Building a Reliable Multicast Service Based on
Composite Protocols for Active Networks

S. Subramaniam, E. Komp, M. Kannan, and G. Minden*

Information and Telecommunication Technology Center
Department of Electrical Engineering and Computer Science
University of Kansas
2335 Irving Hill Road
Lawrence, KS 66045-7612 USA
gminden@ittc.ku.edu

Abstract. Active Networking embodies rapid development and deploy-
ment of new services. A network service typically consists of two or more
cooperating protocols. In this paper, we describe a case study applying
a composite protocol framework to developing a multicast network ser-
vice. The composite protocol framework provides a rigorous mechanism
to check protocol behavior before deployment. Our multicast serviced in-
corporates protocols for multicast routing, creation of spanning trees, re-
liable replication of multicast data and joining/leaving multicast groups.
These protocols are built from re-usable components and communicate
by means of global memory.

Keywords: Active networks, protocol components, composite protocols,
composable services.

1 Introduction

In an active network [1], routers and switches in the network are programmable
by the user and are capable of performing customized computations on packets
passing through them. This allows easy injection of customized and innova-
tive protocols and services into the network without the need for network-wide
standardization. Several active networking architectures have been developed to
deploy services need by an application on intermediate nodes of the network.
Active networking is built on the concept that many people will design, build,
and deploy new protocols and services in the network. There is valid concern that
network reliability is a risk if just anyone can place code in the network. One part
of the effort to protect the network is insuring that new services are well thought-
out, reasoned about, and tested before deployment. Composite Protocols [2] is
a modular approach for specifying and implementing network protocols and
services. In this paper, we present a case study of applying Composite Protocols
to a multicast service.
* This research was supported by the Defense Advanced Research Projects Agency
and the U.S. Air Force Research Laboratory under contract F30602-99-2-0516.

G.J. Minden et al. (Eds.): IWAN 2004, LNCS 3912, pp. 101-[IT3] 2007.
© IFIP International Federation for Information Processing 2007



102 S. Subramaniam et al.

Reliable-delivery, sequential delivery, error checking, some form of routing,
authentication, and request/reply are some of the common functions used in
protocols. Any new protocol may also use of some of these functions. We call
such single-functional protocol modules, protocol components. A group of such
protocol components collected and connected together by means of a composition
operator constitutes a protocol. For example, Time-To-Live (TTL), Fragmenta-
tion, Header Checksum, Forwarding, and Addressing are protocol components,
which contribute to the IP protocol. Though many forms of composition exist,
the most common form of composition and the one used in our implementation
is a linear composition.

A collection of two or more cooperating protocols is called a service. Multi-
cast is an example of such a service. Multicast consists of protocols for group
membership and management, multicast routing and spanning trees, tunneling
and reliable replication of multicast data. Our composite protocol framework [2]
describes how protocol components are specified and how these protocol com-
ponents are composed to form a composite protocol.

1.1 Multicast Service

Traditional IP-based multicast network services typically consist of multicast
routing protocols like DVMRP, MOSPF or PIM and group-management pro-
tocols like IGMP in operation. In this paper, we describe how a component
based multicast service is built by stacking protocol components into three dif-
ferent protocol stacks: (1) a DVMRP like multicast routing stack for creating
and managing multicast routing tables and spanning trees, (2) an IGMP like
group-management stack for managing group-memberships and (3) a multicast-
traffic delivery stack for reliable and secure transmission of application data. We
then describe how these protocols communicate among themselves using a global
memory object.

The rest of this paper is organized as follows. Section 2 describes the vari-
ous steps involved in building a composable service using our framework with
multicast service as a case study. Section 3 briefly discusses the functionality
of all the protocol components that constitute the service and illustrates how
the stacks cooperate together to render the multicast service. Section 4 focuses
on Inter-stack communication, its need and forms of representation. Section 5
summarizes the results and presents the conclusion.

2 Building a Composite Multicast Service

Multicast is an excellent example of a network service which is made up of several
cooperating protocols. IP Multicast is a collection of multicast routing protocols
like DVMRP, MOSPF, PIM and group management protocols like IGMP work-
ing in tandem with IP for best-effort multicast delivery. The reason for studying
multicast service is that it combines data and control-oriented protocols. TCP
and IP are data-oriented protocols, while routing protocols like RIP, OSPF,



Building a Reliable Multicast Service 103

DVMRP and group-management protocols like IGMP are control oriented (be-
long to the control-plane). It should be noted that protocol components that we
specify and implement are not complete implementations of Internet standards
for DVRMP (3], IGMPv1 [4], and IGMPv2 [5]. We are interested is the basic
functionality in these protocols and evaluation of the composite protocol frame-
work. Only a sub-set of the standard functionality is specified and implemented.
We assume that the reader has a basic understanding how IP multicast and
other protocols like DVMRP and IGMP work in general.

