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Abstract. We study conditional computational entropy: the amount of
randomness a distribution appears to have to a computationally bounded
observer who is given some correlated information. By considering condi-
tional versions of HILL entropy (based on indistinguishability from truly
random distributions) and Yao entropy (based on incompressibility), we
obtain:

– a separation between conditional HILL and Yao entropies (which can
be viewed as a separation between the traditional HILL and Yao
entropies in the shared random string model, improving on Wee’s
2004 separation in the random oracle model);

– the first demonstration of a distribution from which extraction tech-
niques based on Yao entropy produce more pseudorandom bits than
appears possible by the traditional HILL-entropy-based techniques;

– a new, natural notion of unpredictability entropy, which implies con-
ditional Yao entropy and thus allows for known extraction and hard-
core bit results to be stated and used more generally.

1 Introduction

The various information-theoretic definitions of entropy measure the amount of
randomness a probability distribution has. As cryptography is able to produce
distributions that appear, for computationally bounded observers, to have more
randomness than they really do, various notions of computational entropy at-
tempt to quantify this appearance of entropy. The commonly used HILL entropy
(so named after [HILL99]) says that a distribution has computational entropy
k if it is indistinguishable (in polynomial time) from a distribution that has
information-theoretic entropy k.1 The so-called Yao entropy [Yao82, BSW03],
says that a distribution has computational entropy k if it cannot be efficiently
compressed to below k bits and then efficiently decompressed. Other computa-
tional notions of entropy have been considered as well [BSW03, HILL99].
1 The specific notion of information-theoretic entropy depends on the desired applica-

tion; for the purposes of this paper, we will use min-entropy, defined in Section 2.
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Computational notions of entropy are useful, in particular, for extracting
strings that are pseudorandom (i.e., look uniform to computationally bounded
observers) from distributions that appear to have entropy. Indeed, generation
of pseudorandom bits is the very purpose of computational entropy defined in
[HILL99], and its variant considered in [GKR04]. Pseudorandom bits have many
uses, for example, as keys in cryptographic applications.

The adversary in cryptographic applications (or, more generally, an observer)
often possesses information related to the distribution whose entropy is being
measured. For example, in the case of Diffie-Hellman key agreement [DH76] the
adversary has gx and gy, and the interesting question is the amount of com-
putational entropy of gxy. Thus, the entropy of a distribution for a particular
observer (and thus the pseudorandomness of the extracted strings) depends on
what other information the observer possesses. Because notions of computa-
tional entropy necessarily refer to computationally-bounded machines (e.g., the
distinguisher for the HILL entropy or the compressor and decompressor for the
Yao entropy), they must also consider the information available to these ma-
chines. This has sometimes been done implicitly (e.g., in [GKR04]); however,
most commonly used definitions do not do so explicitly.

In this work, we explicitly put forward notions of conditional computational
entropy. This allows us to:

1. Separate conditional Yao entropy from conditional HILL entropy by demon-
strating a joint distribution (X, Z) such that X has high Yao entropy but
low HILL entropy when conditioned on Z.

2. Demonstrate (to the best of our knowledge, first) application of Yao en-
tropy by extracting more pseudorandom bits from a distribution using
Yao-entropy-based techniques than seems possible from HILL-entropy-based
techniques.

3. Define a new, natural notion of unpredictability entropy, which can be used,
in particular, to talk about the entropy of a value that is unique, such as
gxy where gx and gy are known to the observer, and possibly even verifiable,
such as the preimage x of a one-way permutation f , where y = f(x) is known
to the observer.

HILL-Yao Separation. The first contribution (Section 3) can be seen as mak-
ing progress toward the open question of whether Yao entropy implies HILL
entropy, attributed in [TVZ05] to Impagliazzo [Imp99] (the converse is known
to be true: HILL entropy implies Yao entropy, because compressibility implies
distinguishability). Wee [Wee04] showed that Yao entropy does not imply HILL
entropy in the presence of a random oracle and a membership testing oracle.
Our separation of conditional Yao entropy from conditional HILL entropy can
be seen as an improvement of the result of [Wee04]: it shows that Yao entropy
does not imply HILL entropy in the presence of a (short) random string, because
the distribution Z on which X is conditioned is simply the uniform distribution
on strings of polynomial length. The separation holds under the quadratic resid-
uosity assumption.
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Randomness Extraction. Usually, pseudorandomness extraction is analyzed via
HILL entropy, because distributions with HILL entropy are indistinguishable
from distributions with the same statistical entropy, and we have tools (namely,
randomness extractors [NZ96]) to obtain uniform strings from the latter. Tools
are also available to extract from Yao entropy: namely, extractors with a spe-
cial reconstruction property [BSW03]. Our second contribution (Section 4) is to
show that considering the Yao entropy and applying a reconstructive extractor
can yield many more pseudorandom bits than the traditional analysis, because,
according to our first result, Yao entropy can be much higher than HILL entropy.
This appears to be the first application of Yao entropy, and also demonstrates
the special power of reconstructive extractors.

It is worth mentioning that while our separation of entropies is conditional,
the extraction result holds even for the traditional (unconditional) notion of
pseudorandomness. The analysis of pseudorandomness of the resulting string,
however, relies on the notion of conditional entropy, thus demonstrating that it
can be a useful tool even in the analysis of pseudorandomness of unconditional
distributions.

Unpredictability Entropy. Unpredictability entropy is a natural formalization of
a previously nameless notion that was implicitly used in multiple works.. Our
definition essentially says that if some value cannot be predicted from other
information with probability higher than 2−k, then it has entropy k when condi-
tioned on that information. For example, when a one-way permutation f is hard
to invert with probability higher than 2−k, then conditioned on f(x), the value
x has entropy k. The use of conditional entropy is what makes this definition
meaningful for cryptographic applications.

