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Abstract. Multivariate Cryptography has been an active line of re-
search for almost twenty years. While most multivariate cryptosystems
have been under attack, variations of the basic schemes came up as poten-
tial repairs. In this paper, we study the Internal Perturbation variation
of HFE recently proposed by Ding and Schmidt. Although several results
indicate that HFE is vulnerable against algebraic attacks for moderate
size parameters, Ding and Schmidt claim that the cryptosystem with
internal perturbation should be immune against them. However in this
paper, we apply the recently discovered method of differential analy-
sis to the Internal Perturbation of HFE and we find a subtle property
which allows to disclose the kernel of the perturbation. Once this has
been achieved, the public key can be inverted by attacking the underly-
ing HFE provided the parameters were taken low enough to make the
perturbed scheme of competitive performance.

Keywords: multivariate cryptography, HFE, internal perturbation, dif-
ferential cryptanalysis, binary vector spaces.

1 Introduction

Multivariate Cryptography has been an active line of research for almost twenty
years. Initiated independently in the early 80’s by Matsumoto-Imai and Fell-
Diffie [11,7], the field was revived by the work of Patarin and Shamir [14,17,15].
The interest for multivariate primitives can be explained in several ways. First,
these schemes are not related to factorization or discrete logarithm problems.
They rely on the intractability of solving systems of multivariate quadratic equa-
tions over a finite field. This problem is proved NP-hard [12] and moreover no
quantum polynomial algorithm has been found to solve it. Next, these schemes
benefit from several nice properties such as providing very short or very fast
signatures, as well as a very particular flexibility: from all basic trapdoors can
be derived a number of generic variations. These variations are often considered
to thwart structural attacks against the original cryptosystems.

Today most basic trapdoors have been under attack. Among the most pro-
mising, HFE was introduced by Patarin as a repair of the Matsumoto-Imai
� This work is supported in part by the French government through X-Crypt, in part

by the European Commission through ECRYPT.

T. Okamoto and X. Wang (Eds.): PKC 2007, LNCS 4450, pp. 249–265, 2007.
c© International Association for Cryptologic Research 2007



250 V. Dubois, L. Granboulan, and J. Stern

cryptosystem [15]. The scheme was quickly subject to a cryptanalytic attack
by Kipnis and Shamir [9], and further attacked by Courtois [1], but the first
successful cryptanalysis of HFE was only provided by Faugère and Joux, eight
years after its invention [6]. The latter attack made use of a general Gröbner bases
algorithm and its success can only be explained by some inherent algebraic prop-
erties allowing a peculiarly fast computation of the algorithm. These algebraic
properties were recently mathematically explained by Granboulan-Joux-Stern
[10] and a rather clear picture of how to choose parameters to withstand attacks
is emerging.

On the other hand, very few studies are dedicated to the security of varia-
tions, and the respective effects of the many variations remain unclear in terms
of security. However variations are powerful and can have a crucial impact on
security: as an example, the SFlash signature algorithm chosen by the NESSIE
European consortium is a variation of the broken Matsumoto-Imai cryptosys-
tem [13]. Also, most attacks against the basic cryptosystems do not extend to
variations. The gain on security brought by variations has to be understood to
determine whether they result in secure schemes.

Our results. In this paper, we consider a variation of HFE called the Internally
Perturbed HFE. This variation was recently proposed by Ding and Schmidt [4].
It was designed to counter Kipnis-Shamir’s attack, and is expected to withstand
Gröbner bases attack as well. A simpler internal variation had been previously
proposed based on the Matsumoto-Imai cryptosystem [2] and had already been
asserted to provide immunity against algebraic attacks [3]. Unfortunately, the
Matsumoto-Imai cryptosystem has a very specific structure and the internal per-
turbation could actually be removed using the recently introduced differential
technique [8]. In this work, we consider the enhanced internal perturbation vari-
ation as applied to HFE and defined in [4]. We show that the original internal
perturbation variation applied to HFE still suffers from the drawback exhibited
in [8], while the enhanced version has indeed a much subtler differential visibility.
However, a differential bias can still be captured and exploited to disclose the
kernel of the perturbation. Once this has been achieved, the public key can be
inverted by attacking the underlying HFE provided the parameters were taken
low enough to make the perturbed scheme of competitive performance. Precise
complexity estimates for the attack are provided.

