
A One-Stop, Fire-and-(Almost)Forget,

Dropping-Off and Rendezvous Point�

R. Menday1, B. Hagemeier1, B. Schuller1, D. Snelling2, S. van den Berghe2,
C. Cacciari3, and M. Melato4

1 Central Institute for Applied Mathematics,
Forschungszentrum Jülich, D-52425 Jülich, Germany

2 Fujitsu Laboratories of Europe Ltd, Hayes Park Central,
Hayes End Road, Hayes, Middlesex, UB4 8FE, UK

3 CINECA, via Magnanelli 6/3, 40033 Casalecchio di Reno, Bologna, Italy
4 NICE, via Marchesi di Roero 1, 14020 Cortanze, Italy

r.menday@fz-juelich.de

Abstract. In order to foster uptake by scientific and business users we
need an easy way to access Grid resources. This is the motivation for
the A-WARE project. We build upon a fabric layer of Grid and other re-
sources, by providing a higher-layer service for managing the interaction
with these resources - A One-Stop, Fire-and-(almost)Forget, Dropping-
off and Rendezvous Point. Work assignments can be formulated using
domain specific dialects, allowing users to express themselves in their
domain of expertise. Both Web service and REST bindings are provided,
as well as allowing the component to be embedded into other presentation
technologies (such as portals). In addition common desktop notification
mechanisms such as Email, RSS/Atom feeds and instant messaging keep
users informed and in control. We propose using the Java Business In-
tegration specification as the framework for building such a higher-level
component, delivering unprecedented opportunities for the integration
of Grid technologies with the enterprise computing infrastructures com-
monly found in businesses.

1 Introduction

UNICORE[23],[18] has gained a reputation as a vertically integrated architecture.
Sometimes referred to as a ‘stovepipe’ architecture, it offers a complete ‘ready to
run’ solution. From a user and administrative perspective this is clearly attractive.

Recently, in the Grip[11] and then the UniGrids[9] projects, UNICORE has
been prominent in promoting interoperable Grid middleware. Indeed, UNICORE
emerged as an early adopter of Service Oriented (SOA)[20] approaches to build-
ing distributed systems[21]. The consequence of a good SOA design is that
there is a loose-coupling between the components, thus loosening the links in
the UNICORE stovepipe. Emerging from the current activity in the UNICORE
� This work is partially funded through the European A-WARE project under grant

FP6-2005-IST-034545.

W. Lehner et al. (Eds.): Euro-Par 2006 Workshops, LNCS 4375, pp. 225–234, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



226 R. Menday et al.

community will be a best-of-breed packaging of select components. In essence,
the next-generation of UNICORE will become a stovepipe construction toolkit.
Furthermore, there now exists the possibility for others to take individual com-
ponents and use them for something else.

Fig. 1. Deployment possibilities of the work engine

Referring to Figure 1 we assume a cloud of services consisting at the lowest
level of fabric services. These are services associated with particular computa-
tional or data resources. The UNICORE Atomic Services (UAS) developed in the
UniGrids project provide us with a Web services based interface to such atomic
grid functionality. Services which are not fabric services - i.e. not coupled to a
particular computational or data resource - are termed higher-level services. In-
dividual fabric services are not normally used in isolation. A set of resources and
services are orchestrated into a complex workflow, business process, or service
chain. This paper deals with such a ‘work engine’, acting on behalf of multifar-
ious users that manages the multiple invocations of contributing services. This
work will be carried out within the A-WARE project[1]. Examples of such func-
tionality include atomic Grid jobs, other higher-level services, databases, legacy
applications, etc. In short our work engine component can be described as a

one-stop, fire-and-(almost)forget, dropping-off and rendezvous point.



A One-Stop, Fire-and-(Almost)Forget, Dropping-Off and Rendezvous Point 227

One-stop, because it presents a façade of the Grid to the user1. Fire-and-
forget implies that the work engine manages the orchestration of the users’ tasks
over the Grid infrastructure. In many cases, after assigning work to the engine,
the next contact the client makes is when the assignment is complete - the
rendezvous. The ‘almost’ proviso implies that the client may wish to be notified
during the execution of the assignment, either for purely informational purposes,
or to participate in its execution, approving resource selection choices, or adding
additional information not available at the time of submission.