We demonstrate that almost k pseudorandom bits can be extracted from
distributions with unpredictability entropy k, by showing that unpredictability
entropy implies conditional Yao entropy, to which reconstruction extractors can
be applied. Thus, unpredictability entropy provides a simple language that al-
lows, in particular, known results on hardcore bits of one-way functions to be
stated more generally.

We also prove other (fairly straightforward) relations between unpredictability
entropy and HILL and Yao conditional entropies.

2 Definitions and Notation

In this section we recall the HILL and Yao definitions of computational entropy
(or pseudoentropy) and provide the new, conditional definitions.

Notation. We will use n for the length parameter; our distributions will be on
strings of length polynomial in n. We will use s as the circuit size parameter (or
running time bound when dealing with Turing machines instead of circuits). To
denote a value x sampled from a distribution X , we write x ← X . We denote
by M(X) the probability distribution on the outputs of a Turing machine M ,
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taken over the coin tosses (if any) of M and the random choice of the input x
according to the distribution X . We use Un to denote the uniform distribution
on {0, 1}n. For a joint distribution (X, Z), we write Xz to denote the conditional
distribution of X when Z = z; conversely, given a collection of distributions Xz

and a distribution Z, we use (X, Z) to denote the joint distribution given by
Pr[(X, Z) = (x, z)] = Pr[Z = z]Pr[Xz = x].

We may describe more complicated distributions by describing the sampling
process and then the sampled outcome. For example, {a ← X ; b ← X : (a, b)}
denotes two independent samples from X , while {a ← X : (a, M(a, Y ))} denotes
the distribution obtained by sampling X to get a, sampling Y to get b, running
M(a, b) to get c, and outputting (a, c).

The statistical distance between two distributions X and Y , denoted by
dist(X, Y ), is defined as maxT |Pr[T (X) = 1] − Pr[T (Y ) = 1]| where T is
any test (function). (This is equivalent to the commonly seen dist(X, Y ) =
1
2

∑
a |Pr[X = a] − Pr[Y = a]|.) The computational distance with respect to

size s circuits, denoted by cdists(X, Y ), limits T to be any circuit of size s.

Unconditional Computational Entropy. The min-entropy of a distribution X ,
denoted by H∞(X), is defined as − log(maxx Pr[X = x]). Although min-entropy
provides a rather pessimistic view of a distribution (looking only at its worst-case
element), this notion is useful in cryptography, because even a computationally
unbounded predictor can guess the value of a sample from X with probability at
most 2−H∞(X). Most results on randomness extractors are formulated in terms
of min-entropy of the source distribution.

The first definition says that a distribution has high computational min-
entropy if it is indistinguishable from some distribution with high statistical
min-entropy. It can thus be seen as generalization of the notion of pseudoran-
domness of [Yao82], which is defined as indistinguishability from uniform.

Definition 1 ([HILL99, BSW03]). A distribution X has HILL entropy at
least k, denoted by HHILL

ε,s (X) ≥ k, if there exists a distribution Y such that
H∞(Y ) ≥ k and cdists(X, Y ) ≤ ε.

(In [HILL99] Y needs to be efficiently samplable; however, for our application,
as well as for [BSW03], samplability is not required.)

Another definition of computational entropy considers compression length.
Shannon’s theorem [Sha48] says that the minimum compression length of a dis-
tribution, by all possible compression and decompression functions, is equal to its
average entropy (up to small additive terms). Yao [Yao82] proposed to measure
computational entropy by imposing computational constraints on the compres-
sion and decompression algorithms.2 In order to convert this into a worst-case
(rather than average-case) metric similar to min-entropy, Barak et al. [BSW03]
require that any subset in the support of X (instead of only the entire X) be
hard to compress.

2 Yao called it “effective” entropy.
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Definition 2 ([Yao82, BSW03]). A distribution X has Yao entropy at least
k, denoted by HYao

ε,s (X) ≥ k, if for every pair of circuits c, d (called “compressor”
and “decompressor”) of total size s with the outputs of c having length �,

Pr
x←X

[d(c(x)) = x] ≤ 2�−k + ε.

Note that just like HILL entropy, for ε = 0 this becomes equivalent to min-entropy
(this can be seen by considering the singleton set of the most likely element).

Conditional Computational Entropy. Before we provide the new conditional def-
initions of computational entropy, we need to consider the information-theoretic
notion of conditional min-entropy.

Let (Y, Z) be a distribution. If we take the straightforward average of the
min-entropies Ez←Z [H∞(Yz)] to be the conditional min-entropy, we will lose the
relation between min-entropy and prediction probability, which is important for
many applications (see e.g. Lemma 4 and Lemma 7). For instance, if for half of
Z, H∞(Yz) = 0 and the other half H∞(Yz) = 100, then, given a random z, Y
can be predicted with probability over 1/2, much more than 2−50 the average
would suggest. A conservative approach, taken in [RW05], would be to take
the minimum (over z) of H∞(Yz). However, this definition may kill “good”
distributions like Yz = Un for all z �= 0n and Yz = 0n for z = 0n; although
this problem can be overcome by defining a so-called “smooth” version [RW05,
RW04], we follow a different approach.

For the purposes of randomness extraction, Dodis et al. [DORS06] observed
that because Z is not under adversarial control, it suffices that the average,
over Z, of the maximum probability is low. They define average min-entropy:

H̃∞(Y |Z) def= − log(Ez←Z [2−H∞(Y |Z=z)] = − log(Ez←Z [maxy Pr[Yz = y]]). This
definition averages prediction probabilities before taking the logarithm and en-
sures that for any predictor P , Pr(y,z)←(Y,Z)[P (z) = y] ≤ 2−H̃∞(Y |Z). It also
ensures that randomness extraction works almost as well as it does for uncondi-
tional distributions; see Section 4.

Using this definition of conditional min-entropy, defining conditional HILL-
entropy is straightforward.