Organization of the paper. In section 2, we recall the construction of HFE and
its Internal Perturbation variation. Next, in section 3, we recall the basics of
differential analysis for multivariate schemes and its application to the inter-
nally Perturbed Matsumoto-Imai. In section 4, we analyze the differential of the
Internally Perturbed HFE and we exhibit a provable distinguisher of elements
cancelling the perturbation. In section 5, we turn this distinguisher into an al-
gorithm to find the kernel of the perturbation. In section 6, we show that the
public key can be easily inverted once this kernel is known. The method being
quite technical in character, all proofs could not be included; the full paper is
available from the authors.
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2 The Internally Perturbed HFE Cryptosystem

2.1 Notations

We denote by F2 the finite field with two elements and by F2n the degree n exten-
sion field of F2. F2n is an F2-vector space of dimension n isomorphic to F

n
2 . The

squaring operation x �→ x2 is F2-linear (or additive) in F2n . As a consequence,
sums of monomials of the form ax2i

where a is an element of F2n and i is an
integer in [0, n−1], are the F2-linear maps over F2n . Polynomials of this type will
be therefore called F2-linear polynomials. Given an F2-linear polynomial, the set
of its cancelling elements is a linear subspace of F2n that will be referred to as
its kernel. F2-linear polynomials are isomorphic to (multivariate) linear maps of
F

n
2 by an extension of the isomorphism between F2n and F

n
2 . Similarly, sums of

monomials of the form ax2i+2j

where a is an element of F2n and i, j are integers
in [0, n − 1], will be called F2-quadratic polynomials. F2-quadratic polynomials
translate through the isomorphism between F2n and F

n
2 into quadratic maps of

F
n
2 , defined by n polynomials of degree 2 in n variables.

2.2 The Original HFE Setting

Informally speaking, the generic construction of multivariate schemes consists
in disguising an easily solvable system of multivariate quadratic equations as
random, by a secret transformation. In most schemes, the secret transformation
is the composition by two randomly chosen invertible affine maps S, T ; one is
applied on the variables and the other one on the equations. The way to generate
an easily solvable quadratic system P defines each scheme. The public key P is
given by:

P = T ◦ P ◦ S

An encrypted message P (a) is decrypted by solving the quadratic system P (x) =
P (a). Solving this system is intractable except for the legitimate user which can
invert T and S and solve the easy internal system. In Matsumoto-Imai and HFE,
the easily solvable system P exploits the isomorphism between F2n and F

n
2 . In

Matsumoto-Imai, the internal function P is the multivariate expression of an F2-
quadratic monomial x2i+2j

, where i, j are suitably chosen so that it is invertible.
In HFE, the internal polynomial is the multivariate expression of an F2-quadratic
polynomial which has low degree to allow decryption by a root-finding algorithm.

Different cryptanalytic approaches [9,6,1] made clear that the low degree of
the internal polynomial in HFE makes the system vulnerable to algebraic at-
tacks. In particular, Faugère and Joux demonstrated that systems of quadratic
equations coming from HFE public keys allow much easier Gröbner basis com-
putations than random systems of the same size [6] - the first challenge of HFE
of parameters n = 80 and degree 96 was broken in a hundred hours. Now the
question is : how to enhance the security of HFE?
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2.3 The Internally Perturbed HFE

To withstand low degree attacks, the internal polynomial should be modified so
that it no more has low degree while still allowing decryption. An interesting
idea to realize this, was presented by Ding and Schmidt [4] and is known as the
Internally Perturbed HFE. The suggested modification consists in “noising” the
low degree internal polynomial by a few terms of high degree which can only be
removed by the legitimate user. We next recall this scheme in detail.

For a given degree parameter D, the user chooses a bivariate polynomial
P̈ (x, y) as the sum of three basic components:

– a univariate F2-quadratic polynomial P (x) in variable x of low degree under
2D+1, that will be called the HFE-part of P̈ .

– a bivariate F2-bilinear polynomial M(x, y) in variables x, y of low degree 2D

in x, that will be called the the mixing part of P̈ .
– a univariate F2-quadratic polynomial P̄ (y) in variable y, that will called the

pure perturbation part of P̈ .

In addition, the user randomly selects an F2-linear polynomial Z(x) of low rank
r. The F2-quadratic polynomial P̃ (x) = P̈ (x, Z(x)) has very high degree in
general, nevertheless its roots can be found indirectly: the image of Z, that we
note Im(Z), has only 2r elements and for any b of them, one can find the roots of
P̈ (x, b) since it has small degree. P̃ (x) consists in the internal polynomial in the
Internally Perturbed HFE, and the public key is P̃ = T ◦ P̃ ◦S, as in HFE. One
can observe that the decryption process is 2r times slower than for an HFE of the
same degree parameter. The prescribed parameters are n = 89, D = 3, r = 2 [4].
It can be noticed that in our definition of the internal polynomial P̃ , all linear
and constant terms of the definition of [4] were omitted. Indeed in the sequel,
we will only be interested in the differential of P̃ , and as we will see, linear and
constant terms disappear when taking the differential.

3 Internal Perturbation and Differential Analysis

We let Z to be the composition of Z with the linear part of S. As a basic
observation, an Internally Perturbed HFE public key is just an HFE public
key on any affine subspace parallel to the kernel of Z. Indeed, this is required
by the decryption process: for any element b, P̃ (x) coincides with the small
degree polynomial P̈ (x, b) over the affine subspace b + kerZ. Therefore, if we
could discover the kernel of Z, we could invert the public key by attacking the
underlying HFEs with Gröbner bases, as shown by Faugère and Joux [6]. Hence,
the Internally Perturbed scheme would be broken by the ability to recover the
kernel of the perturbation.