Whilst the use-cases driving the development of the Grid lead to some special
requirements, it has also become increasingly evident that businesses face similar
issues related to internet-scale communication, cross-organisational interactions,
and the accessing of services over the internet. This has resulted in the blurring of
the lines between Grid computing in the scientific community, and the kind of the
enterprise computing seen within business. Through the seamless integration of
Grid resources and local (non-Grid) resources, using a very powerful and flexible
orchestration environment, leading to the disappearing grid.

The further integration of a Grid portal component, such as EnginFrame[8],
would allow organizations to provide application oriented computing and data
services to users in a simplified Web browsing experience. Grid portal technol-
ogy hides the complexity of the underlying Grid infrastructure and provides an
additional user-oriented abstraction layer on the Grid.

This paper proposes using the Java Business Integration (JBI)[14] specifica-
tion for building higher-level services for the Grid. We suggest that this will
increase the ease of integration of Grid technologies into standard procedures
and systems, bringing considerable advantage through extending the reach of
Grid technologies. JBI provides the environment for the orchestration of re-
sources. The JBI based work engine supports a wide variety of work description
documents, external bindings, swappable and co-existing orchestration strategies

Domain Specific Languages (DSL) are used throughout the architecture. These
can be used to expose a legacy application or process, or to provide core support
for pre-designed ‘canned’ workflows which can be used as a top-level work descrip-
tion, or as embedded fragment in a larger orchestration language. As such, the use
of DSLs can be seen as a logical progression of the software resource concept of
UNICORE.

The design encourages an ecosystem of multiple clients all using the services
offered by the work engine. These are supported through multiple external bind-
ings. So, for example, it will offer a Web services interface as well as HTTP in-
terface following the REST [19] architectural guidelines. Alternatively, the work
engine can be deployed as an embedded component in other publishing frame-
works, supporting the established portal technology EnginFrame[8], as well as
opensource portlet[17] containers such as GridSphere[12]. Finally, there are fur-
ther opportunities for building domain specific workbench applications leverag-
ing the DSL support.

1 For performance reasons data transfers occur in a point-to-point nature (bypassing
the work engine).



228 R. Menday et al.

This paper begins in section 2 by reviewing the status of UNICORE develop-
ment highlighting the UNICORE Atomic Services (UAS) developed in the Uni-
Grids project. We follow with high-level view of functionality targets in section 3.
The JBI-based framework is introduced in section 4. In section 5 we outline some
future strategies for workflow execution, including the use of rule technologies in
section 5.3. Furthermore, we outline in section 5.1 how Domain Specific Languages
are a core concept in the architecture. Finally, we conclude with a summary.

2 Atomic Services and Interoperation

Our primary interface for Grid tasks is the UNICORE Atomic Services (UAS)
as developed in the UniGrids [9] project. The UAS covers the basic use-cases
for ‘atomic’ Grid usage, e.g. submit and manage a job, elementary data man-
agement, at a single target system (a VSite in UNICORE terminology). This is
done by defining a contract for Target System and related services.

At the time of writing, nothing exists as a standard - from the GGF (or
elsewhere) - with the same level of usability and maturity as the UAS, although
the Global Grid Forum has a number of initiatives in this area. Thus, for now, we
support the UAS interface as the ‘native’ interface to atomic Grid functionality,
until a concrete standard emerges. Indeed the UAS has provided an excellent
input to the standardisation process

We introduce the term willingness to categorise levels of support. We see
gradients of willingness. For example, a fabric service may use JSDL[10] for
describing jobs, although alternative mechanisms for conveying this message are
possible. Often a partial willingness to comply is due to the very nature of the
standard. For example, JSDL has an extensible nature whereby open-content
can appear at some points within the document.

What emerges is that some form of mediation strategy is necessary in almost
every case. Sometimes this involves some simple protocol translation steps, but
in other cases it may mean using ontological techniques to cope with different
information models.

3 Functionality

This section contains an incomplete presentation of possible fields where the
higher-level service discussed here may prove useful.

– Workflowing
High-level, abstract workflows described by DSLs broken down into low-level,
concrete workflows for execution by fabric services. Basic orchestration of
concrete workflows.

– Scheduling
Different approaches to scheduling can be enumerated as static, dynamic
and hybrid scheduling. Static tasks are completely predefined or directly



A One-Stop, Fire-and-(Almost)Forget, Dropping-Off and Rendezvous Point 229

authorised by the client. Dynamic tasks consist of a description of work to be
done with no particular resources assigned to them. Dynamic scheduling in-
volves lookup of appropriate resources with respect to an associated require-
ments description. We can combine both approaches in hybrid scheduling
strategies.