Definition 3 (Conditional HILL entropy). For a distribution (X, Z), we
say X has HILL entropy at least k conditioned on Z, denoted by HHILL

ε,s (X |Z) ≥ k,
if there exists a collection of distributions Yz (giving rise to a joint distribution
(Y, Z)) such that H̃∞(Y |Z) ≥ k and cdists((X, Z), (Y, Z)) ≤ ε.

For conditional Yao entropy, we simply let the compressor and decompressor
have z as input.

Definition 4 (Conditional Yao entropy). For a distribution (X, Z), we say
X has Yao entropy at least k conditioned on Z, denoted by HYao

ε,s (X |Z) ≥ k, if
for every pair of circuits c, d of total size s with the outputs of c having length �,

Pr
(x,z)←(X,Z)

[d(c(x, z), z) = x] ≤ 2�−k + ε.

We postpone the discussion of unpredictability entropy until Section 5.
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Asymptotic Definitions. All above definitions are with respect to a single distrib-
ution and fixed-size circuits. We are also interested in their asymptotic behaviors,
so we consider distribution ensembles. In this case, everything is parameterized
by n: X(n), s(n), and ε(n). In such a case, whether circuits in our definitions are
determined after n is chosen (the nonuniform setting), or whether an algorithm
of running time s(n) is chosen independent of n (the uniform setting) makes a
difference. We consider the nonuniform setting.

We omit the subscripts s(n) and ε(n) when they “denote” any polynomial
and negligible functions, respectively (ε(n) is negligible if ε(n) ∈ n−ω(1)). More
precisely, we write HHILL(X(n)) ≥ k(n), if there is a distribution ensemble Y (n)

such that H∞(Y (n)) ≥ k(n) for all n, and for every polynomial s(n), there
exists a negligible εs(n) such that cdists(n)(X(n), Y (n)) ≤ εs(n). Similarly for
the other definitions.

3 Separating HILL Entropy from Yao Entropy

In this section we construct a joint distribution (X, Z),3 such that given Z,
the distribution X has high Yao but low HILL entropy; namely, HYao(X |Z) �
HHILL(X |Z). This is a separation of conditional HILL and Yao entropies. Since Z
will be simply a polynomially long random string, this result can also be viewed
as a separation of Yao entropy and HILL entropy in the Common Reference
String (CRS) model. (In this model one assumes that a uniformly-distributed
string of length q(n), for some fixed polynomial q, is accessible to everyone.)

Our construction uses a non-interactive zero knowledge proof system, so we
describe it briefly in the following subsection.

3.1 Non-interactive Zero Knowledge (NIZK)

NIZK was introduced by Blum et al. [BFM88, BDMP91]. For our purposes, a
single-theorem variant suffices. Let λ be a positive polynomial and L ∈ NP be a
language that has witnesses of length n for theorems of lengths (λ(n − 1), λ(n)].
(It is easier for us to measure everything in terms of witness length rather than
the more traditional theorem length, but they are anyway polynomially related
for the languages we are interested in.) NIZK works in the CRS model. Let q
be a positive polynomial, and let the CRS be r ← Uq(n) when witnesses are
of length n. A NIZK proof system for L is a pair of polynomial-time Turing
machines (P, V), called the prover and the verifier (as well as the polynomial q)
such that the following three conditions hold.

1. Completeness: ∀φ ∈ L with NP witness w, if π = P(φ, w, r) is the proof
generated by P, then Prr←Uq(n) [V(φ, π, r) = 1] = 1.4

3 Actually, (X, Z) should be defined as a distribution ensemble (X(n), Z(n)), but we’ll
omit the superscript for ease of notation.

4 If P is probabilistic, the probability is taken over the choice r and random choices
made by P.
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2. Soundness: Call r bad if ∃φ /∈ L, ∃π′, such that V(φ, π′, r) = 1 (and good
otherwise). Then Prr←Uq(n) [r is bad] is negligible in n.

3. Zero-knowledgeness: There is a probabilistic polynomial time Turing ma-
chine SIM called the simulator, such that ∀φ ∈ L and every witness w
for φ, SIM(φ) = (φ, ΠSIM, RSIM) is computationally indistinguishable from
(φ, Π, R) = {r ← Uq(n) ; π ← P(φ, w, r) : (φ, π, r)}.

For our analysis, we need two additional properties. First, we need the proofs
π not to add too much entropy. For this, we use ideas on unique NIZK by
Lepinski, Micali and shelat [LMS05]. We do not need the full-fledged uniZK
system; rather, the single-theorem system described as the first part of the proof
of [LMS05, Theorem 1] suffices (it is based on taking away most of the prover
freedom for the single-theorem system of [BDMP91]). The protocol of [LMS05]
is presented in the public-key model, in which the prover generates the public
key (x, y) consisting of an n-bit modulus x and n-bit value y ∈ Z

∗
x. To make it

work for our setting, we simply have the prover generate the public key during
the proof and put it into π. Once the public key is fixed, the prover has no
further choices in generating π, except choosing a witness w for φ ∈ L (note
that this actually requires a slight modification to the proof of [LMS05], which
we describe in Appendix A).

The second property we need is that the simulated shared randomness RSIM is
independent of the simulator input φ. It is satisfied by the [LMS05] proof system
(as well as by the [BDMP91] system on which it is based).

The zero-knowledge property of the [LMS05] proof system is based on the
following assumption (the other properties are unconditional).

Assumption 1 (Quadratic Residuousity [GM84] for Blum Integers).
For all probabilistic polynomial time algorithms P , if p1 and p2 are random n/2-
bit primes congruent to 3 modulo 4, y is a random integer between 1 and p1p2

with Jacobi symbol
(

y
p1p2

)
= 1, and b = 1 if y is a quadratic residue modulo

p1p2 and 0 otherwise, then |1/2 − Pr[P (y, p1p2) = b]| is negligible in n.

