trivial Black-Box Combiners for CRHFs Don’t Exist 27

this approach. Coron et al. [4] show that the Merkle-Damg̊ard construction does
not give a random function if instantiated with a random function (which was
not the design goal of this construction), but that this can be achieved with
some small modifications. Joux [9] shows that for iterated hash-functions (like
the Merkle-Damg̊ard construction) finding many values which hash to the same
value is not much harder than finding an ordinary collision. As a consequence
concatenating the output of such hash-functions does not increase the security:
let H1, H2 be iterated hash-functions with v bits output, then one can find a
collision for H(X) = H1(X)‖H2(X) in time O(v2v/2).

2 Combiners for CRHFs

Informally, a (k, �)-robust combiner for CRHFs is a construction (modeled as an
oracle circuit C) which, if instantiated with any � hash-functions H1, . . . , H� :
{0, 1}∗ → {0, 1}v, is collision-resistant if at least k of the Hi’s are. In order
to show that a construction is a (k, �)-robust combiner, one must provide an
efficient procedure P which given two colliding inputs for the combiner, finds
collisions for at least � − k + 1 of the underlying Hi’s. In this paper we only
consider black-box combiners as defined in [7], this means that C and P are
only given oracle access to the Hi’s.

The following definition of a (k, �)-robust combiner is a generalization of the
definition given in [2], where only the case k = 1 was considered.
Definition 1. A combiner for � collision-resistant hash-functions
{0, 1}∗ → {0, 1}v is a pair (C, P) where C is an oracle circuit and P is an oracle
probabilistic polynomial-time Turing machine (PPTM)8

C : {0, 1}m → {0, 1}n P : {0, 1}2m → {0, 1}∗.
There are � types of oracle gates (tapes) in C (P). With BH1,...,H�(X) (where
B is C or P) we denote the output of B on input X when the � types of oracle
gates are instantiated with functions H1, . . . , H� : {0, 1}∗ → {0, 1}v respectively.

We say that P k-succeeds on M, M ′ ∈ {0, 1}∗ and oracles H1, . . . , H� if its
output contains collisions for all but at most k − 1 of the Hi’s, i.e. for

PH1,...,H�(M, M ′) → (U1, . . . , U�, U
′
1, . . . , U

′
�)

we have

∃J ⊆ {1, . . . , �}, |J | ≥ � − k + 1 : (Ui, U
′
i) is a collision for Hi.

Let Advk
P [(H1, . . . , H�), (M, M ′)] denote the probability (over P ’s coin tosses)

that PH1,...,H�(M, M ′) k-succeeds. Then (C, P) is an ε-secure (k, �)-combiner,
if for all (compatible) H1, . . . , H� and all collisions (M, M ′) on CH1,...,H� we have

Advk
P [(H1, . . . , H�), (M, M ′)] > 1 − ε.

We say that (C, P) is an (k, �)-robust combiner if it is ε-secure for a small ε.9

8 The only reason P is defined as a Turing machine and not as a circuit is that we
don’t want to put an a priori bound on the output length of P .

9 Here “small” usually means negligible in some security parameter.

28 K. Pietrzak

For example consider the following (k, �)-robust combiner (C, P)

CH1,...,H�(M) → H1(M)‖ . . . ‖H�−k+1(M)

PH1,...,H�(M, M ′) → (M, . . . , M), (M ′, . . . , M ′)

As any collision M, M ′ for CH1,...,H� is a collision for Hi for i = 1, . . . , � − k + 1,

Advk
P [(H1, . . . , H�), (M, M ′)] = 1.

So (C, P) can be considered a secure (k, �)-robust combiner, as from any collision
on CH1,...,H� we get from P collisions for all but k − 1 of the Hi’s, thus if k of
the Hi’s are secure, also CH1,...,H� must be secure. The output length of C is
n = v(�− t+1), by the following theorem this cannot be significantly improved.

