
Adding Dynamism to OGSA-DQP:

Incorporating the DynaSOAr Framework in
Distributed Query Processing

Arijit Mukherjee and Paul Watson

School of Computing Science, Newcastle University,
Claremont Tower, Claremont Road, Newcastle Upon Tyne, United Kingdom

{Arijit.Mukherjee,Paul.Watson}@ncl.ac.uk
http://www.cs.ncl.ac.uk

Abstract. OGSA-DQP is a Distributed Query Processing system for
the Grid. It uses the OGSA-DAI framework for querying individual
databases and adds on top of it an infrastructure to perform distributed
querying on these databases. OGSA-DQP also enables the invocation of
analysis services, such as Blast, within the query itself, thereby creating
a form of declarative workflow system. DynaSOAr is an infrastructure
for dynamically deploying web services over a Grid or a set of networked
resources. The DynaSOAr view of grid computing revolves around the
concept of services, rather than jobs where services are deployed on de-
mand to meet the changing performance requirements. This paper de-
scribes the merging of these two frameworks to enable a certain amount
of dynamic deployment to take place within distributed query processing.

Keywords: Dynamic deployment, Web Service, Grid, distributed query
processing.

1 Introduction

OGSA-DQP[1], [2] is a publicly available service-oriented distributed query pro-
cessor for the Grid. It provides distributed query functionality on databases
spread over the Grid using the commonly used service for data access and inte-
gration, OGSA-DAI[3]. OGSA-DQP supports the evaluation of queries expressed
in a declarative fashion over one or more services, including data access services
and external analysis services. It can be seen as complimentary to other service
orchestration mechanisms, such as workflow languages.

Because the services can be potentially located on computational resources
distributed across the internet, communication costs can play a major role in
the performance of the system. Co-locating the query evaluation service and
the analysis service with the data, even with an on-the-fly deployment may
prove to be potentially beneficial in the long run, especially when frequent, long-
running queries are executed. DynaSOAr[5] is a framework, which enables such
dynamic deployment of services on available computational nodes. An enhanced

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 22–33, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Adding Dynamism to OGSA-DQP 23

version of OGSA-DQP has been created which incorporates DynaSOAr concepts.
This paper briefly describes the DynaSOAr architecture, and its use within the
OGSA-DQP context. Experimental results and analyses show how DynaSOAr
may benefit service-oriented distributed query processing by moving the analysis
and data retrieval code near the actual data.

The paper is organized as follows: Section 2 provides a brief introduction to
the OGSA-DQP concept and functionality. Section 3 describes the DynaSOAr
architecture in brief, followed by the use of DynaSOAr infrastructure within the
OGSA-DQP context in Section 4. The experimental setup, results and analysis
are covered in Section 5. Related works are discussed in Section 6, current and
future directions in Section 7, with conclusions in Section 8.

2 Brief Description of OGSA-DQP

OGSA-DQP is composed of two major services (i) Grid Distributed Query
Service (GDQS) and (ii) Query Evaluation Service (QES). The GDQS is imple-
mented as an extension to the standard OGSA-DAI service, and is deployed as
an OGSA-DAI data service with an exposed data service resource1. The DQP
data service resource thus exposed, supports querying over a set of OGSA-DAI
data services, each wrapping a database on some computational node. It also
supports the invocation of analysis services over the query results. An example
of a typical query, in OQL, supported by OGSA-DQP is as follows:

%print select p.ORF, g.id, calculateEntropy(p.sequence)

from p in protein_sequences, g in goterms, t in protein_goterms

where g.id=t.GOTermIdentifier and p.ORF=t.ORF and

p.ORF like "YBL06%" and g.id like "GO:0000%";

In this example, the query spans over three databases (protein sequence, goterm
and protein goterm) which can be distributed over a large geographical area, and
an analysis service exposed as a Web Service is also invoked on each sequence el-
ement. Based on the schema and WSDL imported from the data and the analysis
services and the resources available to it, a query compiler/optimizer component,
Polar*[6], generates a parallel query plan, which is partitioned into sub-plans.
These sub-plans are distributed to the participating evaluation services each of
which is responsible for evaluating the sub-plan assigned to it and conveying
the result back either to the root partition or other evaluation services. Finally,
the result is collected at the node evaluating the root partition and sent to the
GDQS and hence to the consumer.