The formal statement of the properties we need from [LMS05] follows.

Lemma 1 ([LMS05]+Appendix A). If the above assumption holds, then
there exists an NIZK proof system for any language L ∈ NP with the following
additional properties: (1) if r is good and φ has t distinct witnesses w, then the
number of proofs π for φ that are accepted by V is at most t22n, and (2) the
string RSIM output by the simulator is independent of the simulator input φ.

3.2 The Construction

Our intuition is based on the separation by Wee [Wee04], who demonstrated an
oracle relative to which there is a random variable that has high Yao and low
HILL entropy. His oracle consists of a random length-increasing function and an
oracle for testing membership in the sparse range of this function. The random
variable is simply the range of the function. The ability to test membership in
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the range helps distinguish it from uniform, hence HILL entropy is low. On the
other hand, knowing that a random variable is in the range of a random function
does not help to compress it, hence Yao entropy is high.

We follow this intuition, but replace the length-increasing random function
and the membership oracle with a pseudorandom generator and an NIZK proof
of membership, respectively. Our distribution X consists of two parts: 1) output
of a pseudorandom generator and, 2) an NIZK proof that the first part is as
alleged. However, an NIZK proof requires a polynomially long random string
(shared, but not controlled, by the prover and the verifier). So we consider the
computational entropy of X , conditioned on a polynomially long random string
r chosen from the uniform distribution Z = Uq(n).

Let G : {0, 1}n → {0, 1}λ(n), for some polynomial λ, be a pseudorandom gen-
erator (in order to avoid adding assumptions, we can build based on Assump-
tion 1), and let ((P, V), q) be the NIZK proof system guaranteed by Lemma 1
for the NP language L = {φ | ∃α such that φ = G(α)}. Let Z = R = Uq(n).
Our random variable X consists of two parts (G(Un), π), where π is the proof,
generated by P, that the first part is an output of G. More precisely, the joint
distribution (X, Z) is defined as {α ← Un ; r ← Uq(n) ; π ← P(G(α), α, r) :
((G(α), π), r)}. Note that because X contains a proof relative to the random
string r, it is defined only after the value r of Z is fixed.

Lemma 2 (Low HILL entropy). HHILL(X |Z) < 3n + 1.

Proof. Suppose there is some collection {Yr}r∈Z for which H̃∞(Y |Z) ≥ 3n + 1.
We will show that there is a distinguisher that distinguishes (X, Z) from (Y, Z).
In fact, we will use the verifier V of the NIZK proof system as a universal
distinguisher, which works for every such Y .

Let p(r) def= maxy Pr[Yr = y] be the probability of most likely value of the
random variable Yr.

When r is good, the number of (φ, π) pairs for which V(φ, π, r) = 1 is at
most 23n: the total number 2n of witnesses times the number of proofs 22n for
each witness. Now, parse y as a theorem-proof pair. The number of y such that
V(y, r) = 1 is at most 23n, and each of these y happens with probability at most
p(r). Therefore, when r is good, Pry←Yr [V(y, r) = 1] ≤ 23np(r), by the union
bound. Hence, for any r, Pry←Yr [V(y, r) = 1 ∧ r is good] ≤ 23np(r) (for good
r this is the same as above, and for bad r this probability is trivially 0, because
of the conjunction).

Now consider running V on a sample from (Y, Z).

Pr
(y,r)←(Y,Z)

[V(y, r) = 1] ≤ Pr
r←Z

[r is bad] + Pr
(y,r)←(Y,Z)

[V(y, r) = 1 ∧ r is good]

≤ negl(n) + E
r←Z

[ Pr
y←Yr

[V(y, r) = 1 ∧ r is good]]

≤ negl(n) + E
r←Z

[23np(r)]

≤ negl(n) +
1
2
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(the last inequality follows from the definition of H̃∞: 2−H̃∞(Y |Z) = Er←Z [p(r)]
≤ 2−(3n+1)).

Since Pr(x,r)←(X,Z)[V(x, r) = 1] = 1, V distinguishes (X, Z) from (Y, Z) with
advantage close to 1/2. �

Lemma 3 (High Yao entropy). If Assumption 1 holds, then HYao(X |Z) ≥
λ(n).

Proof. Let s(n) be a polynomial. The following two statements imply that un-
der Assumption 1, εs(n) def= cdists(n)((X, Z), SIM(Uλ(n))) is negligible, by the
triangle inequality.

1. cdists(n)((X, Z), SIM(G(Un))) is negligible. Indeed, fix a seed α ∈ {0, 1}n

for G, and let (Xα, Z) = {r ← Uq(n); π ← P(G(α), α, r) : ((G(α), π), r)}. By
the zero-knowledge property, we know that cdists(n)((Xα, Z), SIM(G(α)))
is negligible. Since it holds for every α ∈ {0, 1}n, it also holds for a random
α; we conclude that cdists(n)((X, Z), SIM(G(Un))) is negligible.

2. cdists(n)(SIM(Uλ(n)), SIM(G(Un))) is negligible, because G is a pseudoran-
dom generator.

By definition of εs(n), if the compressor and decompressor c and d have total
size t, then

∣
∣
∣
∣ Pr
(x,z)←(X,Z)

[d(c(x, z), z) = x] − Pr
(x,z)←SIM(Uλ(n))

[d(c(x, z), z) = x]
∣
∣
∣
∣ ≤ εs(n) ,

where s = t + (size of circuit to check equality of strings of length |x|), because
we can use d(c(·, ·), ·) together with the equality operator as a distinguisher.