Differential Analysis is a generic tool of analysis of multivariate schemes which
can allow learning information about the hidden structure. It was in particular
used to discover the kernel of the perturbation of a former internally perturbed
scheme, the Perturbed Matsumoto-Imai cryptosystem. We next recall the ba-
sics of differential analysis for multivariate schemes and its application to the
Perturbed Matsumoto-Imai.
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3.1 Basic Properties of the Differential of a Quadratic Function

For any quadratic function P and any element a, the difference P (x+ a)− P (x)
is an affine function in x of constant term P (a) − P (0). Its linear part is called
the differential of P at a and will be denoted DPa in the sequel.

DPa(x) = P (a + x) − P (x) − P (a) + P (0)

In multivariate schemes, we have two quadratic functions P and P which are
related by two bijective affine transforms S and T following P = T ◦ P ◦ S.
Denoting S and T the linear parts of S and T , the differential of P and P are
related the following way:

DPa = T ◦ DPS(a) ◦ S

Therefore, S and T being invertible, the distribution of the kernel-dimension of
the differential for a random a is the same for the public key as for the internal
function. This was first noticed in [8] to attack the Perturbed Matsumoto-Imai.

3.2 Application to the Perturbed Matsumoto-Imai

The Matsumoto-Imai scheme uses an internal polynomial P of the form x2i+2j

.
Ding proposed an internal perturbation with no mixing part (i.e. M(x, y) = 0)
[2]. Considering the differential of P̃ at a,

DP̃a(x) = DPa(x) + DP̄Z(a)(Z(x)) (1)

it was observed in [8] that the differential at points in the kernel of Z is exactly the
differential of the original Matsumoto-Imai function at these points. Besides, the
differential of the Matsumoto-Imai internal function x2i+2j

has kernel-dimension
gcd(n, i − j) at any non-zero point. On the other side, when taken at a point
which is not in the kernel of Z, the perturbation part interferes and may cause
the differential to have a larger of smaller kernel. This provides an easy criteria
to detect elements which are not in the kernel of Z, and with sufficiently many
such points, the kernel can be recovered.

As a remark, observe that the internal perturbation without mixing terms
applied on HFE yields the same drawback. Again the differential of P̃ at a
point of the kernel of Z is the differential of the HFE internal polynomial. The
differential of an HFE internal polynomial of degree under 2D+1 has degree at
most 2D, and therefore, as a linear map, its kernel has dimension at most D [5].
On the other side, when the perturbation interferes, the differential may have a
larger kernel.

4 A Differential Bias of the Internally Perturbed HFE

In this section, we prove the spinal cord of our attack: whether the perturbation
vanishes or not yields a differential bias. First, we characterize the form of the
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differential in both cases, in terms of sums of linear maps of two kinds. Sec-
ond, we compute the distribution of the kernel-dimensions in both cases, using
combinatorics in binary vector spaces. Third, we define a distinguisher of kernel
elements whose advantage can be exactly computed for a random secret key.

4.1 Differential Structure of the Perturbed Internal Polynomial

From now on, the kernel of Z will be denoted K. Depending on the membership
of a to K, the differential at a is:

a /∈ K, DP̃a(x) = DPa(x) +M(x, Z(a)) +M(a, Z(x)) +DP̄Z(a)(Z(x))
a ∈ K, DP̃a(x) = DPa(x) +M(a, Z(x))

As we can see, the differential of the perturbed internal at points where the per-
turbation vanishes is not the differential of the non-perturbed internal as it was
for PMI. In particular, the kernel-dimension of the differential will be more than
D for some elements in K while this could never happen with a PMI-like pertur-
bation. In fact, we will next show that the differential reaches the same kernel
dimensions in both cases. Therefore, it will not be possible to use the “cut-off”
based strategy as for PMI to detect the effectiveness of the perturbation. A more
elaborate analysis of the differential is therefore required.

As a first step, we can observe that the structure of the differential is very
similar in both cases. In both cases, this is the sum of an F2-linear polynomial
of degree 2D and a linear map of rank r which take the same value at a. What
differs is: the common value is 0 when a is in K and non-zero when it is not.
This actually captures the structure of this differential, as stated by the following
theorem.

Theorem 1. Let a be a non-zero element of F
n
2 . A random instance (P, M, P̄ , Z)

of Internally Perturbed HFE with parameters (D, r) has an internal polynomial
denoted P̃ . We denote by LD a random F2-linear polynomial of degree 2D and by
lr a random linear map of rank r. Then, for a proportion 1− εn,r of all instances
(P, M, P̄ , Z) of the cryptosystem, we have:

Pr
[
dim kerDP̃a = t | a ∈ K

]
= Pr [dim ker(LD + lr) = t | LD(a) = lr(a) = 0]

and

Pr
[
dim kerDP̃a = t | a /∈ K

]
= Pr [dim ker(LD + lr) = t | LD(a) = lr(a) �= 0]

where εn,r = 2−(n−r) + O(2−2n).

