
Iterator Types�

Sandra Alves1,��, Maribel Fernández2, Mário Florido1, and Ian Mackie2,3,� � �

1 University of Porto, Department of Computer Science & LIACC,
R. do Campo Alegre 823, 4150-180, Porto, Portugal

2 King’s College London, Department of Computer Science,
Strand, London, WC2R 2LS, U.K

3 LIX, École Polytechnique, 91128 Palaiseau Cedex, France

Abstract. System L is a linear λ-calculus with numbers and an itera-
tor, which, although imposing linearity restrictions on terms, has all the
computational power of Gödel’s System T . System L owes its power to
two features: the use of a closed reduction strategy (which permits the
construction of an iterator on an open function, but only iterates the
function after it becomes closed), and the use of a liberal typing rule
for iterators based on iterative types. In this paper, we study these new
types, and show how they relate to intersection types. We also give a
sound and complete type reconstruction algorithm for System L.

1 Introduction

Recently new insights into linearity have lead to the development of rich compu-
tational models (see for instance [12,13,1,19,3]). To support them, new strategies
of reduction and new notions of types and typing rules have been introduced.

System L, as defined in [3], extends the linear λ-calculus with numbers,
booleans, pairs, and an iterator. Unlike previous linear versions of System T ,
System L permits to build an iterator term with an open function, but uses
a reduction strategy that will block such subterms until the function becomes
closed (thus preserving linearity). This reduction strategy, which we call closed
reduction, has its roots in work by Girard on cut-elimination strategies [14], and
was used to devise efficient evaluation strategies in the λ-calculus (see [11,13]).

Although linear systems are known to be computationally weak, System L
has all the power of Gödel’s System T (see [3] for details of the encoding of
System T in System L). The use of closed reduction (or more precisely, the fact
that using closed reduction a linear system can deal with more general classes of
terms) is one of the keys to the power of System L: in [2] two linear versions of

� Research partially supported by the British Council Treaty of Windsor Grant:
“Linearity: Programming Languages and Implementations”, and by funds granted
to LIACC through the Programa de Financiamento Plurianual, Fundação para a
Ciência e Tecnologia and FEDER/POSI.

�� Programa Gulbenkian de Est́ımulo à Investigação.
� � � Projet Logical, Pôle Commun de Recherche en Informatique du plateau de Saclay,

CNRS, École Polytechnique, INRIA, Université Paris-Sud.

H. Seidl (Ed.): FOSSACS 2007, LNCS 4423, pp. 17–31, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

18 S. Alves et al.

System T , with and without closed-reduction, are analysed; the first is strictly
more powerful, it can represent Ackermann’s function whereas the latter cannot.

The other distinctive feature of System L is the use of a more liberal rule
to type iterators, introducing iterative types. More precisely, in System L it is
possible to construct iterators where in some cases the iterated function is used
with different types each time (so we have a form of polymorphic iteration [18]).

In this paper we study these new types, give a Curry-style type system for
System L, and relate it to intersection type assignment systems. Intersection
types were introduced by Coppo and Dezani in [7], and since then they have
been used to characterise classes of terms with specific normalisation properties
(see e.g. [23,5]), to define type systems with principal typings [17], to define
models for the λ-calculus [6], etc. General intersection type assignment systems
are undecidable, but several decidable restrictions have been defined (see for
example [4,16,10]). Iterative types can be seen as a new decidable restriction of
intersection types based on iteration. The type system of System L is decidable:
one of the main contributions of this paper is a type reconstruction algorithm
for System L.

The rest of this paper is structured as follows. In the next section we recall
System L. Section 3 gives a type reconstruction algorithm, including the iterator
types, with soundness and completeness proofs. Section 4 contains a detailed
analysis of iterator types. Section 5 concludes the paper.

2 Linear λ-Calculus with Iterator: System L
In this section we recall the syntax, reduction rules and typing rules of System
L (for more details we refer the reader to [3]).

The set of linear λ-terms is built from: variables x, y, . . .; linear abstraction
λx.t, where x ∈ fv(t); and application tu, where fv(t) ∩ fv(u) = ∅. Here fv(t)
denotes the set of free variables of t. Because x is used at least once in the
body of the abstraction, and the condition on the application ensures that all
variables are used at most once, these terms are syntactically linear (variables
occur exactly once in each term).