Theorem 1. Let (C, P) be a (k, �)-robust combiner, where C : {0, 1}m →
{0, 1}n has qC oracle gates and P makes at most qP oracle calls. Suppose that

n < (v − 2 log(2qC))(� − k + 1) − � − 1 and m > n. (2)

Then there exist M, M ′ ∈ {0, 1}m and functions Ĥi : {0, 1}∗ → {0, 1}v for
i = 1, . . . , � relative to which

Advk
P [(Ĥ1, . . . , Ĥ�), (M, M ′)] ≤ (qP + qC)2 + k

2v
. (3)

For the special case where k = 1 and C queries each Ĥi exactly once (which are
the constructions considered in [2]) the bound on n can be improved to

n < v� − 1 and m > n

or
n < v� and m − 1 > n.

The last statement slightly improves on the main result from [2] where a stronger
n < m− log � bound was needed in order to get n < v�. As we can find a collision
for any function with range {0, 1}v in 2v/2 steps, in order to reason about CRHFs
with range {0, 1}v the value 2v/2 must be unfeasibly large. In particular for any
reasonable combiner qP + qC
 2v/2 and thus the advantage (3) will be very
small.

Let us remark that in [2] the ranges of the Hi’s were allowed to be different,
for the sake of exposition we drop this generalization, but it is straight forward
to adapt (the proof of) Theorem 1 to this more general case. Note that when
the Hi’s have different output lengths, say Hi has length vi where v1 ≤ v2 ≤
v3 ≤ . . . ≤ v�, then we can construct a (k, �)-robust combiner by concatenating
the outputs of H1, . . . , H�−k+1 (i.e. the Hi’s with the shortest outputs), which
will give a combiner with output length

∑�−k+1
i=1 vi. Again, this is basically best

possible, as for this setting Theorem 1 holds by generalizing equation (2) to

n <
�−k+1∑

i=1

(vi − 2 log(2qC)) − � − 1 and m > n.

and replacing v with v1 in (3).

Non-trivial Black-Box Combiners for CRHFs Don’t Exist 29

Following [2], to prove Theorem 1 it is sufficient to prove that hash-functions
H1, . . . , H� and a collision M, M ′ exists where in the computation of CH1,...,H�

on inputs M and M ′ at least k of the Hi’s are not queried on two distinct inputs
X, X ′ where Hi(X) = Hi(X ′). Note that this means that one does not trivially
get a collision for those Hi’s when learning M, M ′. Let J ⊆ {1, . . . , �}, |J | = k
be the indices of these k Hi’s. We prove the existence of such Hi’s and M, M ′

in Lemma 2 below. Then, from such H1, . . . , H� and M, M ′ we can get the
Ĥ1, . . . , Ĥ� as required by Theorem 1, by setting Ĥi(X) = Hi(X) for all in-
puts X which appear as input to Hi in the computation of CH1,...,H�(M) or
CH1,...,H�(M ′), and Ĥi(X) is assigned a random value otherwise. Clearly M, M ′

is also a collision for CĤ1,...,Ĥ� , moreover all Ĥi where i ∈ J are “very” collision-
resistant, as we just randomly defined their outputs, except on a subset of inputs
which itself does not contain a collision, Lemma 1 below is a formal statement
of this intuitive argument.

Proof (of Theorem 1). The theorem follows from Lemmata 1 and 2.

In the lemmata below10 let

– Wi(X) be the set of oracle queries to Hi made while evaluating CH1...H�(X).
– Vi(X) = {Hi(W) : W ∈ Wi(X)} be the set of corresponding outputs (taken

without repetition).

Lemma 1. Let (C, P) be a (k, �)-robust combiner, where C has qC oracle gates
and P makes at most qP oracle calls. Assume there exist oracles Hi : {0, 1}∗ →
{0, 1}v, i = 1, . . . , � and messages M, M ′ such that

– M �= M ′ and CH1,...,H�(M) = CH1,...,H�(M ′).
– |Vj(M)∪Vj(M ′)|= |Wj(M)∪Wj(M ′)| for at least k different j ∈{1, . . . , �}.

Then there exist deterministic Ĥi : {0, 1}∗ → {0, 1}v, i = 1, . . . , � relative to
which

Advk
P [(Ĥ1, . . . , Ĥ�), (M, M ′)] ≤ (qP + qC)2 + k

2v
.