1 A data service resource implements the core OGSA-DAI functionality. It accepts
perform documents from data services, parses and validates them, executes the data-
related activities specified within them and constructs response documents. It can
also cache data for retrieval by third-parties (if the data service resource is configured
to support asynchronous data delivery). Data service resources are accessed via data
services.[4]



24 A. Mukherjee and P. Watson

3 DynaSOAr Architecture

DynaSOAr is a framework, which provides a generic infrastructure for deploy-
ing web services as and when required, on available nodes. DynaSOAr achieves
this dynamic deployment by processing the incoming consumer request at differ-
ent levels between two different components, namely a DynaSOAr Web Service
Provider and a Host Provider, with a defined interface between them.

– The DynaSOAr Web Service Provider is the entity with which consumers
interact. It advertises the services it can provide, receives SOAP messages
from consumers requesting a service from a particular endpoint associated
with the message, and is responsible for arranging the processing of the
request. The Web Service Provider achieves this by choosing an appropriate
Host Provider and forwarding the message to it with any associated Quality
of Service (QoS) parameters and an added element in the message header
identifying a software repository where the service code can be found in case
a dynamic deployment is required.

– The Host Provider is responsible for controlling the computational resources,
such as a cluster or a grid, on which services can be deployed, and requests
for those services can be processed. It accepts the SOAP messages forwarded
by theWeb Service Provider on behalf of the services hosted by it, and sends
back any response generated after processing the request.

When a message reaches the Host Provider, there can be two different interaction
patterns depending on whether or not the requested service is already deployed
on the node -

1. If the service is already deployed on the computational node where the re-
quest is to be processed, then the Host Provider routes the SOAP message
to the service on that node. In Figure 1a, the consumer makes a request
for service S2, which is already deployed on node N1 and N2. Based on the
current information about the system load, the Host Provider routes the
request to the lightly loaded node N2 where the request is processed and
the response is sent back.

2. The second case is where the consumer makes a request for a service, which
is not already deployed on any of the available nodes, such as the request
for service S8 sent by the consumer in Figure 1b. In this case, a decision
is made about the target node where the service is to be deployed and the
message is forwarded to that node. The node downloads the service code
from the software repository, deploys the service dynamically, and processes
the request.

It is to be noted that in the scenarios described above, the consumer is not aware
of the resources behind the Web Service Provider or the fact that the service
has been dynamically deployed. They interact with theWeb Service Provider by
sending SOAP messages which is the standard way of interacting with a service.



Adding Dynamism to OGSA-DQP 25

(a) Routing request to existing
deployment

(b) Request service not already
deployed

Fig. 1. Routing requests in DynaSOAr

DynaSOAr has two other components to support dynamic deployment, namely
a Registry Service, and the Service Repository.

– The DynaSOAr Registry Service is provided by GRIMOIRES[7], which is
a UDDI-based registry, with added support for storing metadata as RDF
triplets. Whenever the provider of a service decides to make the service
available via DynaSOAr, the service code needs to be uploaded to the service
repository, as a result of which the registry is updated with the information.
The service is added to the registry without any concrete accessPoints (in
UDDI terms), but a reference to the Service Repository web service is added
to it. Every time a service is deployed on any of the available nodes, the
entry of that service in the registry is updated with the actual endpoint.

– The Service Repository manages the upload or download of the service code.
The Host Providers communicate with this service while downloading the
service code for a service to be deployed.

The description so far consisted of a single Host Provider. However, in reality,
several Host Providers may be available to oneWeb Service Provider. It might be
advantageous to make a selection between the available Host Providers based on
certain parameters, such as cost, dependability, QoS, security. To facilitate this,
another component, the broker, with the same interface as the Host Provider, has
been introduced in the architecture to make such decisions. The broker has the
knowledge about one or more Host Providers, and is able to make the decisions
based on the characteristics of the available Host Providers and the QoS or
security requirements requested by the consumer. Figure 2 describes the generic
architecture of DynaSOAr with all its components.