Let the output length of c be �. Then Pr(x,z)←SIM(Uλ(n))[d(c(x, z), z) = x] ≤
2�−λ(n), because for every fixed z, x contains φ ∈ Uλ(n) (because by Lemma 1, z is
independent of φ in the NIZK system we use). Hence Pr(x,z)←(X,Z)[d(c(x, z), z)
= x] ≤ 2�−λ(n) + εs(n), and HYao

εs(n),t(n)(X |Z) ≥ λ(n). For every polynomial
t(n), the value s(n) is polynomially bounded, and therefore εs(n) is negligible,
so HYao(X |Z) ≥ λ(n). �

Remark 1. In the previous paragraph, we could consider also the simulated
proof π (recall x = (φ, π)) when calculating Pr(x,z)←SIM(Uλ(n))[d(c(x, z), z) =
x] for even higher Yao entropy. A simulated proof π contains many random
choices made by the simulator. Although the simulator algorithm for [LMS05]
is not precisely specified, but rather inferred from the simulator in [BDMP91],
it is quite clear that the simulator will get to flip at least three random coins
per clause in the 3-CNF formula produced out of φ in the reduction to 3-SAT
(these three coins are needed in order to simulate the location of the (0, 0, 0)
triple [LMS05, proof of Theorem 1, step 9] among the eight triples). This more
careful calculation of Pr(x,z)←SIM(Uλ(n))[d(c(x, z), z) = x] will yield the slightly
stronger statement HYao(X |Z) ≥ λ(n) + 3γ(n), where γ(n) is the number of
clauses in the 3-CNF formula. This more careful analysis is not needed here, but
will be used in Section 4.3.
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Since for any polynomial λ(n), we have pseudorandom generators of stretch λ,
Lemma 2 and Lemma 3 yield the following theorem.

Theorem 1 (Separation). Under the Quadratic Residuosity Assumption, for
every polynomial λ, there exists a joint distribution ensemble (X(n), Z(n)) such
that HYao(X(n) | Z(n)) ≥ λ(n) and HHILL(X(n) | Z(n)) ≤ 3n+1. Moreover, Z(n) =
Uq(n) for some polynomial q(n).

4 Randomness Extraction

As mentioned in the introduction, one of the main applications of computa-
tional entropy is the extraction of pseudorandom bits. Based on Theorem 1, in
this section we show that the analysis based on Yao entropy can yield many
more pseudorandom bits than the traditional analysis based on HILL entropy.
Although Theorem 1 is for the conditional setting, we will see an example of
extraction that benefits from the conditional-Yao-entropy analysis for the un-
conditional setting as well.

Before talking about extracting pseudorandom bits from computational en-
tropy, let us look at a tool for analogous task in the information-theoretic set-
ting: an extractor takes a distribution Y of min-entropy k, and with the help of
a uniform string called the seed, “extracts” the randomness contained in Y and
outputs a string of length m that is almost uniform even given the seed.

Definition 5 ([NZ96]). A polynomial-time computable function E : {0, 1}n ×
{0, 1}d → {0, 1}m × {0, 1}d is a strong (k, ε)-extractor if the last d outputs of
bits of E are equal to the last d input bits (these bits are called seed), and
dist((E(X, Ud), Um × Ud) ≤ ε for every distribution X on {0, 1}n with H∞(X)
≥ k. The number of extracted bits is m, and the entropy loss is k − m.

There is a long line of research on optimizing the parameters of extractors: mini-
mizing seed length, minimizing ε, and maximizing m. For applications of primary
interest here—using extracted randomness for cryptography—seed length is less
important, because strong extractors can use non-secret random seeds, which
are usually much easier to create than the secret from which the pseudorandom
bits are being extracted. It is more important to maximize m (as close to k as
possible), while keeping ε negligible.5

4.1 Extracting from Conditional HILL Entropy

It is not hard to see that applying an extractor on distributions with HILL
entropy yields pseudorandom bits; because otherwise the extractor together with
the distinguisher violate the definition of HILL entropy. We show the same for
the case of conditional HILL entropy. We reiterate that in the conditional case,
5 This is in contrast to the derandomization literature, where a small constant ε suf-

fices, and one is more interested in (simultaneously) maximizing m and minimizing
d.
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the variable Z is given to the distinguisher who is trying to tell the output of
the extractor from random.

Lemma 4. If HHILL
ε1,s (X |Z) ≥ k, then for any (k− log 1

δ , ε2)-extractor E : {0, 1}n

× {0, 1}d → {0, 1}m,

cdist
s′

({(x, z) ← (X, Z) : (E(x, Ud), z)}, Um × Ud × Z) ≤ ε1 + ε2 + δ ,

where s′ = s − size(E).

Proof. HHILL
ε1,s (X |Z) ≥ k means that there exists a collection of {Yz}z∈Z such

that cdists((X, Z)(Y, Z)) ≤ ε1, and H̃∞(Y |Z) ≥ k. By Markov’s inequal-
ity, Prz∈Z [H∞(Yz) ≤ k − log 1

δ ] ≤ δ. Hence, the extractor works as expected
in all but δ fraction of the cases; that is, for all but δ fraction of z values,
dist(E(Yz , Ud), Um × Ud) ≤ ε2. Taking expectation over z ∈ Z, we get

dist ({(y, z) ← (Y, Z) : (E(y, Ud), z)}, Um × Ud × Z) ≤ ε2 + δ ,

because dist is bounded by 1. The desired result follows by triangle inequality.
�

Remark 2. The entropy loss of E is at least 2 log 1
ε2

− O(1), by a fundamen-
tal constraint on extractors [RT00], giving us a total entropy loss of at least
log 1

δ +2 log 1
ε2

−O(1). The loss of log 1
δ can be avoided for some specific E, such

as pairwise-independent (a.k.a. strongly universal) hashing [CW79], as shown
in [DORS06, Lemma 4.2]; because pairwise-independent hashing has optimal
entropy loss of 2 log 1

ε2
− 2, this gives us the maximum possible number of ex-

tracted bits. The loss of log 1
δ can be also avoided when minz∈Z H∞(Yz) ≥ k (as

is the case in, e.g., [GKR04]).