Proof. Let J ⊆ {1, . . . , �}, |J | = k be the indices of the k hash-functions for
which no collision occurs during the computation of CH1,...,H� on input M and
M ′, i.e.

∀j ∈ J : |Vj(M) ∪ Vj(M ′)| = |Wj(M) ∪ Wj(M ′)|.

For i �∈ J we let Ĥi := Hi, and for each i ∈ J let Ri : {0, 1}∗ → {0, 1}v be
uniformly random and

Ĥi(W) :=
{

Hi(W) if W ∈ Wi(M) ∪ Wi(M ′)
Ri(W) otherwise

Note that CĤ1,...,Ĥ�(M) = CĤ1,...,Ĥ�(M ′) as for each i, Hi(W) = Ĥi(W) for
inputs W ∈ Wi(M) ∪ Wi(M ′) which come up on the computation of CH1,...,H�

10 Our Lemma 1 is basically Theorem 2 from [2], the only difference is that we consider
(k, �)-robust combiners whereas [2] were only interested in the case k = 1.

30 K. Pietrzak

on inputs M, M ′, let Q denote all those inputs together with the corresponding
outputs.

Q =
�⋃

i=1

{Vi(M),Wi(M),Vi(M ′),Wi(M ′)}

Let P ′ be the oracle PPTM which makes at most qP oracle calls and maximizes
the probability α defined below.

α = Pr
P ′Ĥ1,...,Ĥ� (Q)→{U1,...,U�,U ′

1,...,U ′
�}]

[∃i ∈ J : Ui �= U ′
i ∧ Ĥi(Ui) = Ĥi(U ′

i)] (4)

α is an upper bound on Advk
P [(Ĥ1, . . . , Ĥ�), (M, M ′)], as one possible strategy

for P ′ is to first compute M, M ′, which given Q can be done without access
to the Ĥi oracles, and then simulate P Ĥ1,...,Ĥ�(M, M ′) and output the output
of this simulation.11 To save on notation let P ∗ denote P ′Ĥ1,...,Ĥ�(Q). We say
that P ∗ found a collision if for some12 Ĥi, i ∈ J it makes an oracle query Ĥi(X)
where either for a previous query X ′ �= X to Ĥi we have Ĥi(X) = Ĥi(X ′) or
Ĥi(X) ∈ Vi(M) ∪ Vi(M ′) and X �∈ Wi(M) ∪ Wi(M ′). For i = 1, . . . , qP let Ci

denote the event that P ∗ found a collision after the i’th oracle query is made. If
the i’th oracle query is to a Ĥj where j �∈ J or a query which has already been
made we cannot get a collision, so

Pr[Ci|¬Ci−1] = 0.

So assume that the i’th oracle query is a new query X to a Ĥj where j ∈ J . Then
Ĥi(X) = Ri(X) is uniformly random and independent of any previous outputs,
thus the probability that it will collide with any of the ≤ i previous queries to
Ĥi or with one the ≤ 2qC values in Vi(M) ∪ Vi(M ′) is at most (2qC + i)/2v,
we get

Pr[CqP] =
qP∑

i=1

Pr[Ci|Ci−1] ≤
qP∑

i=1

2qC + i

2v
≤ qP (2qC + qP)

2v
≤ (qP + qC)2

2v
.

Even if ¬CqP , i.e. P ∗ does not find a collision for some Ĥi, i ∈ J , there still is a
tiny chance that P ∗ guesses Ui, U

′
i where Ĥi(Ui) = Ĥi(U ′

i) for some of the i ∈ J .
The probability of this is at most |J |/2v ≤ k/2v. Taking everything together:

Advk
P [(Ĥ1, . . . , Ĥ�), (M, M ′)] ≤ α ≤ Pr[CqP] + k/2v ≤ (qP + qC)2 + k

2v
. (5)

We’re almost done, except that in the above inequality, the Ĥi’s are not deter-
ministic as required by the lemma, but randomized (as the Ri’s were chosen at
11 The reason we give away the full Q is that that M, M ′ will usually leak some

information on Q, and the simplest way to deal with this leakage is to simply
assume that P ′ knows all those values.