– Brokering
Grids are subject to constant change. A dynamic broker supports the se-
lection of resources according to the user’s policies and currently offered
resources. Reaction on changes of resources during execution of workflows
closely links brokers and schedulers.

– Negotiating
Most real-life Grid applications involving multiple resources require schedul-
ing and reservation steps. Coordinated time-dependant synchronised starting
provides co-scheduling support.

– Integrating
With the Grid mainstream clearly moving towards web services based tech-
nologies, solutions supporting clean integration of ‘legacy’ business systems
or processes are necessary.

– Mediating
In an environment dominated by open, extensible messaging formats, often
collaboration between services entails some form of mediation. For example,
various dialects of WS-Addressing or JSDL might coexist in a Grid.

– Transforming
In a similar vein, data might need transformation steps between services, for
example in a multi-step workflow with data transfers.

– Managing
Specific services might expose administrative interfaces, for example security
services might offer the possibility to add users or modify user permissions.

– Informing
The massive amount of both static and dynamic information available in
next-generation Grids needs to be filtered for various needs - both end user
and software agents. Web users are accustomed to using a wide variety of
communication tools, such as e-mail, RSS feeds, SMS or instant messaging.
These can be profitably leveraged for Grid users. A common use case is noti-
fying users about an interesting status change of some resource, for example
when jobs have finished, or results are available.

– Interacting
A particular work assignment may require input from the user during the
course of its execution. Such interaction could be used to approve a dy-
namic resource selection, or could be used to adjust the rules governing the
execution.

– Securing
In heterogeneous, truly service oriented Grids, the ability to use and mediate
between various trust and security approaches may well become vital. Our
work engine will use appropriate security services to achieve this.



230 R. Menday et al.

4 Java Business Integration

In order to cover the wide-range of possibilities covered by the functional require-
ments, we selected the Java Business Integration[14] specification as a framework
technology. JBI promotes the idea of a loosely-coupled collection of components
interacting with each other via the bus. It is an event-driven, component ar-
chitecture. The specification defines a standard means to assemble integration
components which are plugged into a JBI environment and can provide or con-
sume services through it, in a loosely-coupled way. The JBI environment routes
the exchanges between these components and offers a set of technical services.

JBI distils SOA concepts into the design of the internal interfaces collected
around the bus. As such, JBI encourages the programmer to design and code in
a loosely-coupled manner - e.g. between each module of code contributing to the
system, there is a cleanly defined contract for the interactions.

JBI offers a lot of potential integration possibilities into existing enterprise
Java deployments. Many businesses will find this a particularly compelling as-
pect of JBI. Furthermore, as a standard Java specification there exists a number
of JBI implementations, and lots of opportunity to re-use existing components. A
deployment is declaratively configurable and manageable using standard mech-
anisms. It is easy to ‘customise’ a particular JBI deployment, for example to
support local processes using a DSL (see section 5.1).

Furthermore, JBI is an excellent framework for supporting multiple protocols
and transports, through various binding components, such as

– REST
A well designed HTTP interface following the guidelines of the REST archi-
tectural style, offers an extremely attractive interface with an extremely low
barrier to entry. Through interaction with a REST interface, browsers can
construct Web applications using client-side scripting and using AJAX[2]
approaches. It is clear that a number of other interesting Web techniques
can also be applied here too.

– WS-*
Tool support for Web services is excellent. A good toolkit automates a sub-
stantial amount of the process of building client tooling for web services.
Businesses with commitment and expertise with Web services will find this
channel for interaction appealing.

– Embedded
This allows the work engine to be embedded into portals, and other presen-
tation layer technologies.

The goal of each of the binding components above is to ultimately deliver
a work assignment to the JBI bus for execution. The user submitting this can
configure their work engine with notification preferences, such that they are
contactable during and after the execution of their work. We propose using
ServiceMix[3] as the implementation of JBI, and this comes with a number of
notification mechanisms (such as Email, Jabber[13] messaging, RSS/Atom feeds)
‘out of the box’.



A One-Stop, Fire-and-(Almost)Forget, Dropping-Off and Rendezvous Point 231

5 Orchestration

The JBI-based core is a suitably powerful and generic framework to host the
execution of scientific and business processes. Based on interacting with, and
learning from, the computing world surrounding it, semi-autonomous agents
form the conduit between the bus and the external world, through monitoring
of the outside world, and reacting by sending events onto the bus. For example,
agents could check and arrange QoS guarantees. Further agents could be respon-
sible for negotiating trust relationships including security token exchange via a
security token service. Co-allocated, time-dependent, synchronised start is also
possible given an appropriate co-allocation agent.