A proof of the theorem can be found in the full paper available from the au-
thors. It will be clear from the sequel that, for the suggested parameters, εn,r

is negligible compared to the probabilities of interest. Accordingly, the kernel



Cryptanalysis of HFE with Internal Perturbation 255

dimensions of the differential at points inside and outside K respectively follow
the distributions of probability denoted π+ and π− defined by:

π+(t) = Pr(LD,lr) [dim ker(LD + lr) = t | LD(a) = lr(a) = 0]
π−(t) = Pr(LD,lr) [dim ker(LD + lr) = t | LD(a) = lr(a) �= 0]

We next study both distributions in detail.

4.2 Distribution of the Kernel-Dimension of the Differential
Depending on the Position of the Point

Distributions π+ and π− can be exactly computed using combinatorics in binary
vector spaces, which are of independent interest. We will not recall these combi-
natorics here since they are not the subject of this paper, however all details are
provided in Appendix A. We nevertheless describe the three steps that we follow
to determine the distribution of the kernel-dimension of the sum of a random
F2-linear polynomial of degree 2D and a random linear map of rank r:

– first, we compute the distribution of the kernel-dimension of F2-linear poly-
nomials of degree 2D. The kernel-dimension of such polynomials is at most
D, and the vanishing of one such polynomial over a subspace of dimension
d with d ≤ D can be expressed in d independent linear constraints over the
D + 1 coefficients defining this F2-linear polynomial.

– fixing an F2-linear polynomial L of kernel-dimension d, we can compute the
probability that a random subspace of dimension n − r has intersection of
dimension i with the kernel of L.

– fixing a subspace G of dimension n − r which intersects the kernel of L with
dimension i, we can enumerate the number of linear maps l of kernel G such
that ker(L + l) has dimension t. Observe that in characteristic 2, ker(L + l)
is the subspace where L and l are equal.

The overall probability for the dimension t requires to sum over all possible
values of d and i; unfortunately, we could not find a closed formula (if any) for
this probability. Nevertheless the sum itself is enough for all practical purposes.

Finding the laws π+ and π− consists in redoing the previous enumeration
while taking into account the constraint at a. For any d and i, we can extract
the correction factors coming from the constraint at a in either case. This leads
to the following proposition.

Proposition 1. Let πd,r,i(t) be the probability that the sum LD + lr of a random
F2-linear polynomial LD of degree 2D and kernel-dimension d and a random
linear map lr of rank r with kernels intersecting with dimension i, has kernel
dimension t. Formally,

πd,r,i(t) = Pr(LD ,lr)

[
dim ker(LD + lr) = t ;

{
dim kerLD = d
dim(kerLD ∩ ker lr) = i

]
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For a prescribed non-zero element a, we denote

− π+
d,r,i(t) for the probability of the same event knowing LD(a) = lr(a) = 0

− π−
d,r,i(t) for the probability of the same event knowing LD(a) = lr(a) �= 0

We have:

π+
d,r,i(t) = 2r (2i − 1) πd,r,i(t) (1 + 2−(n−r) + O(2−2(n−r)))

π−
d,r,i(t) = 2r

2r−1 (2t − 2i) πd,r,i(t)

on average over a.

Again, a proof can be found in the full paper. Neglecting terms of order 2−(n−r),
we obtain for π+ and π−:

π+(t) = 2r
∑D

d=0
∑d

i=0

(
2i − 1

)
πd,r,i(t)

π−(t) = 2r

2r−1

∑D
d=0

∑d
i=0

(
2t − 2i

)
πd,r,i(t)

Though these probabilities are not provided under a closed form, they can be
computed for any choice of the parameters. For example, for the suggested pa-
rameters (n, D, r) = (89, 3, 2) their values are given in the table below:

dimension t π+ π−(t) sign(π+ − π−)
1 	 0.57764 	 0.57756 +
2 	 0.38495 	 0.38507 −
3 	 0.036718 	 0.036662 +
4 	 0.00069427 	 0.00070045 −
5 	 0.0000025431 	 0.0000029064 −

The kernel-dimension of the differential at some point a is now fully under-
stood: it can follow two well determined distributions depending on the mem-
bership to K of a. We next compare these two distributions and show that the
kernel-dimension of the differential at a yields some information about its mem-
bership or non-membership to K.