12 Note that we don’t care about collision for Ĥi, i �∈ J as Q contains collisions for
those Ĥi’s.

Non-trivial Black-Box Combiners for CRHFs Don’t Exist 31

random). We can get fixed Ĥi’s for which (5) holds by choosing the Ri’s so they
minimize the left hand side of (5). ��

Lemma 2. Let C : {0, 1}m → {0, 1}n be as in the previous lemma. Then when-
ever

n < (v − 2 log(2qC))(� − k + 1) − � − 1 and m > n

there exist functions H1, . . . , H� and messages M, M ′ such that

– M �= M ′ and CH1,...,H�(M) = CH1,...,H�(M ′).
– |Vj(M)∪Vj(M ′)|= |Wj(M)∪Wj(M ′)| for at least k different j ∈{1, . . . , �}.

For the special case where k = 1 and C queries each Hi exactly once (which are
the constructions considered in [2]) the bounds on n can be improved to

n < v� − 1 and m > n

or
n < v� and m − 1 > n.

Proof. Consider the following random experiment. First we sample � functions
Hi : {0, 1}∗ → {0, 1}v uniformly at random.13 Then M, M ′ ∈ {0, 1}m are sam-
pled uniformly at random. We define the events E1 and E2 as

E1 ⇐⇒ M �= M ′ and CH1,...,H�(M) = CH1,...,H�(M ′)
E2 ⇐⇒ ∃J ⊆ {1, . . . , �}, |J | > � − k

where ∀j ∈ J : |Vj(M) ∪ Vj(M ′)| �= |Wj(M) ∪ Wj(M ′)|

We will show that Pr[E1] > Pr[E2], which then implies Pr[E1 ∧ ¬E2] > 0. This
will prove the lemma as it shows that random H1, . . . , H� and M, M ′ have the
property as claimed by the lemma with non-zero probability, and thus H1, . . . , H�

and M, M ′ with this property exist.
As Pr[M = M ′] = 2−m, Pr[CH1,...,H�(M) = CH1,...,H�(M ′)] ≥ 2−n and m > n

we get
Pr[E1] ≥ 2−n − 2−m ≥ 2−n−1. (6)

Let qi denote the number of Hi oracle gates in C, note that
∑�

i=1 qi = qC . We can
upper bound Pr[E2] by the probability that the best oracle algorithm AH1,...,H�

which can query the i’th oracle Hi at most 2qi times finds a collision for at least
� − k + 1 of the Hi’s.14 As the Hi’s are all independent random functions, the
best A can do is to query it i’th oracle on 2qi distinct inputs (which ones is

13 One can’t simply sample a Hi as this would need infinite randomness, but one can
use lazy sampling here, this means that Hi(X) is only assigned a (random) value
when Hi is actually invoked on input X.

14 This is an upper bound as one possible strategy for AH1,...,H� is to simply evaluate
CH1,...,H� on two random inputs M, M ′ to get success probability exactly Pr[E2].

32 K. Pietrzak

irrelevant), by the birthday bound15 the probability of finding a collision for any
Hi is at most 2qi(2qi − 1)/2v+1, now

Pr[E2] ≤ Pr[AH1,...,H� finds � − k + 1 collisions]

≤
∑

J⊆{1,...,�}
|J|=�−k+1

Pr[∀i ∈ J : AH1,...,H� finds a collision for Hi]

≤
∑

J⊆{1,...,�}
|J|=�−k+1

∏

i∈J

2qi(2qi − 1)
2v+1

<
∑

J⊆{1,...,�}
|J|=�−k+1

(2q2
C)�−k+1

2v(�−k+1) ≤
(

� − k + 1
�

)
(2q2

C)�−k+1

2v(�−k+1) <
2�(2q2

C)�−k+1

2v(�−k+1) .