DynaSOAr is a generic framework allowing the structure to grow dynamically
to any level or depth. There can be any number of brokers and any number of
Host Providers, thereby creating the space for aWeb Service Market Place, where
the brokers can choose between all available providers meeting the consumer
requirements to process the requests.



26 A. Mukherjee and P. Watson

Fig. 2. Generic DynaSOAr Architecture

The generic architecture of DynaSOAr does not restrict the dynamic deploy-
ment functionality to web services alone. As described in [5], DynaSOAr enables
the dynamic deployment of virtual machines like VMWare[8] and Microsoft Vir-
tual PC[9] and also .NET services and stored procedures over SQLServer.

4 Dynamic OGSA-DQP

The features of OGSA-DQP and the requirements for distributed query pro-
cessing make it a prime candidate for the use of the DynaSOAr infrastructure.
Usage scenarios in OGSA-DQP, which can benefit from the DynaSOAr features,
include the following -

1. Frequent and long-running queries can benefit from the on-the-fly deploy-
ment of an analysis service such that it is co-located with relevant data.

2. A new database wrapped by the OGSA-DAI data service can be deployed
to enable the GDQS to serve queries involving the new database.

3. An increased degree of parallelism can be obtained by deploying multiple
copies of the analysis service on multiple nodes.

4. Increased performance for a database scan can be enabled by deploying vir-
tual machines containing a copy of the database.

5. Even though the deployment of virtual machines is costly in terms of time
required, in the case of frequent and long-running use of the database present
in the virtual machine or the service deployed in it, the initial deployment
cost can be outweighed by the benefits.

6. Polar* performs some basic optimization based on the information available
to it. But this optimization can be enhanced by considering the dynamic
deployment scenario, where the scheduler should be able to schedule deploy-
ment of new evaluation or analysis services on new computational nodes if
it finds the existing deployments to be heavily loaded.



Adding Dynamism to OGSA-DQP 27

4.1 Implementation

As a proof of concept the publicly available OGSA-DQP has been modified to
incorporate the DynaSOAr features into it. In the DynaSOAr-enabled OGSA-
DQP, the primary requirement is to create a structure similar to theWeb Service
Provider - Host Provider structure of DynaSOAr. The Grid Distributed Query
Service (GDQS) corresponds to theWeb Service Provider, which advertises itself
as capable of providing distributed query processing functionality over a set of
databases exposed as OGSA-DAI data service resources, and a set of analysis
services, either provided by a remote provider, or by the GDQS itself. In the
latter case, the analysis service may not be deployed on any node available to
the GDQS, but the Service Repository stores the service code, and the registry
contains information about this potentially available service.

As in case of the public OGSA-DQP, a DQP data service resource must be cre-
ated from the deployed GDQS factory data service resource when initializing the
service. In the second initialization step, this data service resource imports the
schema of the databases exposed by OGSA-DAI and the WSDL of the analysis
service. During this second phase, the GDQS in the dynamic version of OGSA-
DQP tries to co-locate the evaluation services with the OGSA-DAI-wrapped
databases by dynamically deploying the Query Evaluation Service, which is a
standard web service, onto the nodes where the data resides. If an analysis service
advertised by the GDQS is added to the DQP data service resource configura-
tion, the GDQS using the DynaSOAr framework deploys the service on a suitable
computational node. Once these new services are deployed, the schema and the
WSDL are imported from them in the same way as in case of the standard
OGSA-DQP. The complete deployment process is shown in Figure 3.

As the new services are deployed, the registry is updated with the corre-
sponding information, so that another data service resource for the same GDQS
will be able to reap the benefit of the previous deployment by re-using the al-
ready deployed services. This is the point where the advantages of DynaSOAr
over currently available job-based grid systems become apparent. The services
deployed using DynaSOAr will be accessible until they are explicitly removed
from the server, or the server becomes unavailable, compared to the jobs, which
do not persist beyond a single execution. Thus we can achieve a “deploy once,
use many times” philosophy with DynaSOAr, which has a positive effect on the
performance of the distributed queries as shall be seen in the analysis of the
experimental results.