Fig. 2. The bus and some sample components

5.1 Domain Specific Languages

When dealing with workflows on the Grid, one inevitably has to deal with
bridging the gap between the low-level, technical workflow (execution of small,
”atomic” activities) and the high-level view taken by the end users, where max-
imising the impact application developers can make in their domain of exper-
tise is important. One approach towards bridging the above-mentioned gap
is the combination of orchestration engines and high-level DSLs. The idea is
that higher level ‘work assignments’ use the underlying orchestration services to



232 R. Menday et al.

execute. Work assignments are, if necessary, mapped to a description understood
by the core orchestration components. The work engine can advertise which DSLs
it supports.

DSLs allow work assignments to be expressed in the level of abstraction of
the problem domain. Consequently, domain experts themselves can understand,
validate, modify, and often even develop DSL descriptions. There is some debate
whether XML documents are in fact DSLs[22]. We argue that they are, and
that it is the level of abstraction which allows classification as a DSL, although
clearly it is nothing more than some XML conforming to a particular schema!
We propose supporting both XML and non-XML DSLs as work assignments to
be fed into the work engine. However, there is some merit to XML based DSLs2

as it is then easier to embed inside other XML documents. It is also simple to
use XML schema to validate XML-based DSLs.

Regardless of the means by which it was conveyed, at some point a work as-
signment exists as a message on the JBI bus. Some messages are said to be in a
‘native’ format, i.e. can be directly executed by one of the orchestration engines
which are responsible for managing the workflow and persisting the state of the
orchestration. Therefore, a process of transformation and mediation interprets
the incoming work assignment. The JBI bus is the controlled environment re-
sponsible for managing this break-down. Intermediate steps may themselves be
expressed in some DSL formulation. Eventually this process produces an execu-
tion plan that can be directly executed in the native format of the underlying
orchestration engine.

5.2 BPEL

The Grid community seems to be somewhat split regarding the use of BPEL
in conjunction with WSRF. Part of the problem is that the WSRF interactions
between a service consumer and provider are quite verbose and fine-grained.
While it is possible to describe this conversation as a BPEL workflow the result
is somewhat long-winded.

The key is to use the bus for the invocation of services from BPEL. Each
invocation breaks down to a series of WSRF-based invocations, but crucially
the contract to the BPEL consumer on the bus is coarse-grained and service-
oriented, and avoids the verboseness. Thus the usage of JBI as a mediating
technology between BPEL and WSRF-based Grid services looks very promising
to successfully use BPEL to orchestrate Grid (WSRF-based) services.

Furthermore throughJBI multiple orchestration strategies can co-exist. Indeed,
runtime selection of orchestration strategy may be based on the type of assign-
ment passed to it. Other orchestration technologies which also look interesting in-
clude Business Process Management (BPM) workflow solutions (OSWorkflow[16],
jBPM[15], etc), petri-net based solutions (Bossa [4]), continuation-based
approaches (bpmscript[5], dalma[6]). As emphasised previously, these orchestra-
tion strategies can be swapped in and out much easier using the JBI infrastructure.

2 Even if its just a trivial wrapping.



A One-Stop, Fire-and-(Almost)Forget, Dropping-Off and Rendezvous Point 233

5.3 Rules

A rule engine is an example of another useful component that can be hosted by
JBI. Prototype work to date has concentrated on the Java rules engine, drools
[7]. This is based on the facts supplied from the computing environments, and a
dynamically evolving rule base.

This provides an alternative approach to routing messages on the JBI bus, or
initiating the delivery of new messages. This can be leveraged to reason on the
state of a executing work assignment, using the rule base to make decisions, for
example to assist with brokering decisions.

Potentially, a rule engine could be used to orchestrate an entire work assign-
ment. This enables a declarative approach to workflow description. The rules can
be changed during runtime opening up some very interesting runtime possibili-
ties such as ‘workflow rewriting’. Alternatively, the rule engine could be used at
particular points within the course of a workflow execution, such as evaluations
at decision points. This hybrid approach using multiple strategies is likely to be
the most commonly used.

6 Summary

This paper has reported on some architectural approaches under consideration
at the start of the A-WARE project. Clearly, the new breed of grid infrastructure
is based on the SOA paradigm. Functional requirements pose a strong need for
dynamic message exchanges between all components, which can be added to and
removed from the infrastructure in dynamic ways.