2.1 Building a Composite Service

Step 1: Decomposition - Identify components from the monolithic
protocols in the service.

For multicast service, we decomposed the monolithic DVMRP [4] protocol into
the following protocol components: Neighbor Discovery, Route Exchange, Span-
ning Tree, Pruning and Grafting. The IGMP [5] protocol is decomposed into
the following components: Join/Leave and Query/Report. Other components in-
clude Multicast Forwarding, Reliable Multicast (ACK/NACK based), Security
(Authentication / Encryption). Figure 1 illustrates these stacks.

Multicast Routing
Stack .
Multicast Data
Neighbor Discovery Stack
Route Exchange Application
Spanning Tree Group Management MCast Forward
Pruning Stack Reliable
Grafting Join_Leave Encrypt
Forward Forward Forward
TTL TTL TTL
Fragment Fragment Fragment
Checksum Checksum Checksum

Fig. 1. Multicast service is a collection of three stacks viz. Multicast routing stack,
Group Management stack and Multicast data/traffic stack. Multicast service is a col-
lection of three stacks viz. Multicast routing stack, Group Management stack and
Multicast data/traffic stack.



104 S. Subramaniam et al.

Step 2: Specification of protocol components.

Once the individual components are identified, the next step is to specify each
of these components using Asynchronous Finite State Machines (AFSM) [6]
as described in [2]. Each component is represented by a Transmit State Ma-
chine (TSM) and a Receiver State Machine (RSM), the set of events (data and
control) that can invoke this component, its memory requirements: local, stack-
local, global and packet memory along with its properties and assumptions. The
individual functionality of each protocol component is described later. While
specifying these components, care should be taken to ensure that each protocol
component performs only a single-function and is totally independent of other
components. Achieving total independence is only an ideal case. In practice, some
minor amount of dependence on other protocol components may be required.
We shall describe on the individual functionality of each protocol component in
section 3.

Step 3: Building Protocol Stacks.
Once all the individual protocol components are specified, these are grouped into
protocol stacks. The multicast service is the collection of these stacks.

Step 4: Deployment - Placing the stacks in the network.
Composite-protocol stacks are deployed in an Active Network.

Core Router
v
@ Leaf Router

B Host

53 1

Q

0

Multicast Routing Group Management Multicast Data
ﬁ Stack O Stack O Stack

Fig. 2. An example multicast network showing core routers, leaf routers, and hosts.
The shapes indicate where each protocol stack is deployed in the network.



Building a Reliable Multicast Service 105

Figure 2 shows an example multicast network with the following types of
nodes:

— Multicast Sender: sends multicast data destined for a particular group. Need
not be a part of a multicast group to send a multicast packet. Typically
attached to a multicast core-router.

— Multicast Core Router: present in the core of the multicast network. They are
responsible for creating and managing multicast routing tables and setting
up per source, group multicast delivery trees.

— Multicast Leaf Router: these are nodes that do not have downstream neigh-
bors and are directly attached to multicast receivers (end-hosts).

— Multicast Receivers: these are end-hosts that have joined a particular group
and are entitled to receive multicast traffic destined to that particular group.

Note that both Multicast core routers and Multicast Leaf routers can also be
Multicast Receivers and Multicast Senders.

3 Component Description

This section contains a brief description of each component in the multicast
service. Detailed state machine specifications for each component are beyond
the scope of this paper [8]. For each component, its sender (TSM) and receiver
(RSM) functionality, access to global memory data structures and dependencies
on other components are briefly discussed. We start with components from the
multicast routing stack first.