5 Experiment

5.1 Setup

To analyze the performance of the Dynamic OGSA-DQP system, several exper-
iments have been performed and the results analyzed. The initial experiments
primarily concentrated on the dynamic deployment of the analysis services and



28 A. Mukherjee and P. Watson

Fig. 3. DynaSOAr enabled OGSA-DQP

the impact made by this on the performance of the distributed query process-
ing activities. The DynaSOAr framework was setup on a set of Linux machines
within the Newcastle University GIGA cluster - each of them being a four-
processor Intel� XeonTM CPU 2.80GHz system, with 2GB memory, and Fedora
Core 4 installed on them. The GDQS was deployed on another Linux machine
- a four-processor Intel� XeonTM CPU 3.06GHz with 1GB memory and Fe-
dora Core 4 installed on it. The DynaSOAr Registry and Service Repository
service were co-located with the GDQS. The analysis service code, along with
the Query Evaluation Service code were uploaded to the Service Repository,
and a copy of the same analysis service was deployed on a Linux (one-processor
Intel� XeonTM CPU 2.40GHz system with 1GB memory and Red Hat Enter-
prise 3 Linux) system at the Edinburgh Parallel Computing Centre (EPCC) at
Edinburgh University. The network between Newcastle University and EPCC is
JANET, which is a high performance gigabit network connecting the universities
in the United Kingdom.

Five databases were exposed as OGSA-DAI data resources on five of the Linux
systems that were part of the already established DynaSOAr framework. One
of the databases used for the test queries was loaded with several tables, each
with 100,000 records, and fixed record sizes of 128 bytes, 256 bytes, 512 bytes,
1 Kbytes, 2 Kbytes, 4 Kbytes, 8 Kbytes and 10 Kbytes. The experiments were
designed to fetch data out of each table in chunks of 100, 200, 400, 800, 1000,
2000, 5000, 10000, 20000 and 50000 tuples and perform the analysis on each
tuple using the analysis service. Results were collected in order to compare the
performance of the system with a remote analysis service, to the performance
with a local service dynamically deployed using the DynaSOAr framework, i.e
to investigate item (1) in Section 4.



Adding Dynamism to OGSA-DQP 29

5.2 Results and Analysis

In preliminary experiments, the DynaSOAr framework was used to deploy the
analysis service on separate hosts. The deployment cost includes the time re-
quired to transfer the service code from the repository to the target host and the
time taken for the actual deployment within the web service container, Apache
Tomcat in this case - where the packaged service (packed as a WAR file) is
unpacked into a proper directory structure and the various libraries are loaded
before the service can be accessed. Figure 4a shows the time taken to deploy the
service on different hosts and the average time for deployment.

The average time required for an individual service deployment on a compu-
tational node was approximately 32.4 seconds. This is a one-time cost and is
incurred only during the DQP initialization phase. Copies of the same service
can be deployed in parallel on multiple nodes if required, so that the total de-
ployment cost of all copies becomes equivalent to the cost of a single deployment.
Once the service is deployed locally, the performance of the queries executed by
this GDQS reaps the full benefit of this one-time deployment, as is evident from
the other experiments.

A set of ten queries was executed on a test database, retrieving 100, 200, 400,
800, 1000, 2000, 5000, 10000, 20000 and 50000 tuples from the database. Each
query was used to retrieve datasets of different sizes, such as 128 bytes, 256 bytes,
512 bytes, 1 Kbytes, 2 Kbytes, 4 Kbytes, 8 Kbytes and 10 Kbytes. Each query
also invoked the analysis service for each retrieved tuple. An example query used
in the tests is as follows:

%print select p.id, calculateEntropy(p.sequence) from p in

proteinsequence_random_sequence_128s where p.id < 20000;

This query retrieves 20,000 tuples from the database and invokes the analysis
service (calculateEntropy in this case) on the sequence attribute of each tuple.
The results of these experiments are shown in Figure 4b and Figure 4c.