From the above equation, (6) and n < (v − 2 log(2qC))(� − k + 1)− � − 1 we now
get log(Pr[E1]) > log(Pr[E2]), and thus Pr[E1] > Pr[E2], as

log(Pr[E1]) ≥ log(2−n−1) = −n − 1 > −(v − 2 log(2qC))(� − k + 1) + �

and

log(Pr[E2]) < log
(

2�(2q2
C)�−k+1

2v(�−k+1)

)

= −(v − 2 log(2qC))(� − k + 1) + �

Our estimate on Pr[E2] has some slack as to keep the expression simple. For
the special case k = 1 and qi = 1, i = 1, . . . , � which covers the constructions
considered in [2] we get

Pr[E2] ≤
∏

i∈{1,...,�}

2qi(2qi − 1)
2v+1 = 2−v�

which satisfies Pr[E1] > Pr[E2] already for n < v� − 1. If we additionally assume
that n < m − 1 (not just n < m) then we can strengthen (6) to Pr[E1] > 2−n−1

and Pr[E1] > Pr[E2] holds for the optimal n < v�. ��

References

1. C. A. Asmuth and G. R. Blakley. An efficient algorithm for constructing a cryp-
tosystem which is harder to break than two other cryptosystems. Computers and
Mathematics with Applications, pages 447–450, 1981.

2. Dan Boneh and Xavier Boyen. On the impossibility of efficiently combining collision
resistant hash functions. In CRYPTO, 2006.

3. Scott Contini, Arjen K. Lenstra, and Ron Steinfeld. Vsh, an efficient and provable
collision-resistant hash function. In EUROCRYPT, pages 165–182, 2006.

15 This bound states that when randomly throwing q balls into N buckets, some bucket
will contain more than one element with probability at most q(q − 1)/2N .

Non-trivial Black-Box Combiners for CRHFs Don’t Exist 33

4. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
Merkle-damg̊ard revisited : How to construct a hash function. In Advances in
Cryptology — CRYPTO ’05, volume 3621 of Lecture Notes in Computer Science,
pages 430–448, 2005.

5. Yevgeniy Dodis and Jonathan Katz. Chosen-ciphertext security of multiple en-
cryption. In TCC, pages 188–209, 2005.

6. Shimon Even and Oded Goldreich. On the power of cascade ciphers. ACM Trans.
Comput. Syst., 3(2):108–116, 1985.

7. Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust
combiners for oblivious transfer and other primitives. In EUROCRYPT, pages 96–
113, 2005.

8. Amir Herzberg. On tolerant cryptographic constructions. In CT-RSA, pages 172–
190, 2005.

9. Antoine Joux. Multicollisions in iterated hash functions. application to cascaded
constructions. In CRYPTO, pages 306–316, 2004.

10. Jonathan Katz and Chiu-Yuen Koo. On constructing universal one-way hash func-
tions from arbitrary one-way functions, 2005. Cryptology ePrint Archive: Report
2005/328.

11. Ueli M. Maurer and James L. Massey. Cascade ciphers: The importance of being
first. J. Cryptology, 6(1):55–61, 1993.

12. Remo Meier and Bartosz Przydatek. On robust combiners for private information
retrieval and other primitives. In Cynthia Dwork, editor, CRYPTO ’06, volume
4117 of Lecture Notes in Computer Science, pages 555–569, 2006.

13. Remo Meier, Bartosz Przydatek, and Jürg Wullschleger. Robuster combiners for
oblivious transfer. In TCC 2007, volume 4392 of Lecture Notes in Computer Sci-
ence, pages 404–418, 2007.

14. Moni Naor and Moti Yung. Universal one-way hash functions and their crypto-
graphic applications. In STOC, pages 33–43, 1989.

15. Phillip Rogaway. Formalizing human ignorance: Collision-resistant hashing without
the keys, 2006. Cryptology ePrint Archive: Report 2006/281.

16. John Rompel. One-way functions are necessary and sufficient for secure signatures.
In STOC, pages 387–394, 1990.

17. Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions? In EUROCRYPT, pages 334–345, 1998.

18. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
sha-1. In CRYPTO, pages 17–36, 2005.

19. Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash functions. In
EUROCRYPT, pages 19–35, 2005.

	Introduction
	The Boneh-Boyen and Our Result
	Related Work

	Combiners for CRHFs