Using an extractor on distributions with HILL entropy (the method that we just
showed extends to conditional HILL entropy) is a common method for extracting
pseudorandom bits. HILL entropy is used, in particular, because it is easier to
analyze than Yao entropy. In fact, in the unconditional setting, the only way we
know how to show that a distribution has high Yao entropy (incompressibility)
is by arguing that it has high HILL entropy (indistinguishability). Nevertheless,
Barak et al. [BSW03] showed that some extractors can also extract from Yao
entropy.

4.2 Extracting from Conditional Yao Entropy

Barak et al. [BSW03] observed that extractors with the so-called reconstruc-
tion procedure can be used to extract from Yao Entropy. Thus, Theorem 1
(HYao(X |Z) � HHILL(X |Z)) suggests that such a reconstructive extractor with
a Yao-entropy-based analysis may yield more pseudorandom bits than a generic
extractor with a traditional HILL-entropy-based analysis. We begin with a def-
inition from [BSW03].
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Definition 6 (Reconstruction procedure). An (�, ε)-reconstruction for a
function E : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}d (where the last d outputs
are equal to the last d inputs bits) is a pair of machines C and D, where C :
{0, 1}n → {0, 1}� is a randomized Turing machine, and D(·) : {0, 1}� → {0, 1}n

is a randomized oracle Turing machine which runs in time polynomial in n. Fur-
thermore, for every x and T , if |Pr[T (E(x, Ud)) = 1]−Pr[T (Um×Ud) = 1]| > ε,
then Pr[DT (CT (x)) = x] > 1/2 (the probability is over the random choices of C
and D).

Trevisan [Tre99] showed, implicitly, that any E with an (�, ε)-reconstruction is an
(� + log 1

ε , 3ε)-extractor, and Barak et al. [BSW03] showed that such extractors
can be used to extract pseudorandom bits from distributions with Yao entropy.
We extend the proof of Barak et al. so that their result holds for the conditional
version of Yao entropy.
Lemma 5. Let X be a distribution with HYao

ε,s (X |Z) ≥ k, and let E be an extrac-
tor with a (k−log 1

ε , ε)-reconstruction (C, D). Then cdists′((E(X, Ud), Z), Um×
Ud × Z) ≤ 5ε, where s′ = s/(size(C)+size(D)).

Proof. Assume, for the purpose of contradiction, that there is a distinguisher T
of size s′ such that Pr[T (E(X, Ud), Z) = 1] − Pr[T (Um × Ud × Z) = 1] > 5ε.
By the Markov inequality, there is a subset S in the support of (X, Z) such that
Pr[(X, Z) ∈ S] ≥ 4ε, and ∀(x, z) ∈ S, Pr[T (E(x, Ud), z) = 1] − Pr[T (Um ×
Ud, z) = 1] > ε. For every pair (x, z) ∈ S, Pr[DT (·,z)(C(x)) = x] > 1/2,
where the probability is over the random choices of C and D. Thus, there is
a fixing of the random choices of C and D, denoted by circuits C̄, D̄, such
that Pr(x,z)←(X,Z)[D̄T (·,z)(C̄(x)) = x] > 2ε. Let c(x, z) = C̄(x) and d(y, z) =
D̄T (·,z)(y) be the compression and decompression circuits, respectively. Then
Pr(x,z)←(X,Z)[d(c(x, z), z) = x] > 2ε = 2�−k + ε, a contradiction. �
The above lemma does not yield more pseudorandom bits when given a distrib-
ution that has high Yao but low HILL entropy, unless we have a reconstructive
extractor with long output length (compared to generic extractors, which work
for HILL entropy). Fortunately, there is a simple way to increase the output
length of a reconstructive extractor, at the expense of increasing the seed length;
namely, by applying the extractor multiple times on the same input distribution
but each time with an independent fresh seed. Furthermore, there do exist recon-
structive extractors; e.g., the Goldreich-Levin extractor: GL(x, y) def= (x · y) ◦ y,
where ◦ denotes concatenation and · denotes inner product. Below, we describe
more precisely how to increase the output length. For a proof, we refer the read-
ers to Section 3.5 in the survey by Shaltiel [Sha02].

Proposition 1. Let GL : {0, 1}n×{0, 1}n → {0, 1}×{0, 1}n be an extractor with
(�, ε)-reconstruction. Then E : {0, 1}n × {0, 1}mn → {0, 1}m × {0, 1}mn defined
below is an extractor with (m + �, mε)-reconstruction. Let ◦ denote component-
wise concatenation (i.e., to agree syntactically with the definition of extractor,
we concatenate the 1-bit outputs and the n-bit seeds separately)

E(x, y1, . . . , ym) def= GL(x, y1) ◦ · · · ◦ GL(x, ym) .



Conditional Computational Entropy 181

For the Goldreich-Levin extractor, � = O(log 1
ε ). Then Lemma 5 implies that

E extracts m pseudorandom bits out of any distribution that has Yao entropy
m + � + log 1

ε = m + O(log 1
ε ). This shows that it is possible to extract almost

all of Yao entropy (e.g., if the negligible ε = 2−polylog(n) suffices, then all but a
polylogarithmic amount of entropy can be extracted).

Using the distribution of Theorem 1, we can set ε = 2−n to extract λ(n)−O(n)
bits from X that are pseudorandom even given Z. This is more than the linear
number of bits extractable from X using the analysis based on conditional HILL
entropy.

4.3 Unconditional Extraction

In this subsection, let (X, Z) = ((G(Un), Π), R) = {α ← Un ; r ← Uq(n) ; π ←
P(G(α), α, r) : ((G(α), π), r)} as defined in Section 3.2. The question is: how
many pseudorandom bits can we extract from the unconditional distribution
(X, Z)? Surprisingly, analysis based on conditional entropy yields more bits than
unconditional analysis, demonstrating that the notion of conditional entropy
may be a useful tool even in the analysis of pseudorandomness of unconditional
distributions.