Figure 4b compares the invocation cost (in milliseconds) of a local and a re-
mote deployment of the same service for different result cardinalities, ranging
from 100 to 20,000. Figure 4c compares the average invocation cost (in millisec-
onds) of the local and remote service for different sized tuples, from 128 bytes
to 10 Kbytes.

It is evident from the plotted results that the invocation cost increases rad-
ically for the remote analysis service as the number of tuples increase starting
from 100 tuples to 20000 tuples. In Figure 4b, the total cost of invoking the
analysis service increases as the number of tuples retrieved from the database
increase. But, the rate of increase is far more substantial when the analysis ser-
vice is remote, than when it is local. In Figure 4c, the average invocation cost
per tuple is plotted against the average tuple size, starting from 128 bytes to
10Kbytes. In this case, for both local and remote services, the invocation cost
tends to increase as the tuple size increases, but the effect of a remote service is



30 A. Mukherjee and P. Watson

(a) Required deployment time on
different hosts

(b) Comparing average invocation
cost for different tuple sizes

(c) Comparing local and remote
service invocation cost

(d) Comparison of the total evaluation
cost

Fig. 4. Performance Analysis of DynaSOAr-enabled OGSA-DQP

significantly higher than a local service, and it can be inferred that the cost of
invoking the remote service will increase further if the data size increases.

Figure 4d shows the total query evaluation cost for two scenarios, (1) when
the analysis service was local and (2) when the analysis service was remote.
This figure shows that the total query evaluation costs when the analysis service
was remote are significantly higher than the total evaluation costs when the
service was local. The difference between these two values becomes equal to
the average cost of deployment (an average of 32.4 seconds) when the number of
tuples is approximately 1000, and starts increasing even more significantly as the
number of tuples increase. This data validates the statement made earlier in this
paper that the one-time deployment cost can be outweighed by the performance
benefits in case of frequent, long-running queries.

These results clearly show that for the queries using analysis services over
the data retrieved from the databases, the performance of DynaDQP is much
better than the standard OGSA-DQP where the analysis service can be remote
from the data. The difference in the performance is quite noticeable considering
the fact that a very high-speed Internet backbone exists between the server
at Edinburgh Parallel Computing Centre and the Linux cluster at Newcastle
University. The performance difference would probably be even more prominent
if the analysis service resides much further apart geographically, because a higher
communication cost would be incurred in that case.



Adding Dynamism to OGSA-DQP 31

6 Related Work

Although in the DynaSOAr architecture, the Host Provider sits on top of existing
Grid infrastructure as a high level service, it can exploit the results of work
producing components on which dynamic deployment frameworks can be built.
In particular, the job scheduling fabrics like Condor[20] can be utilized as a means
of gathering machine characteristics, and CPU loads. However, deployment of
services rather than jobs raises other issues, such as making the decision about
whether to deploy a service on a new node or to use an existing but possibly
overloaded deployment. The GridSHED project [10],[11] for job scheduling has
been investigating this area, and the results are being utilized to design an
effective scheduling system for DynaDQP.

There is some work on dynamic deployment as in [18], but this is essentially
tied to a particular implementation of Grid middleware and web service con-
tainer (WS-RF[12] and the Globus Toolkit[13]) without addressing the more
widespread deployment scenarios involving commonly used standard toolkits
such as Axis and Tomcat. The work described in [21] is built on top of special-
ized hardware. Moreover, the deployment of different types of components such
as virtual machines, stored procedures, .NET services together in one framework
is not addressed in any of the current systems.

This paper focuses on the use of the dynamic deployment framework within
the context of Distributed Query Processing. To our knowledge, there is no cur-
rent distributed query processing system which is factored out as inter-operable
services and allows on-the-fly deployment of evaluation and analysis services on
available nodes thereby co-locating the data processing and analysis code with
the data, as proposed in [19]. The analysis of the results clearly indicate that
moving the code to the data, even with an initial deployment cost can potentially
be beneficial, especially for frequent execution of long running queries over huge
data sets.