4.3 Distinguishing Kernel Elements

Definition of our Distinguisher. Let P̃ be a public key associated to a given
instance (P, M, P̄ , Z) of the cryptosystem, and let K be the subspace isomorphic
to K through the linear masking. Our distinguisher is built on the differential bias
exhibited in the preceding section. For a random non-zero element a, we compute
the kernel dimension of the differential of P̃ at a and obtain the dimension t. If
for this dimension t we have π+(t) ≥ π−(t) then the hypothesis that a is in K is
more favorable and our decision will therefore follow this way. Put in a formal
way, we define the function

T :
{

T (a) = 1 when dim kerDP̃a = t with π+(t) ≥ π−(t)
T (a) = 0 when dim kerDP̃a = t with π+(t) ≤ π−(t)

T is our distinguisher of kernel elements. We next compute its advantage.
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Advantage of the Distinguisher. The advantage of T for a random instance
of the cryptosystem and a random a is by definition

|Pr [T (a) = 1 | a ∈ K] − Pr [T (a) = 1 | a /∈ K]|

The inner difference values to
∑

t:π+(t)≥π−(t)

Pr
[
dim kerDP̃a = t | a ∈ K

]
− Pr

[
dim kerDP̃a = t | a /∈ K

]

The summand of the above is π+(t) − π−(t) and is therefore positive for the
prescribed values of t. Hence, the expected advantage of the distinguisher for a
random instance of the cryptosystem, denoted Adv, is

Adv =
∑

t:π+(t)≥π−(t)

π+(t) − π−(t)

We summarize in the table below the values of Adv for some parameters.

(n, D, r) Adv
(89, 2, 2) 2−7.49

(89, 3, 2) 2−12.95

(89, 3, 3) 2−16.17

(89, 4, 4) 2−27.97

In the above table, the second line corresponds to the preferred parameters in [4].

5 Recovering the Kernel of the Internal Perturbation

In the previous section, we designed a distinguisher T which can be seen as a
two-sided error test of membership to K. In this section, we aim at turning the
test T into an algorithm for finding elements of K.

5.1 Behaviour of the Test with Respect to Linearity

The set K benefits from a property that its complement does not share: it is
closed under addition. Accordingly, when x is a member of K then any y and
x + y must be both members of both non-members of K, while it can happen
differently when x is not in K. Analogously, the probability for a random y
that both y and x + y are detected inside or outside K by the test should be
higher on average over the elements x of K than over those not in K. We next
show that this intuition is correct and compute the distance between these two
probabilities.

Given an element y, we denote by μ+
y the probability that T (x + y) = T (y)

when x is in K, and by μ−
y the same probability when x is outside K.

μ+
y = Prx[ T (x + y) = T (y) | x ∈ K ]

μ−
y = Prx[ T (x + y) = T (y) | x /∈ K ]
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The mean values of μ+
y and μ−

y over the y are denoted μ+ and μ−.

μ+ = Prx,y[ T (x + y) = T (y) | x ∈ K ]
μ− = Prx,y[ T (x + y) = T (y) | x /∈ K ]

Probabilities μ+ and μ− can be computed for a random instance of the cryp-
tosystem; their distance denoted Δμ is

Δμ = μ+ − μ− = 2.
Adv2

2r
(2)

The details of these computations can be found in the full paper.
Given an element y, we define the random variable δy which values 1 at x

whenever T (x + y) = T (y) and 0 otherwise. The mean value of δy over K is
μ+

y , and is μ−
y over the complement of K. In the sequel, we will consider a large

assembly of random variables δyi for some fixed yi. The idea is that, whenever
δyi(x) is 1 for many i, x should belong to K with high probability.

5.2 Building a Reliable Test of Membership

Definition of the Test. For any N non-zero distinct elements y1, . . . , yN , we
define the random variable

SN (x) =
N∑

i=1

δyi(x)

For any such random variable SN , a test of membership can be defined as follows.
Given an element x, we compute SN (x); whenever SN (x) ≥ Nμ+, the test
answers yes, and no otherwise.

The intention behind the test is the following. Since δyi(x) is more likely to
be 1 when x is in K than when x is not in K, we expect SN (x) to be higher
when x is in K than when x is not in K. When N increases, we expect the
intersection between the values of SN over K and the values of SN outside K
to become smaller. Finally, for N large enough, we expect the probability that
SN (x) ≥ Nμ+ to be large when x is in K and very small when x is not in K.

Analysis of the Test. Let us first consider SN over K. For any yi, the mean
value of δyi over K is μ+

yi
. This latter value is not known, however we know that it

follows a distribution of mean value μ+. Likewise, the mean value of SN over K,
denoted A+

N , follows a distribution over the N -tuples (y1, . . . , yN ) of mean value
Nμ+. Hence, for half the choices of a N -tuple (y1, . . . , yN ), we have A+

N ≥ Nμ+.
When this is the case, we have :

Prx

[
SN (x) ≥ Nμ+ | x ∈ K

]
≥ Prx

[
SN (x) ≥ A+

N | x ∈ K
]

=
1
2

Therefore, in at least half the cases, more than the half of the elements of K will
pass our test of membership, whatever is the value of N .
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Now we consider SN over the complement of K. We want to find some N
so that the probability for the elements of the complement of K to pass the
test is very small. We can notice as before, that the mean value of SN over the
complement of K, denoted A−