3.1 Neighbor Discovery

This component forms a part of the multicast routing stack deployed at multicast
core and leaf routers. The main functionality of this component is to dynamically
discover neighbors (multicast routers) on all its interfaces. The sender side of this
component periodically broadcasts probe packets (hello packets) on all multicast-
enabled interfaces. Each probe packet sent on a particular interface contains a
list of neighbors for which neighbor probe messages have been received on that
interface. The receiver side of this component first checks if the neighbor probe
packet is received on one of its locally defined interfaces and if yes, updates in
its local memory: the neighbor address and the interface on which it is received.
It then checks for 2-way adjacency i.e. if the local interface address is present
in the neighbor list of the probe packet. If present, then a 2-way adjacency is
established and neighbor is discovered on that interface. This information is
written into and maintained in a global data structure called Neighbor Table,
which is part of Global Memory. It also provides a keep-alive function in order
to quickly detect neighbor loss. Timers are used for sending probe packets and
also for detecting dead neighbors. This component can be used in other protocols
where there is a need for neighbor discovery e.g. in unicast routing protocols like
RIP and OSPF.



106 S. Subramaniam et al.

3.2 Route Exchange

This component forms a part of the multicast routing stack deployed at all
multicast core and leaf routers. The main functionality of this component is
to dynamically create and maintain the routing tables at the multicast routers
through periodic exchange of route exchange packets with neighbors. This is a
RIP-like protocol component, with metric based on hop-counts. The sender side
of this component periodically sends route exchange packets to all its neighbors.
The list of neighbors is read from the global memory Neighbor Table. Each route
exchange packet contains a list of routes with each route comprised of a network
prefix, mask and metric. For each route exchange packet received, the receiver
first checks with its local route cache if the received route is a new route or
not. If new then the route is stored in the local route cache. If not, then the
received metric for the route is compared with the existing metric after adding
the cost of the incoming interface to the received metric. If the resultant metric
is better than the existing one, then the local route cache is updated. After
all the received routes are processed, the contents of the local route cache are
written to a global data structure Routing Table in global memory. The Routing
Table contains entries of the form prefix, mask, metric, next-hop. Timers are
used for the periodic transmission of route exchange packets. This component
can be re-used in other distance vector-based unicast routing protocols like RIP.

3.3 Spanning Tree

In DVMRP, the poison reverse functionality and creation of spanning trees is
embedded as part of the route exchange process itself. Here the functionality is
built into a separate component. This component enables each upstream router
to form a list of dependent downstream routers for a particular multicast source.
Each downstream router informs its upstream router that it depends on it to
receive multicast packets from a particular source. This is done through periodic
exchange of Poison Reverse packets. The sender side of this component needs
access to the global Neighbor Table and Routing Table. The entries in the Routing
Table are grouped based on next-hop information. All prefixes having the same
next-hop are grouped together in different lists called poison reverse lists. Each of
these lists is sent to their corresponding next-hops (which are actually upstream
neighbors for the source networks in the list). The receiver side (the upstream
neighbor) uses all the poison reverse lists it receives to form a spanning tree
for each source. Thus, this component builds a list of downstream dependent
neighbors for each source network. The tree is stored as global data structure
Spanning Tree.

3.4 Group Membership/Join Leave

This component forms a part of the group management stack deployed at mul-
ticast leaf routers and end-hosts. Initially, the IGMP protocol was decomposed
into two separate components: Join Leave and Query Report. But the Join Leave
component did not fully satisfy our definition of a protocol component. Its TSM



Building a Reliable Multicast Service 107

did not send packets on the wire and it had no RSM functionality. So, these were
merged into a single component called Group Membership. Another interesting
feature about this component is that it is asymmetric in nature. The TSM and
RSM functionality differs depending on where the component is deployed at the
end-host or at the leaf multicast router. So, in order to make the state machines
symmetric both the state machines contain exclusive transitions for end-hosts
and routers. At the end-host: The TSM responds to Control events EJoin and
ELeave (These events are generated by the application when the host wants to
join or leave a particular multicast group). It also updates the local group cache
when these events occur. The RSM responds to the Query packets from the leaf-
router by sending back a Report packet containing the list of group addresses
it belongs to. At the multicast-leaf router: The TSM periodically multicasts
Query packets on the local network to the “all-hosts-group” and the RSM pro-
cesses the Report packets received from its attached hosts and updates the local
group cache and the global memory structure Group Members Table. It should
be noted that the component at the end-host is initialized “actively” and that at
the router “passively ” through EActivelnit and EPassivelnit events respectively.
This component thus creates and maintains the Group Members Table structure
in global memory. Each multicast router contains in its Group Members Table
the list of group addresses to which its attached hosts have joined.