Analysis based on unconditional entropy. The straightforward way is to apply
an extractor on (X, Z). This gives us almost k pseudorandom bits provided
that HHILL(X, Z) ≥ k, or HYao(X, Z) ≥ k for reconstructive extractors (see
previous subsections). However, the best we can show is that HHILL(X, Z) =
λ(n) + q(n) + O(n) (the analysis appears in Appendix B), and hence we cannot
prove, using HILL entropy, that more than λ(n) + q(n) + O(n) bits can be
extracted. On the other hand, we do not know if HYao(X, Z) is higher; this is
closely related to the open problem of whether HILL entropy is equivalent to
Yao entropy, and appears to be difficult.6 Thus, analysis based on unconditional
entropy does not seem to yield more than λ(n) + q(n) + O(n) bits.

More bits from conditional Yao entropy. Analysis based on conditional HILL
entropy seems to yield even fewer bits (see Lemma 2). But using conditional
Yao entropy, we get the following result.

Lemma 6. It is possible to extract 4λ(n) + q(n) − O(n) pseudorandom bits out
of (X, Z).

Proof (Sketch). According to Remark 1 following Lemma 3, we can show that the
conditional Yao entropy HYao(X |Z) ≥ λ(n) + 3γ(n), where γ(n) is the number

6 To show that HYao(X, Z) is high, one would have to show that the pair (X, Z)
cannot be compressed; the same indistinguishability argument as in Lemma 3 does
not work for the pair (X, Z), because in the simulated distribution, Z is simulated
and thus has less entropy. It is thus possible that both the real distribution (where
Z is random and φ in X is pseudorandom) and the simulated distribution (where φ
is random and Z is pseudorandom), although indistinguishable, can be compressed
with the help of the proof π.
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of clauses in the 3-CNF formula produced from φ in the reduction from L to
3-SAT. Since γ(n) ≥ λ(n), we can extract 4λ(n) − O(n) bits from X that are
pseudorandom even given Z, by the last paragraph of Section 4.2. Noting that Z
is simply a uniform string7, we can append it to the pseudorandom bits extracted
from X and obtain an even longer pseudorandom string. Thus, we get 4λ(n) +
q(n) − O(n) pseudorandom bits using the analysis based on conditional Yao
entropy. �

5 Unpredictability Entropy

In this section, we introduce a new computational entropy, which we call un-
predictability entropy. Analogous to min-entropy, which is the logarithm of the
maximum predicting probability, unpredictability entropy is the logarithm of
the maximum predicting probability where the predictor is restricted to be a
circuit of polynomial size. Note that in the unconditional setting, unpredictabil-
ity entropy is just min-entropy; a small circuit can have the most likely value
hardwired. In the conditional setting, however, this new definition can be very
different from min-entropy, and in particular, allows us to talk about the entropy
of a value that is unique, such as gxy where gx and gy are known to the observer,
and possibly even verifiable, such as the preimage x of a one-way permutation
f , where y = f(x) is known to the observer.

Definition 7 (Unpredictability entropy). For a distribution (X, Z), we say
that X has unpredictability entropy at least k conditioned on Z, denoted
by Hunp

ε,s (X |Z) ≥ k, if there exists a collection of distributions Yz (giving rise
to a joint distribution (Y, Z)) such that cdists((X, Z), (Y, Z)) ≤ ε, and for all
circuits C of size s,

Pr[C(Z) = Y ] ≤ 2−k.

Remark 3. The parameter ε and the variable Y do not seem to be necessary in
the definition; we can simply require Pr[C(Z) = X ] ≤ 2−k. However, they make
this definition smooth [RW04] and easier to compare with existing definitions of
HILL and Yao entropy.

Remark 4. Note that our entropy depends primarily on the predicting prob-
ability, as opposed to on the size of the predicting circuit or the combination
of both (see e.g., [TSZ01, HILL99]). We choose to have s fixed, in order to ac-
commodate distributions with nonzero information-theoretic entropy; otherwise
the computational entropy of such distribution would be infinite because the
predicting probability doesn’t increase no matter how big the predicting circuit
grows. For the case of one-way function, unpredictability entropy is what is often
called “hardness.” This notion is more general, and provides a simple language
for pseudorandomness extraction: namely, a distribution with computational en-
tropy k contains k pseudorandom bits that can be extracted (see below).
7 In case Z is not uniform but contains some amount of entropy, we can apply another

extractor on it.
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5.1 Relation to Other Notions and Bit Extraction

In this subsection we show that high conditional HILL entropy implies high
unpredictability entropy, which in turn implies high conditional Yao entropy.
Note that, assuming exponentially strong one-way permutations f exist, unpre-
dictability entropy does not imply conditional HILL entropy: simply let (X, Z) =
(x, f(x)).

Lemma 7. HHILL
ε,s (X |Z) ≥ k ⇒ Hunp

ε,s (X |Z) ≥ k.

Proof. HHILL
ε,s (X |Z) ≥ k means that there is a Y such that H̃∞(Y |Z) ≥ k and

cdists((X, Z), (Y, Z)) ≤ ε. And H̃∞(Y |Z) ≥ k means that Ez←Z [maxy Pr[Y =
y|Z = z]] ≤ 2−k, which implies that for all circuits C of size s, Pr[C(Z) = Y ] ≤
2−k. �

Lemma 8. Hunp
ε,s (X |Z) ≥ k ⇒ HYao

ε,s (X |Z) ≥ k.