N , follows a distribution of mean value Nμ−. Hence,
for half the choices of a N -tuple (y1, . . . , yN), we have A−

N ≤ Nμ−. When this
is the case, we have :

Prx

[
SN (x) ≥ Nμ+ | x /∈ K

]
≤ Prx

[
SN (x) − A−

N ≥ NΔμ | x /∈ K
]

(3)

and our task is now to find an upper-bound of the right-hand probability.
We observe that, when the yi are independently chosen, the random variables

δyi are independent. Sequences of independent non-identically distributed binary
random variables are known as Poisson trials in the litterature. Applying the
Chernoff bound [16]:

Prx

[
SN (x) − A−

N ≥ NΔμ | x /∈ K
]

≤ exp(−1
4

N2Δμ2

A−
N

)

Besides, we have A−
N ≤ Nμ− and μ− ≤ μ where μ is the probability to have

T (x + y) = T (y) for random x and y. Therefore, using (3), we finally obtain:

Prx

[
SN (x) ≥ Nμ+ | x /∈ K

]
≤ exp(−N

4
Δμ2

μ
)

We now estimate the value of μ. When x and y are random, x + y and y are
independent and therefore μ = α2 + (1 − α)2 where α = Pr [T = 1]. Probability
α can be computed for a random instance of the cryptosystem from

α =
∑

t:π+(t)≥π−(t)

(2−r)π+(t) + (1 − 2−r)π−(t) 	
∑

t:π+(t)≥π−(t)

π−(t)

Using the table 1, we see that α 	 0.6 and μ 	 0.5.
Finally, to make the probability to have a false-positive under ε, we can take

N =
2

Δμ2 ln
(

1
ε

)
=

22r−1

Adv4 ln
(

1
ε

)
(4)

Complexity for Recovering K. A random element x is in K with probability
1
2r and is detected in K by the test with probability 1

2 . Computing all the δyi(x)
values is achieved by computing the differentials at x + yi and at yi, and then
computing their ranks. The complexity for computing a differential or a rank is
n3, the same as for evaluating the public key. Recovering K requires to discover
about n of its elements. Therefore, the complexity for recovering K is 2r+1Nn
evaluations of the public key. When taking N as given by Formula 4, recovering
K amounts to

n23r

Adv4 ln
(

1
ε

)
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evaluations of the public key. This is given by the table below for practical
parameters and ε = 0.001. It should be remarked that Formula 4 gives us an
upper-bound on the value of N to be chosen. In practice, taking a smaller N
might allow the attack as well.

(n, D, r) Recovering K
(89, 2, 1) 232.26

(89, 2, 2) 245.20

(89, 3, 2) 267.03

(89, 3, 3) 282.92

In the above table, the third line corresponds to the preferred parameters in [4].

6 Invertion of the Public Key

At this point, we assume that K has been retrieved using the preceding tech-
niques. We next show how the public key of the Internally Perturbed HFE can
be inverted using the attack of Faugère-Joux against HFE.

Let l1, . . . , lr to be r independent linear forms orthogonal to K; an element
(x1, . . . , xn) lies in K if and only if lk(x1, . . . , xn) = 0 for all k in [1, r]. As already
pointed, the public key of an Internally Perturbed HFE is just an HFE public key
on any affine subspace parallel to K. Fixing one such subspace, we call p1, . . . , pn

the multivariate quadratic forms of the perturbed public key, and p′1, . . . , p
′
n the

multivariate quadratic forms of its equivalent HFE public key on this affine
subspace. All linear forms lk are constant on this subspace; for instance they
all value to 0 (the affine subspace considered is K). For any point (b1, . . . , bn),
the multivariate quadratic systems {pi = bi, i ∈ [1, n]} ∩ {lk = 0, k ∈ [1, r]} and
{p′i = bi, i ∈ [1, n]} ∩ {lk = 0, k ∈ [1, r]} have the same solutions. Equivalently,
the ideal generated by p1 − b1, . . . , pn − bn together with l1, . . . , lr is the same
as the ideal generated by p′1 − b1, . . . , p

′
n − bn together with l1, . . . , lr in the ring

R = F2[x1, . . . , xn]/{x2
1 − x1, . . . , x

2
n − xn}. We call I this ideal, and J the ideal

generated by p′1 − b1, . . . , p
′
n − bn without the kernel linear forms.