3.5 Pruning

This component forms a part of the multicast routing stack deployed at multicast
leaf and core routers. The primary purpose of this component is to create and
maintain the global data structure Prune Table that stores the list of pruned
downstream interfaces for each source/group pair. This along with the Spanning
Tree component constructs per source-group multicast trees at each node. (Note:
the Spanning Tree component by itself constructs a per-source broadcast tree
at each node). The sender side of this component is responsible for sending
prune packets for a particular source-group pair addressed to the corresponding
upstream neighbor under the following conditions:

1. If all its downstream dependent neighbors have sent prunes and all its IGMP
interfaces are also pruned.

2. If all its downstream dependent neighbors have sent prunes and there are no
IGMP interfaces (at multicast core routers).

3. If there are no downstream dependent neighbors and all IGMP interfaces
are pruned (at multicast leaf routers).

The receiver side of this component is responsible for updating the global
memory Prune Table with entries containing source, group and incoming inter-
face (interface to be pruned). Note that the TSM reads from the Prune Table and
the RSM writes to the Prune Table. Components from other stacks also write to
the Prune Table. The Multicast Forwarding component writes to this structure
when there are no members for the source-group present in all attached host
interfaces. The Join Leave component (router side) of the group membership



108 S. Subramaniam et al.

stack also writes into this structure when a last member of a particular group
leaves a multicast group. Thus this design of this component addresses some
intra-stack communication issues. The global memory Prune Table is used here
to communicate between the two stacks. These issues are discussed further in
section 4.

3.6 Grafting

This component also forms a part of the multicast routing stack deployed at
multicast core and leaf routers. This component is responsible for removing the
appropriate pruned branches of the multicast tree when a host rejoins a multicast
group. When a group join occurs for a group that the router has previously sent
a prune, the global Prune Table is updated by the Join Leave component to
un-prune the local IGMP interface for that particular group. The sender side
of this component reads from the global Prune Table, and sends a separate
graft packet to appropriate upstream routers for each source network under the
following conditions:

1. On leaf-routers if the interface attached to all hosts is un-pruned.
2. On core routers if a graft packet is received on all previously pruned down-
stream interfaces.

The receiver side of this component on receiving a graft packet writes to the
global Prune Table to update the list of grafted interfaces per source-group.
Thus, this component along with the Pruning component maintains the global
Prune Table by dynamically updating the list of pruned/grafted downstream
interfaces for each source-group pair. This component assumes a Reliable com-
ponent underneath it for reliability of its Graft packets. This obviates the need
for this component to handle Graft ACK packets as in traditional DVMRP.

3.7 Multicast Forwarding Component

This is a part of the multicast data stack deployed at all nodes. This component
is responsible for multicast of traffic on all the branches of the source-group
multicast tree.

Initially when the branches of the tree are not pruned, packets follow the
source broadcast tree. But when pruning comes into operation and builds the
source-group multicast trees, packets are multicast on the un-pruned branches of
the multicast tree. The TSM is operational only on nodes, which act as Multicast
senders. On all other nodes, which either multicast the traffic (core and leaf
routers) and end-hosts (multicast receivers) the TSM remains inactive and only
the RSM is operational. The receiver first performs the RPF (Reverse Path
Forwarding) check on the packet. This checks if the packet is received on the
correct upstream interface, which is the one that is used to reach the source
of the multicast packet. If the RPF check is successful, the RSM forwards the
application data on (a) Each attached IGMP enabled interface if there are group
members on that interface. If there are no group members then it writes to the



Building a Reliable Multicast Service 109

global memory Prune Table to prune the interface and drops the packet. (b) On
all un-pruned branches of the tree to its downstream dependent neighbors. On
multicast receivers it delivers the data to the application.

3.8 Multicast Reliability and Security Components

These components can be optionally inserted to the multicast data stack if
needed by the application. The multicast reliable component if inserted below the
Multicast Forwarding component provides hop-to-hop reliability. Several proto-
cols have been developed to address reliable multicast. This component can be
either designed as a sender-initiated component based on ACKs or as receiver-
initiated component based on NACKs. The flexibility of the composite protocol
framework supports the easy addition and removal of different versions of these
reliable multicast protocol components. The security components consist of the
Authentication or the Encryption components, which provide hop-to-hop au-
thentication and privacy of application data. Different versions of these security
components like Encryption based on DES or IDEA and Authentication based
on MD5 or SHA can be used.

4 Inter-stack Communication and Global Memory

One of the challenging problems in designing a network service is to identify and
address the issue of how different protocols interact with each other. Network
services require the cooperation of two or more network protocols; that is they
need to share information. In this section, we will describe our solution to this
challenging problem.