7 Current and Future Directions

At present, work is under way to enable the DynaSOAr framework (and hence
DynaDQP) to support the usage of virtual machines for dynamic deployment of
data access services, evaluation services, analysis services and databases. It has
been accepted by OGSA-DAI as well that the availability of a deployment-ready
OGSA-DAI service would greatly help the dynamic deployment work, and work
is going on in that respect too.

In OGSA-DQP, the compiler/optimizer performs some static scheduling based
on a very simple cost model, but that does not consider the inherent dynamism
in a Grid system where the dynamics of the environment is liable to change
drastically. The effects of changes in resources at runtime have been considered
in the investigations into adaptive distributed query processing [17], [16]. It will
be an effective solution to combine the findings of GridSHED, DynaSOAr and
the adaptive DQP investigation.



32 A. Mukherjee and P. Watson

Some work has been done in this area of fault-tolerant distributed query pro-
cessing [14], [15]. The concepts of the dynamic DQP are also relevant to fault-
tolerant query processing systems where a failure of an evaluation node can be
handled through the deployment of the same service on another node or a virtual
machine as a replacement of the failed node, and by replaying certain sections
of the query evaluation to regain the state where the processing stopped due to
the failure.

Virtual Machines are an important aspect for the Dynamic DQP framework.
Some basic work has already been done on deploying Microsoft’s Virtual PC
systems in DynaSOAr. It is being extended to incorporate VMWare systems,
and the deployment of databases in virtual machines. Deploying databases in
virtual machines does however raise other key issues such as keeping the copy in
sync with the original database.

8 Conclusion

This paper presents an overview of ongoing work on enabling dynamic service
deployment in OGSA-DQP using the DynaSOAr framework. We believe that
distributed query processing can potentially benefit from the dynamic deploy-
ment mechanisms of DynaSOAr by deploying evaluation and analysis services
closer to the data, and this claim is supported by the experimental results. It
also includes scope of creating software market places, where the computational
resources can be chosen from a pool of available Host Providers based on the
cost and (or) the quality of service provided by the host.

The project is continuing to investigate different aspects of the system, such
as scheduling new deployments, routing requests between multiple instances of
the same service, deploying virtual machines and databases, and the future work
involves looking into the utility of the framework for adaptive and fault-tolerant
distributed query processing systems and evaluating various transport technolo-
gies for transferring the service code.

Acknowledgments. We wish to extend our gratitude to our collaborators in
GridSHED: Isi Mitrani and Jennie Palmer. We wish to acknowledge the sup-
port from our colleagues in OGSA-DAI, OGSA-DQP and DAIT projects at
Manchester University and EPCC. We wish to thank Jim Smith for his help-
ful discussions. We would also like to thank the UK Engineering and Physical
Sciences Research Council, and the DTI for the GridSHED and DAIT projects.

References

1. Alpdemir, M.N., Mukherjee, A., Gounaris, A. et.al.: OGSA-DQP: A Service for
Distributed Querying on the Grid. In: Advances in Database Technology - EDBT
2004. Lecture Notes in Computer Science, Vol. 2992. Springer-Verlag, 858–861

2. OGSA-DQP, http://www.ogsadai.org.uk/about/ogsa-dqp/
3. OGSA-DAI, http://www.ogsadai.org.uk/

http://www.ogsadai.org.uk/about/ogsa-dqp/
http://www.ogsadai.org.uk/


Adding Dynamism to OGSA-DQP 33

4. OGSA-DAI Glossary of Terms, http://www.ogsadai.org.uk/documentation/
ogsadai-wsrf-2.2/doc/reference/glossary.html

5. Watson, P., Fowler, C., Kubicek, C., Mukherjee, A. et. al.: Dynamically Deploying
Web Services on a Grid using Dynasoar. In: Ninth IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Computing, ISORC
2006, IEEE Computer Society 2006