The ideal J is generated by quadratic equations coming from an HFE cryp-
tosystem; computing a Gröbner basis for such ideals was shown much easier than
in the general case by Faugère and Joux [6]. In particular, Faugère could break
an HFE with parameters n = 80 and D = 6 in a hundred hours, while HFE
arising in practical realizations of the perturbed HFE scheme have suggested
parameters n = 89 and D = 3 only [4]. Now the key point is: computing a Gröb-
ner basis of I cannot be harder than computing a Gröbner basis of J . Indeed I
and J only differ by generators of degree 1, and computing a Gröbner basis of
these generators is achieved by simple Gaussian elimination. Rather, they will
help in the reduction of higher degree polynomials occurring in the computa-
tion. This is experimentally checked, as it could be done in about 2h10 when
feeding with public and kernel equations and about 2h45 for the corresponding
HFE, for any tested instance of the cryptosystem with (n, D, r) = (60, 3, 2), us-
ing Magma’s implementation of the F4 algorithm [18] on a standard machine.
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Of course, in practice, b1, . . . , bn are made variables and the Gröbner basis com-
putation is made only once. It outputs a set of polynomials g1, . . . , gL with the
shape, gl = fl(x1, . . . , xil

) −hl(b1, . . . , bn) where fl is only in the il first xi. This
Gröbner basis allows to solve the system {p1 = b1, . . . , pn = bn} for any values
b1, . . . , bn by sequentially solving the equations fl(x1, . . . , xil

) = hl(b1, . . . , bn) in
increasing order of il.

7 Conclusion

The Internally Perturbed HFE cryptosystem is a variation of HFE, designed
to fix the potential vulnerability of HFE against algebraic attacks. It is one of
the rare candidates liable to enhance HFE as a cryptosystem. A major security
element of the cryptosystem is the kernel of the perturbation, since the knowledge
of this subspace allows to view the public key as a small set of HFE public keys,
which can be inverted for the suggested parameters. However, in this work, we
show that some correlation exists between the membership to the kernel of the
perturbation and the kernel-dimension of the differential of the public key. This
correlation can be accurately measured for any parameters, using sophisticated
methods based on combinatorics in binary vector spaces. It yields a distinguisher
which can be turned into an algorithm for finding elements of the kernel of the
perturbation. For the preferred parameters in [4], recovering the kernel of the
perturbation amounts to at most 267 evaluations of the public key, which is well
below the usual 280 barrier. Although the designers of the scheme believed that
the best attack might be exhaustive search in the space of messages [4], our attack
is at least 222 times faster and recovers an equivalent secret key. Accordingly, the
elements presented in this work shed a new light on the security of the scheme
presented by Ding and Schmidt. It should be emphasized that these elements
could not be perceived without the advanced combinatorial methods provided
in this paper, which are of independent interest.
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A The Kernel-Dimension of the Sum of a Random
F2-Linear Polynomial and a Random Linear Map of
Rank r

In characteristic 2, the kernel of the sum of two linear maps is the subspace where
they coincide. We denote LD the set of F2-linear polynomials of degree 2D and
Lr the set of linear maps of rank r. We aim at determining the distribution of
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probability of the dimension of the subspace where L and l coincide, denoted
{L = l}, when L is a random element of LD and l is a random element of Lr.

We recall that the number S(n, s) of linearly independent sequences of length
s in a space of dimension n is

S(n, s) =
s−1∏
i=0

(2n − 2i)

Each such sequence generates a subspace of dimension s which is also generated
by S(s, s) other linearly independent sequences of length s. Therefore the number
E(n, s) of subspaces of dimension s in a space of dimension n is S(n, s)/S(s, s).

An F2-linear polynomial of degree 2D has at most 2D roots as a polynomial.
Its roots are the elements of its kernel as a linear map. Therefore the dimension
of this kernel cannot exceed D and the probability that it has kernel dimension
d is given by the following lemma:

Lemma 1. The probabilities (pD(0), . . . , pD(D)) that a random element of LD

has kernel dimension respectively 0, . . . , D satisfy the following invertible trian-
gular system:

d ∈ [0, D], E(n, d)2−nd =
D∑

m=d

E(m, d)pD(m)

Proof. The number of F2-linear polynomials of degree 2D is (2n−1)2nD and those
which vanish at a are 2n times less numerous. Given a subspace of dimension d
with d in [0, D], the vanishing of an F2-linear polynomial of degree 2D results in
d linear constraints over its D + 1 coefficients. It implies that for each subspace
of dimension d, there are exactly (2n − 1)2n(D−d)

F2-linear polynomials which
vanish on it. In the product E(n, d)(2n − 1)2n(D−d), the F2-linear polynomials
whose kernel has dimension m with m ≥ d are counted E(m, d) times. Therefore,
the proportions pD(d) of F2-linear polynomials of degree 2D which have kernel
dimension d satisfy the above invertible triangular system. ��

We now suppose given an F2-linear polynomial L of degree 2D and kernel-
dimension d. The subspace on which L and a randomly chosen linear map of
rank r coincide at least contains the intersection of the two kernels. We there-
fore should fix this dimension of intersection as a new parameter.