Our services use a active node based global memory object (GMO) shared
between the protocols. This GMO is independent of any protocol that uses it.
The scope and extent of the GMOmust be greater than that of any single proto-
col, which accesses the information, stored in the global memory object. Access
to read / write the contents of the shared information is provided through a
functional interface. A protocol component expresses its requirements for access
to global memory object(s) by listing the external functions it uses in its imple-
mentation. For example, the RouteExchange component uses a function to write
new routes into the Routing Table. It would use addNewRouteEntry (rt-entry)
to add a new route entry to the routing table. The IP forwarding function needs
to know the nexthop address for each destination. It would use an external func-
tion ipaddr getNextHopForDest (dest-addr) to get the nexthop address. These
functions addNewRouteEntry() and getNextHopForDest() are provided through
the functional interface of the global Routing Table object.

Generally, the GMOcan be regarded as a server, providing access to shared
information to protocols reading or writing shared information. For example, in
the TCP/IP world the IP Routing Table is created and maintained by protocols
like RIP or OSPF and is accessed by IP while forwarding data packets. In our
framework, the routing table is maintained as a GMO that is external to both
protocols IP and RIP.



110 S. Subramaniam et al.

4.1 Global Memory Attributes

Functional interface: In our framework, global memory is abstracted through a
functional interface for both reading and writing data. The functional interface
model helps in encapsulating the data and hides the internal representation of
the object.

Synchronization: Protocols access the GMO only through the functional inter-
face, so the use of semaphores and/or any other control mechanisms to pro-
vide necessary synchronization are embedded in these functions in a uniform
and robust manner. Synchronization is not delegated to the users of the shared
object(s). Furthermore, since the interface is truly functional, no pointers are
shared, which eliminates any possibility of conflicts from implicit sharing through
multiple references to the same object. In a similar manner, implementation of
the functional interfaces can apply access-rights controls to limit access to sen-
sitive data. This approach makes protocol interfaces to the global memory are
very simple. Complex issues of synchronization and access control are addressed
just once in the design and implementation of the global memory object, instead
of requiring each protocol which shares the information to incorporate these
controls in its implementation. And the solution is much more robust, since the
integrity of the shared data cannot be compromised by a single protocol, which
does not correctly implement synchronization algorithm.

Extensibility: The GMO definition can be extended by adding new functions to
its functional interface, to provide services for new protocols developed which
use/access information in an existing global memory object. This provides a
powerful mechanism for developing new protocols and/or improving existing
implementations, while maintaining backward compatibility for previous clients
(protocols) that use the global memory object. Previous clients continue to use
the existing interfaces while the new protocols use the new extended version.

4.2 Implementing Global Memory

We consider three approaches to implementing a global memory object: a process
model, a shared memory model, and a kernel based (NodeOS) based model.

In the process model, each GMO is implemented as a separate process run-
ning as a server on each node. Typically, each global memory server is started
during the node initialization sequence. This server process maintains a single
internal representation for its global memory object. The server can choose any
representation for the data, because this structure is entirely local to the server.
The server implements an inter-process communication (IPC) interface accord-
ing to the functional definition of global memory. Any protocol that accesses a
global memory contacts the local server process as a client. Communication be-
tween the clients (protocols) and server is limited to the IPC interface advertised
by the server process. This implementation strategy is a direct implementation
of the abstract model we propose for a global memory object. Unfortunately,
the overheads associated with inter-process communication, even within a single
node, may limit performance of network protocol implementations.



Building a Reliable Multicast Service 111

In the shared memory model, the GMO is stored in shared memory. The
functional interface containing the set of all functions provided by the GMO
is packaged into a dynamic link library (DLL). The protocol stacks, which run
as individual processes on a node, link to this library at run-time. Thus, each
protocol stack imports a copy of the DLL code space.

The function implementation is visible only internally and is opaque to the
protocols that use it. Each function internally invokes the shared memory func-
tions for reading/writing into shared memory. The shared memory library rou-
tines handle synchronization.

The shared memory approach strongly preserves the abstract functional inter-
face we want for global memory. Users of global memory have only an abstract
view of it through the functional interface provided by the DLL. Thus, protocol
components are not concerned with the details of the how the shared memory is
accessed. Also, the semantics and syntax of shared memory access functions may
differ depending on the operating system, but is has no effect on the protocol
component. Shared memory function calls are generally faster than IPC function
calls, thus providing faster global memory access.