6. Smith, J., Gounaris, A., Watson, P. et. al.: Distributed Query Processing on the
Grid. In: Grid Computing 2002. Lecture Notes in Computer Science, Vol. 2536.
Springer-Verlag, 279–290

7. GRIMOIRES, http://twiki.grimoires.org/bin/view/Grimoires/
8. VMWare, http://www.vmware.com/
9. Microsoft Virtual PC, http://www.microsoft.com/windows/virtualpc/

default.mspx/
10. Palmer, J., Mitrani, I.: Optimal Server Allocation in Reconfigurable Clusters with

Multiple Job Types. In: Computational Science and its Applications (ICCSA 2004),
Assisi, Italy, 2004.

11. Kubicek, C., Fisher, M., McKee, P., Smith, R.: Dynamic Allocation of Servers
to Jobs in a Grid Hosting Environment. BT Technology Journal, Vol. 22, 2004.
251–260

12. Web Services - Resource Framework, http://www.globus.org/wsrf
13. Globus Toolkit, http://www.globus.org/toolkit
14. Smith, J., Watson, P.: Fault-Tolerance in Distributed Query Processing. In: 9th

International Database Engineering And Application Symposium. IDEAS 2005,
http://ideas.concordia.ca/ideas2005/ , IEEE, 329–338

15. Smith, J., Watson, P.: Failure Recovery Alternatives In Grid Based Distributed
Query Processing: A Case Study. The University of Newcastle upon Tyne, number
CS-TR-957, April 2006

16. Gounaris, A., Paton, N.W., Sakellariou, R., Fernandes, A.A.A. et. al.: Practical
Adaptation to Changing Resources in Grid Query Processing. In: The 22nd Inter-
national Conference on Data Engineering, ICDE 2006

17. Gounaris, A., Paton, N.W., Sakellariou, R., Fernandes, A.A.A. et. al.: Adapt-
ing to Changing Resource Performance in Grid Query Processing. In: VLDB
Workshop on Data Management in Grids, DMG 2005, http://liris.cnrs.fr/~
jpierson/DMG VLDB05/

18. Qi, L., Jin, H., Foster, I., Gawor, J.: HAND: Highly Available Dynamic De-
ployment Infrastructure for Globus Toolkit 4, http://www.globus.org/alliance/
publications/papers.php#HAND

19. Watson, P., Lee, P.: The NU-Grid Persistent Object Computation Server. In: 1st
European Grid Workshop, Poznan, Poland, 2000

20. Tannenbaum, T., Wright, D., Miller, K., and Livny, M.:Condor - A Distributed
Job Scheduler. In:Beowulf Cluster Computing with Linux, T. Sterling, Ed.: The
MIT Press, 2002.

21. Chrysoulas, C., Haleplidis, E., et. al.:Applying a Web-Services Based Model to
Dynamic-Service Deployment. In: International Conference on Intelligent Agents,
Web Technology, and Internet Commerce (IAWTIC), Vienna, Austria, November
2005

http://www.ogsadai.org.uk/documentation/ogsadai-wsrf-2.2/doc/reference/glossary.html
http://www.ogsadai.org.uk/documentation/ogsadai-wsrf-2.2/doc/reference/glossary.html
http://twiki.grimoires.org/bin/view/Grimoires/
http://www.vmware.com/
http://www.microsoft.com/windows/virtualpc/default.mspx/
http://www.microsoft.com/windows/virtualpc/default.mspx/
http://www.globus.org/wsrf
http://www.globus.org/toolkit
http://ideas.concordia.ca/ideas2005/
http://liris.cnrs.fr/~jpierson/DMG_VLDB05/
http://liris.cnrs.fr/~jpierson/DMG_VLDB05/
http://www.globus.org/alliance/publications/papers.php#HAND
http://www.globus.org/alliance/publications/papers.php#HAND

	Introduction
	Brief Description of OGSA-DQP
	DynaSOAr Architecture
	Dynamic OGSA-DQP
	Implementation

	Experiment
	Setup
	Results and Analysis

	Related Work
	Current and Future Directions
	Conclusion