A flexible architecture supporting the stated functional requirements is JBI,
offering normalized message exchange between components plugged into a mes-
sage bus. JBI offers general purpose components which will be useful in imple-
mentation of A-WARE infrastructure. Very importantly, we envisage re-using
many existing opensource libraries for the implementation, writing code to inte-
grate these using JBI. Finally, as a integration framework, JBI offers excellent
support for the integration of existing systems and processes.

Work assignments may be described in terms of DSLs, allowing specialists to
work in their domain. DSL work descriptions are abstract and will be broken
down to concrete submissions of contributing resources. DSLs can be nested
and provide a notion of ‘canned’ workflow. Furthermore, JBI allows for the
integration of several orchestration strategies. They can be selected on the basis
of particular work assignment. JBI comes with a component supporting BPEL,
which can be used as a start, and support for other orchestration engines will
be added. A rule engine hosted by JBI declaratively describes consequences
of certain states of workflows or events in the environment. Rule engines can
potentially be used to orchestrate entire work assignments.

An early prototype of the JBI based framework looks very promising. The
great advantage of this approach is the possibility of rapid and flexible devel-
opment. Development is incremental and highly modular, such that extensions
can be added without interfering with the existing components.



234 R. Menday et al.

References

1. A-WARE Project. http://www.a-ware.org/.
2. AJAX. http://adaptivepath.com/publications/essays/archives/000385.php.
3. Apache ServiceMix. http://incubator.apache.org/servicemix/.
4. Bossa. http://www.bigbross.com/bossa/.
5. Bpmscript. http://www.bpmscript.org/.
6. Dalma. https://dalma.dev.java.net/.
7. Drools. http://drools.codehaus.org/.
8. EnginFrame. http://www.enginframe.com/.
9. European UniGrids Project. http://www.unigrids.org.

10. GGF JSDL. https://forge.gridforum.org/projects/jsdl-wg/.
11. Grid Interoperability Project. http://www.grid-interoperability.org.
12. GridSphere. http://www.gridsphere.org/.
13. Jabber. http://www.jabber.org.
14. Java Business Integration. http://www.jcp.org/en/jsr/detail?id=208 .
15. jBPM. http://www.jboss.com/products/jbpm.
16. OSWorkflow. http://www.opensymphony.com/osworkflow/.
17. Portlet Specification. http://www.jcp.org/en/jsr/detail?id=168 .
18. D. Erwin, editor. UNICORE Plus Final Report – Uniform Interface to Computing

Resources. UNICORE Forum e.V., 2003. ISBN 3-00-011592-7.
19. Roy Thomas Fielding. Architectural styles and the design of network-based software

architectures. PhD thesis, 2000. Chair-Richard N. Taylor.
20. Ian Foster. Service-oriented science. Science, 308(5723):814–817, May 2005.
21. R. Menday and Ph. Wieder. GRIP: The Evolution of UNICORE towards a Service-

Oriented Grid. In Proc. of the 3rd Cracow Grid Workshop (CGW’03), Oct. 27–29
2003.

22. M.Fowler. Language Workbenches: The Killer-App for Domain Specific Languages?
2005. http://www.martinfowler.com/articles/languageWorkbench.html.

23. A. Streit, D. Erwin, Th. Lippert, D. Mallmann, R. Menday, M. Rambadt,
M. Riedel, M. Romberg, B. Schuller, and Ph. Wieder. Unicore - From Project
Results to Production Grids, 2005. Elsevier, L. Grandinetti (Edt.), Grid Comput-
ing and New Frontiers of High Performance Processing.

http://www.a-ware.org/
http://adaptivepath.com/publications/essays/archives/000385.php
http://incubator.apache.org/servicemix/
http://www.bigbross.com/bossa/
http://www.bpmscript.org/
https://dalma.dev.java.net/
http://drools.codehaus.org/
http://www.enginframe.com/
http://www.unigrids.org
https://forge.gridforum.org/projects/jsdl-wg/
http://www.grid-interoperability.org
http://www.gridsphere.org/
http://www.jabber.org
http://www.jcp.org/en/jsr/detail?id=208
http://www.jboss.com/products/jbpm
http://www.opensymphony.com/osworkflow/
http://www.jcp.org/en/jsr/detail?id=168
http://www.martinfowler.com/articles/languageWorkbench.html

	Introduction
	Atomic Services and Interoperation
	Functionality
	Java Business Integration
	Orchestration
	Domain Specific Languages
	BPEL
	Rules

	Summary