A third alternative is to embed global memory objects directly in the oper-
ating system on which the protocols run. With this alternative, the operating
system (kernel) interface must be expanded to incorporate the GMO functional
interface. The operating system implicitly operates as the GMO server. This ap-
proach is worthy of consideration only for a few special and widely accessed global
memory objects, such as the routing table. The solution is vendor/operating sys-
tem specific. In addition, it requires extensions to the operating system interface.
For example, the current TCP/IP implementations use a strategy similar to this
(though not employing a pure functional interface) to provide shared access to
the routing table.

4.3 Initialization

Each global memory is independent of any network protocol, which uses it.
From the perspective of a protocol running on a node, the global memory is
a “service” provided by the node. Therefore creation of, and initialization of
the global memory is a responsibility of the active node environment. Dynamic
deployment of network services must determine if the global memory object(s)
used by the protocols, which form the service, are already available on the nodes.

The above figure illustrates different protocols of the multicast service coop-
erating by means of global memory objects. NeighborTable, RoutingTable, Span-
ningTree, PruneTable and GroupMemberTable are all global memory objects that
provide a set of read /write functions through their respective functional interfaces.
For example, the Route Exchange component of the multicast routing stack writes
into global memory using the write interface of the global RoutingTable object
and the Multicast Forwarding component of the multicast data stack reads us-
ing the read interface of the object. Each protocol component includes the list of



112 S. Subramaniam et al.

Protocols Global Memory i
Objects Functional
Interface
Writy Writ
Neighbor Discovery /»_ Neighbor Table { rite Neighbor Discovery = Wite
|\ Read €4 F Read
Route Exchange Routing Table _><\
Spanning Tree Spanning Tree {17' MCast Forward
Pruning é Prune Table {
Grafting >_ Group Member Tbl Join/Leave

Fig. 3. The global memory of the multicast service and the protocols that access each
memory section

external memory functions it accesses. getDownStreamNeighborsForSource(src-
addr,group-addr), addNewRoute(route-entry) are typical examples of read and
write external functions for the Route Exchange component.

4.4 Independence

The global memory objects are designed to be mutually independent of each
other. A multicast service may need both the global memory objects Routing
Table and Spanning Tree, but another network service might require only the
Routing Table. Dependency of the Routing Table on the Spanning Tree is un-
desirable.

The global memory objects are designed so that it can be used across several
services. For example, the Routing Table object can be used in unicast as well
as multicast, with possible variations in its set of functional interfaces.

5 Conclusion

A multicast network service has served as a case study in understanding a com-
posite protocol design framework. The basic functionality of traditional IP mul-
ticast protocols DVMRP and IGMP have been successfully expressed in the form
of several protocol components and composite protocol stacks. Global memory



Building a Reliable Multicast Service 113

has been proposed as a solution for inter-stack communication in our framework.
Global memory design and features have been presented.

References

(1]
2]

(6]

D. Tennenhouse, J. Smith, W. Sincoskie, D. Weatherall, G. Minden, “A Survey of
Active Network Research”, IEEE Communications Magazine, Vol. 35, 1997.

G. J. Minden, E. Komp et al, “Composite Protocols for Innovative Active Ser-
vices”, DARPA Active Networks Conference and Exposition (DANCE 2002), San
Francisco, USA, May 2002.

Pusateri, T. “Distance-Vector Multicast Routing Protocol Version 3.”

S. Deering “Host Extensions for IP Multicasting”, RFC 1112, August 1989.

W. Fenner, “Internet Group Management Protocol, Version 2”7, RFC 2236, Xerox
PARC, November 1997.

Yuri Gurevich, Sequential Abstract State Machines Capture Sequential Algorithms,
ACM Transactions on Computational Logic, vol. 1, no. 1, July 2000, 77-111.

M. Hayden, “The Ensemble system”, Ph.D. dissertation, Cornell University Com-
puter Science Department, January 1998.

S. Subramaniam, E. Komp, G. J. Minden and J Evans, Building a Reliable Multi-
cast Service Based on Composite Protocols, The University of Kansas, Information
and Telecommunications Center, ITTC-F2004-TR-19740-11, Lawrence, Kansas,
July 2003.



	Introduction
	Multicast Service

	Building a Composite Multicast Service
	Building a Composite Service

	Component Description
	Neighbor Discovery
	Route Exchange
	Spanning Tree
	Group Membership/Join Leave
	Pruning
	Grafting
	Multicast Forwarding Component
	Multicast Reliability and Security Components

	Inter-stack Communication and Global Memory
	Global Memory Attributes
	Implementing Global Memory
	Initialization
	Independence

	Conclusion

