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Abstract. This paper describes some of the issues involved with scaling biomo-
lecular simulations onto massively parallel machines drawing on the Blue Mat-
ter application team’s experiences with Blue Gene/L. Our experiences in scaling
biomolecular simulation to one atom/node on BG/L should be relevant to scal-
ing biomolecular simulations onto larger peta-scale platforms because the path
to increased performance is through the exploitation of increased concurrency
so that even larger systems will have to operate in the extreme strong scaling
regime. Petascale platforms also present challenges with regard to the correctness
of biomolecular simulations since longer time-scale simulations are more likely
to encounter significant energy drift. Total energy drift data for a microsecond-
scale simulation is presented along with the measured scalability of various com-
ponents of a molecular dynamics time-step.

1 Introduction

IBM’s Blue Gene project was announced in December 1999 with the twin goals of ad-
vancing the state of the art in all aspects of computer systems while building a petaflop-
scale machine and of using the computational power enabled by this work to explore
important issues in the life sciences. This paper describes some of the challenges and
issues encountered by the Blue Gene application and science team in the course of cre-
ating a molecular simulation environment to both support our scientific goals and to
facilitate the exploration of parallel algorithms and programming models suitable for
massively parallel machines. The largest installation of the first member of the Blue
Gene family, Blue Gene/L[13], is a 65,536 node system at Lawrence Livermore Na-
tional Laboratory with a theoretical peak performance of 360 TFlop/second. Our appli-
cation development efforts and simulation science within the Blue Gene project target
the 20,480 node, 112 TFlop/s peak performance Blue Gene/L installation at the IBM
Thomas J. Watson Research Center (BGW) which is currently the largest unclassified
supercomputing facility in the world.

Of all the subfields of computational biology, molecular simulation is almost cer-
tainly the most mature in its ability to exploit high performance computing. Most of the
biology-related work on the Blue Gene/L facility at Watson (BGW) has thus far been
in that area, with projects targeting studies of protein folding mechanisms[5] and struc-
tural and dynamical studies of membrane proteins[18,16]. All of these projects share
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a requirement for very long time-scale simulations (microseconds) of modestly sized
molecular systems (10,000-100,000 atoms). The need for long time-scale simulations
drives requirements for both (strong) scalability and correctness that will be discussed
below.

The original target architecture for the Blue Gene project[1] had characteristics (very
small amount of memory per node, millions of processing elements) that drove a spe-
cific set of design goals for the Blue Matter application framework that we have devel-
oped as part of the Blue Gene project[8]. The design goals included:

– Running only the computationally intensive molecular dynamics core on the mas-
sively parallel Blue Gene platform to reduce the memory footprint of the code.

– Leveraging existing applications as much as possible for problem set-up and other
non-performance-critical functionality.

– Separating the complexity of domain-specific aspects of molecular dynamics from
the complexity of the parallel communications required. The goal was to allow
exploration of parallel decompositions without requiring the involvement of the
domain experts.

2 Experiences with Blue Gene/L

We believe that our experiences in developing the Blue Matter simulation code and in
running simulations on BGW are relevant to discussions about biomolecular simula-
tions on future peta-scale systems since the BGW facility already has a peak capability
of over 0.1 PFlop/s. BGW is typically operated in partitioned fashion where most of
the partitions comprise 4096 or 8192 nodes. The allocation and usage patterns of the
BGW facility reflect the usual tradeoffs between supporting a range of projects, carry-
ing out the ensembles of simulations required for scientific validity, maximizing overall
throughput, and the drive to reduce the total time to solution for a single researcher
or simulation. Using this resource, we have been able to run a number of large scale
simulation experiments including

– 26 separate 100 nanosecond simulations of Rhodopsin in a membrane environment
(44K atoms)[16].

– several microsecond-scale simulations of the same membrane protein system in-
cluding a pair of simulations totaling 3.5 microseconds.

– several 700 nanosecond simulations of Lysozyme (41K atoms)[5].

and additional long time-scale simulations of a fast folding Lambda Repressor protein
are currently underway. Although Blue Matter continues to speed up through 16,384
nodes on the systems being studied[11,10,9], these microsecond scale simulations typ-
ically use 4096 node partitions since this currently represents the best tradeoff between
throughput and total time to solution. Large Replica Exchange[22] simulations running
as a single MPI job on up to 8192 nodes[6] have also been run to obtain temperature
dependent thermodynamic information about protein systems.

While the I/O bandwidth requirements of molecular dynamics are quite modest since
the entire state of the system is represented by the positions and velocities of the parti-
cles in the system, the aggregate storage requirement is potentially quite large. Archival
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storage for the molecular simulation work is provided by a 500 TB capacity tape library
which backs approximately 8 TB of disk storage being managed with TivoliTM Space
Manager (hierarchical storage management).