Proof. Hunp
ε,s (X |Z) ≥ k means that there is a collection of {Yz}z∈Z such that

cdists((X, Z), (Y, Z)) ≤ ε, and for all circuits C of size s, Pr[C(Z) = Y ] ≤ 2−k.
We will show that HYao

0,s (Y |Z) ≥ k, which in turn implies HYao
ε,s (X |Z) ≥ k.

Suppose for contradiction that HYao
0,s (Y |Z) < k. Then there exists a pair of

circuits c, d of total size s with the outputs of c having length �, such that
Pr(y,z)←(Y,Z)[d(c(y, z), z) = y] > 2�−k. Because |c(y, z)| = �, guessing the correct
value is at least 2−�, so Pr(a,y,z)←(U�,Y,Z)[d(a, z) = y] > 2�−k · 2−� = 2−k, a
contradiction since d(a, ·) (with some fixing of a) is a circuit of size at most s.
So HYao

0,s (Y |Z) ≥ k.
Next, suppose for contradiction that HYao

ε,s (X |Z) < k. Then there exists a pair
of circuits c, d of total size s with the outputs of c having length �, such that
Pr(x,z)←(X,Z)[d(c(x, z), z) = x] > 2�−k +ε. But Pr(y,z)←(Y,Z)[d(c(y, z), z) = y] ≤
2�−k, which means that d(c(·, ·), ·) can be used to distinguish (X, Z) from (Y, Z)
with advantage more than ε, a contradiction to cdists((X, Z), (Y, Z)) ≤ ε. Hence
HYao

ε,s (X |Z) ≥ k. �

From Section 4, we know how to extract almost k bits from distributions with
Yao entropy k, by using reconstructive extractors. Lemma 8 implies that the
same method works for unpredictability entropy. Thus, the notion of unpre-
dictability entropy allows for more general statements of results on hardcore
bits (such as, for example, [GL89, TSZ01]), which are usually formulated in
terms of one-way functions. Most often these results generalize easily to other
conditionally unpredictable distributions, for instance, the Diffie-Hellman distri-
bution (gxy | g, gx, gy). However, such generalization is not automatic, because a
prediction of a one-way function inverse is verifiable (namely, knowing y, one can
check if the guess for f−1(y) is correct), while a guess of a value of a conditionally
unpredictable distribution in general is not (indeed, the Diffie-Hellman distribu-
tion does not have it unless the decisional Diffie-Hellman problem is easy). Thus,
it would be beneficial if results were stated for the more general case of unpre-
dictable distributions whenever such verifiability is not crucial. Unpredictability
entropy provides a simple language for doing so.
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A Modifications to the Proof of [LMS05]

The proof of Theorem 1 in [LMS05] requires the n-bit modulus x chosen by the
prover (and, in our case, included as part of the proof) to be a Blum integer,
i.e., a product of two primes that are each congruent to 3 modulo 4. However,
the proof π (using the techniques from [BDMP91]) guarantees only that x is
“Regular(2),” i.e., is square-free and has exactly two distinct odd prime divisors.
In other words, we are assured only that x is of the form piqj for some odd primes
p, q and some i, j not simultaneously even. Soundness does not suffer if a prover
maliciously chooses such an x that is not a Blum integer, but the uniqueness
property does: there may be more than one valid proof π, because π consists of
square roots s of values in Z

∗
x such that the Jacobi symbol

(
s
x

)
= 1 and s < x/2,

and there may be more than one such square root if x is not a Blum integer.
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One approach to remedy this problem is to use the technique proposed in
countable zero-knowledge of Naor [Nao96, Theorem 4.1]: to include into π the
proof that x is a Blum integer. Another, simpler, approach (which does not seem
to work for the problem in [Nao96], because the length of the primes is important
there) is to require the verifier to check that x ≡ 1 (mod 4). This guarantees
that either p ≡ q ≡ 3 mod 4 and i, j are odd, in which case uniqueness of a
square root r < x/2 with

(
r
x

)
= 1 is guaranteed, or pi ≡ qj ≡ 1 mod 4, in which

case simple number theory (case analysis by the parity of i, j) shows that half
the quadratic residues in Z

∗
x have no square root r with

(
r
x

)
= 1. Thus, such an

x that allows for non-unique proofs is very unlikely to work for a shared random
string r, and we can simply add strings r for which such an x exists to the set
of bad strings (which will remain of negligible size).

B Unconditional HILL Entropy of (X, Z)

Recall that (X, Z) = ((G(Un), Π), R) = {α ← Un ; r ← Uq(n) ; π ←
P(G(α), α, r) : ((G(α), π), r)}. Below, we show that HHILL(X, Z) ≥ λ(n)+q(n)+
O(n); it is unclear if higher HILL entropy can be shown. The discussion assumes
some familiarity with the NIZK system for 3-SAT, by Lepinski, Micali, and she-
lat [LMS05].

By the zero-knowledgeness, the output distribution (XSIM, ZSIM) of the simu-
lator is indistinguishable from (X, Z). So HHILL(X, Z) is no less than the min-
entropy of (XSIM, ZSIM). We count how many choices the simulator SIM has:
there are,

– 2λ(n) theorems to prove,
– fewer than 22n proving pairs to choose from (a proving pair is an n-bit Blum

integer x and an n-bit quadratic residue y ∈ Z
∗
x),

– 2q(n)−κ(n) choices for shared “random” string r, where κ(n) is the number
of Jacobi symbol 1 elements of Z

∗
x included in r (because in the simulated

r, these elements must be quadratic residues in Z
∗
x),

– 2κ(n) choices for claiming, in the simulated proof, whether each of the Jacobi
symbol 1 elements in r is a quadratic residue or a quadratic nonresidue (the
simulator gets to make false claims about that, because in the simulated r,
they are all residues).

Taking the logarithm of the number of choices, we have HHILL(X, Z) ≥ λ(n) +
q(n) + O(n). This seems to be the best we can do, as we do not know whether
there are other distribution that is indistinguishable from (X, Z).
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