Lemma 2. Given a subspace of dimension d, the probability pd,r(i) that a ran-
dom subspace of dimension n − r intersects this subspace with dimension i is

S(d, i)S(n, d + n − r − i)S(n − r, i)
S(n, d)S(i, i)S(n, n − r)

Proof. Let call F the prescribed subspace of dimension d. The number of possible
intersection subspaces is E(d, i). For each of them I, the number of linearly
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independent sequences of length n−r whose generating subspace has intersection
with F exactly I is the number of linearly independent sequences outside F :

(2n − 2d) . . . (2n − 2d+n−r−i−1) = S(n, d + n − r − i)/S(n, d)

This generating subspace G is also generated by as many linearly independent
sequences of length n − r as the number of linearly independent sequences of
length n − r − i of G outside I; this is likewise S(n − r, n − r)/S(n − r, i).

The number of subspaces of dimension n−r which intersect F with dimension
i is therefore

E(d, i)
S(n, d + n − r − i)

S(n, d)
S(n − r, i)

S(n − r, n − r)

and the expected proportion is obtained by dividing by E(n, n − r). ��

We now suppose given both an F2-linear polynomial L of degree 2D and kernel
F of dimension d and a subspace G of dimension n − r which has intersection of
dimension i with F . A map of kernel G coincides with L on a subspace H such
that H ∩ F = H ∩ G = F ∩ G. We now enumerate the number of subspaces of
dimension t satisfying this condition.

Lemma 3. Given a subspace F of dimension d and a subspace G of dimension
n − r whose intersection has dimension i, the number of subspaces of dimension
t such that H ∩ F = H ∩ G = F ∩ G is

t∑
j=i

S(d − i, j − i)S(n − r − i, j − i)
S(j − i, j − i)

S(n, d + n − r − i + t − j)
S(n, d + n − r − i)

S(t, j)
S(t, t)

Proof. This enumeration comes in two steps: first we count the number of sub-
spaces J of F + G which have dimension j and satisfy the condition, second
we count for each such J the number of subspaces H of dimension t whose
intersection with F + G is J .

The subspaces of F +G of dimension j containing F ∩G are in bijection with
the subspaces of dimension j − i in the quotient space (F + G)/(F ∩ G). Let
x̄ denote the class modulo F ∩ G of the element x. The number of subspaces
J such that F ∩ J = G ∩ J = F ∩ G is the number of subspaces J̄ such that
F ∩ J̄ = Ḡ ∩ J̄ = {0̄} in the quotient space. Now notice that the set of linearly
independent sequences of length j − i in F + Ḡ generating a subspace of zero
intersection with both F and Ḡ is in bijection with the Cartesian product of lin.
indep. sequences of length j − i in F and lin. indep. sequences of length j − i in
Ḡ. Besides each such sequence generates a subspace which is also generated by
S(j − i, j − i) others. The number of subspaces J of F + G of dimension j such
that J∩F = J∩G = F ∩G is therefore S(d−i, j−i)S(n−r−i, j−i)/S(j−i, j−i).

The number of subspaces of dimension t whose intersection with F + G has
dimension j is enumerated as given by Lemma 2. ��

It now only remains to determine the proportion of linear maps of kernel G
which coincide with L on a subspace of dimension t.
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Lemma 4. Let L a linear map of kernel F of dimension d, G a subspace of
dimension n − r which has intersection of dimension i with F and Ed,r,i(t) the
number of subspaces H of dimension t such that H ∩ F = H ∩ G = F ∩ G.
The proportions pd,r,i(t) of linear maps of kernel G which coincide with L on a
subspace of dimension t for t in [i, r+i] satisfy the following invertible triangular
system:

t ∈ [i, r + i],
Ed,r,i(t)

S(n, t − i)
=

r+i∑
m=t

E(m, t)
S(t, i)
S(m, i)

pd,r,i(m)

Proof. For each subspace H of dimension t such that H ∩ F = H ∩ G = F ∩ G,
we construct a linear map of kernel G which equal L on H by choosing for its
image on the remaining dimension r − t + i a linearly independent sequence
outside the image of H by L which has dimension t − i. The number of such
maps is thus S(n, r)/S(n, t − i), and their proportion over all maps of kernel
G is 1/S(n, t − i). Now, making the product of the number of subspaces H of
dimension t and satisfying H ∩ F = H ∩ G = F ∩ G by the number of linear
maps l of kernel G which coincide with L on H , we see that the linear maps of
kernel G which coincide with L on a subspace of dimension m ≥ t are counted
as many as the number of subspaces of dimension t containing F ∩ G in this
subspace. This number is E(m, t)S(t, i)/S(m, i) as it can be easily checked. ��

Putting all this together, we obtain that the probability that a random F2-linear
polynomial L of degree 2D and kernel F of dimension d coincides on a subspace
of dimension t with a linear map l of rank r whose kernel has intersection of
dimension i with F is

πd,r,i(t) = pD(d)pd,r(i)pd,r,i(t)

Of course the probability in term of the sole parameter t comes by summing over
all possible values for d and i.
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