3 Peta-scale Challenges

3.1 Molecular Simulation Validity

As the target time-scale for typical molecular simulations increases from tens of nanosec-
onds to microseconds or more, the stringency of the requirements on simulations will
also increase. In particular, the permissible rate of total energy drift in constant energy,
volume, and particle number (NVE) simulations will have to decrease as the length of
the NVE simulations increases. An increase in total energy of the system will cause a
rise in the instantaneous temperature of the system (defined by the kinetic energy) of the
same order. It is useful to measure the energy drift relative to the average kinetic energy
in the system (and actually to do so in units of temperature) to make the scale of the effect
clear. For example, an energy drift of 7 × 10−2 K/nanosecond results in a an increase
in total energy equivalent to 0.7 K over a 10 nanosecond simulation. This is quite small
in comparison with biological temperatures on the order of 310 K, but the same energy
drift in a 1 microsecond simulation would result in an increase of 70 K in the total energy
which is no longer negligible.

One of the principal rationales for believing in the relevance of long term simula-
tions is that for a symplectic integrator such as velocity Verlet[23], used to numerically
integrate Hamiltonian systems, there exists a “modified” Hamiltonian whose exact (con-
tinuous time) dynamics at integer multiples of the numerical integration time-step co-
incides with the discrete dynamics generated by the symplectic integrator[17,2,24,19].
This modified Hamiltonian may be “close” to the original in the sense that it can be ex-
pressed as a formal expansion in powers of the time-step size about the original Hamil-
tonian. The existence of this modified Hamiltonian means that the trajectory computed
by the numerical integrator should exactly conserve the total energy as computed by
the modified Hamiltonian (up to numerical roundoff) and hence should approximately
conserve the energy as computed by the original Hamiltonian. The popularity of vari-
ous forms of Verlet integrators for molecular dynamics simulation is largely due to their
simplicity and long term energy stability which stems from the symplectic property that
these integrators possess[12].

In general, a computational scientist will want to use the largest time-step size possi-
ble consistent with “correctness” in order to maximize throughput. Other performance-
critical simulation parameters affecting simulation accuracy and stability include the
FFT mesh spacing for Particle-Particle-Particle-Mesh (P3ME) methods[3] and the force-
splitting scheme and time-step ratios chosen for symplectic multiple time-stepping
methods[21,25,26]. Determining the optimal parameters for simulations enabled by
multi-teraflop and larger machines that involve billions or tens of billions of time-steps
provides a considerable challenge. Figure 1 shows a plot of the change in the total energy
in a simulation of a 43,222 atom system containing Rhodopsin running with a velocity
Verlet integrator using a 2 femtosecond time-step where all heavy-atom to hydrogen
bonds are constrained (eliminating the highest frequency vibrations from the system).
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Fig. 1. Energy drift of NVE molecular dynamics simulation of Rhodopsin in a solvated membrane
environment over a 1.6 microsecond run using a 2 femtosecond time-step

The energy drift measured by a linear fit to the data is about 6 × 10−4 K/ns where the
left-hand axis shows the energy change as a fraction of the average kinetic energy and the
right-hand axis expresses the change in energy as the change in instantaneous tempera-
ture that would result if all of the change were in the kinetic energy. For the parameters
used in this production simulation, the total change in energy over 1.6 microseconds
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was slightly larger than 1 K. This is smaller than the fluctuations observed in the kinetic
energy during the simulation as shown in Figure 1b and uncertainty of the temperature
in the experimental data that we compare with. This time-step size was chosen based
on experiences with shorter (10-100ns) simulations, but it is entirely possible that those
estimates could have been too low. It should also be noted that the execution time re-
quired for a time-step is essentially independent of the choice of integration time-step
size while the energy drift is a very strong function of time-step size. Therefore, longer
simulations could be carried out with acceptably small energy drift simply by reducing
the integration time-step size somewhat and our benchmarking data for the amount of
wall clock time required per time-step would still be valid.

Using the normal system Hamiltonian makes it difficult to estimate the long term
energy drift without very long simulation runs because of the short term energy fluc-
tuations observed when using a discrete time integrator. Because of the computational
expense involved, it has been impractical to carry out a systematic exploration of the
tradeoffs between parameter choices such as time-step size and magnitude of the energy
drift. In principle, such a study might have to be carried out for each new molecular
system. In practice, a choice of parameters is made based on experience with shorter
simulations, the drift is monitored as the simulation progresses, and the simulation
would have to be rerun with a less aggressive choice of parameters if excessive en-
ergy drift were observed. Recently there have been results reported on the numerical
estimation of the modified Hamiltonian from the simulation data[7] and this may allow
more extensive explorations of the parameter space affecting tradeoffs between simula-
tion quality and computational throughput without prohibitively large expenditures of
computational time.

3.2 Performance and Scalability

It is likely that future peta-scale architectures will achieve their performance through
massive concurrency (large numbers of CPUs per chip, massive parallelism). Given
that this is the case, the application challenge for biomolecular simulations that require
strong scaling will be considerable. Within Blue Matter, we have had to be very care-
ful to root out any non-scalable operations from our implementation. As the scale of
hardware available to us grew from a single 512-node prototype to the current 20 rack
system we repeatedly went through cycles of identifying previously insignificant non-
scalable operations that had to be eliminated.

Our current algorithms as implemented on Blue Gene/L can execute a time-step in
fewer than 600,000 processor clock cycles (at 700MHz), including the processing asso-
ciated with the global data dependency necessitated by the FFTs in the P3ME module.
We have found that the velocity Verlet integrator which requires the P3ME operation
to be carried out on every time-step enables us to run with very small amounts of en-
ergy drift in NVE simulations. If no significant increases in processor clock speeds are
anticipated, then each order of magnitude decrease in time to solution will require each
time-step to execute in a correspondingly smaller number of cycles. Since our scalabil-
ity is now limited by the execution speed of the FFTs required for the P3ME method as
shown in Figure 2, it is likely that investigations of alternative methods for treatment of
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the long range electrostatics and/or coarse-graining methods will be required to realize
additional improvements to the current strong scaling results.

While the BG/L architecture is a relatively “pure” message-passing machine with
two identical processing elements per node, each of which can participate in either
communication-related activities or computation, there are other ways to deploy addi-
tional processing elements. For example, the use of additional specialized processors for
DMA operations or communications could enable more overlap of communications and
computation, but it isn’t clear that this would increase the limits of scalability where data
dependencies prevent further computation until communication operations complete.

4 Algorithmic Explorations

One way to place bounds on the potential scalability of an algorithm is to determine
the amount of concurrency available in principle for that algorithm. As a concrete ex-
ample, Table 1 enumerates the concurrency available in various portions of the molec-
ular dynamics time-step iteration for a 43,222 atom simulation of Rhodopsin using
the Particle-Particle-Particle-Mesh Ewald (P3ME) technique. The P3ME technique re-
quires the evaluation of at least two three-dimensional FFTs on each time-step and
development of a highly scalable distributed memory 3D-FFT[4] has been one of the
key enablers of Blue Matter’s current scalability. As shown in Figure 2, it appears that
the three-dimensional FFT is the limiting factor of performance in the extreme strong
scaling limit.

The other major component of the computational load in a typical molecular dy-
namics simulation comes from the finite-ranged pair interactions between particles. We
have explored several different algorithms for parallelizing these operations, from sim-
ple replicated data decompositions[8,15], to a geometrically-based interaction decom-
position with a minimal communication radius[11,14], and most recently, a set-based

Table 1. Degree of concurrency in computational modules within a single molecular dynamics
time-step for a 43,222 atom membrane/protein system (Rhodopsin) using a 128 × 128 × 128
mesh for P3ME. The system parameters were those used in production simulations[18,16]. The
last column is the concurrency possible for that computational module based on the number of
independent calculations required (assuming a “reasonable” level of granularity). The number
of real-space pair interactions to be computed will actually fluctuate somewhat during the course
of the simulation because of particle diffusion.

Stage Major Computational Kernel Independent Com-
putation Count

Real-space Non-bond (9/1 Å
cutoff/switch)

Pairwise forces (L-J and Ewald real-
space)

9,113,514

Bonded bond stretches, angle bends, torsions,
Urey-Bradley

126,730

P3ME Meshing/Un-meshing 4 × 4 × 4 stencil 43,222
P3ME Convolution 3D Fast Fourier Transform (FFT) 16,384
Propagation of Dynamics Verlet integration 43,222
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Fig. 2. This is a plot of the scalability of various components of the molecular dynamics time-
step as a function of node count. The system is the same Rhodopsin membrane/protein system
described in Table 1. There are data dependencies between some of these components and since
we schedule modules on both CPUs of the BG/L node, some of the components are executing
concurrently.

optimization technique that uses a geometrically derived heuristic as a starting point[9].
The most recent performance results demonstrate time-step execution times below one
millisecond for a β-hairpin system and continued speedups through approximately one
atom per node[9].

5 Conclusions

Experiences with scaling the Blue Matter biomolecular simulation application to run
effectively on the 112 TFlop/s BGW system should be relevant to any efforts to run
such codes on future petaflop-scale platforms because the design philosophy of Blue
Gene/L required the kind of massive parallelism that is likely to be needed for such
platforms. As the development of novel algorithmic techniques was required to realize
improved time-to-solution for biomolecular simulations on Blue Gene/L, it is likely
that significant additional innovation will be needed in order to continue to increase
the time scales accessible via simulation. These innovations will almost certainly be
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related to the parallelization of the long range electrostatic interactions and may involve
the adoption of alternative algorithms for the computation of those interactions such as
multi-grid[20].

Even without additional algorithmic improvements, it is likely that increasing the
system size studied (weak scaling) will enable effective use of peta-scale platforms to
extend the accessible time-scales for those systems into the microsecond regime that
Blue Gene/L has opened up for smaller systems (< 100, 000 atoms). Also, the avail-
ability of peta-scale platforms will enable studies involving larger ensembles of long
trajectories that can give improved sampling and allow the generation of statistical er-
ror estimates[16].
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