Since we are in a linear calculus, we cannot have the usual notion of pairs and
projections; instead, we have pairs and splitters:

〈t, u〉 if fv(t) ∩ fv(u) = ∅

let 〈x, y〉 = t in u if x, y ∈ fv(u) and fv(t) ∩ fv(u)=∅

Note that when projecting from a pair, we use both projections. A simple ex-
ample is the swapping function: λx.let 〈y, z〉 = x in 〈z, y〉.

Finally, we have booleans true and false, with a linear conditional: cond t u v
where fv(t)∩ fv(u) = ∅ and fv(u) = fv(v); and numbers (built from 0 and S), with
a linear iterator: iter t u v where fv(t) ∩ fv(u) = fv(u) ∩ fv(v) = fv(v) ∩ fv(t) = ∅.
Sn0 denotes n applications of S to 0. Table 1 summarises the syntax of System L.

The dynamics of the system is given by a set of conditional reduction rules
(which can be seen as a higher-order membership conditional rewrite system,

Iterator Types 19

Table 1. Terms

Construction Variable Constraint Free Variables (fv)

0, true, false − ∅

S t − fv(t)

iter t u v fv(t) ∩ fv(u) = fv(u) ∩ fv(v) = ∅ fv(t) ∪ fv(u) ∪ fv(v)
fv(t) ∩ fv(v) = ∅

x − {x}
tu fv(t) ∩ fv(u) = ∅ fv(t) ∪ fv(u)

λx.t x ∈ fv(t) fv(t) � {x}
〈t, u〉 fv(t) ∩ fv(u) = ∅ fv(t) ∪ fv(u)

let 〈x, y〉 = t in u fv(t) ∩ fv(u) = ∅, x, y ∈ fv(u) fv(t) ∪ (fv(u) � {x, y})
cond t u v fv(u) = fv(v), fv(t) ∩ fv(u) = ∅ fv(t) ∪ fv(u)

see [25,26]). The conditions on the rewrite rules ensure that Beta only applies to
redexes where the argument is a closed term (which implies that α-conversion is
not needed to implement substitution), and only closed functions are iterated.
Table 2 gives the reduction rules for System L, substitution is a meta-operation
defined as usual. Reductions can take place in any context.

Table 2. Closed reduction

Name Reduction Condition

Beta (λx.t)v −→ t[v/x] fv(v) = ∅

Let let 〈x, y〉 = 〈t, u〉 in v −→ (v[t/x])[u/y] fv(t) = fv(u) = ∅

Cond cond true u v −→ u
Cond cond false u v −→ v
Iter iter (S t) u v −→ v(iter t u v) fv(tv) = ∅

Iter iter 0 u v −→ u fv(v) = ∅

We give some examples to illustrate the system.

– Erasing numbers: although we are in a linear system, we can erase numbers
by using them in iterators.

fst = λx.let 〈u, v〉 = x in iter v u (λz.z)
snd = λx.let 〈u, v〉 = x in iter u v (λz.z)

– Copying numbers: C = λx.iter x 〈0, 0〉 (λx.let 〈a, b〉 = x in 〈S a, S b〉) takes
a number n and returns a pair 〈n, n〉.

– Addition: add = λmn.iter m n (λx.S x)
– Multiplication: λmn.iter m 0 (add n)
– Predecessor: λn.fst(iter n 〈0, 0〉 (λx.let 〈t, u〉 = C(snd x) in 〈t, S u〉))
– Ackermann: ack(m, n) = (iter m (λx.S x) (λgu.iter (S u) (S 0) g)) n

To type the terms in System L we use a set of linear types :

A, B ::= Nat | Bool | α | A −◦ B | A ⊗ B

20 S. Alves et al.

where Nat and Bool are the types of numbers and booleans, and α is a type
variable.

Let A0, . . . , An be a (non-empty) list of linear types. It(A0, . . . , An) denotes
a non-empty set of iterative types defined by induction on n:

n = 0 : It(A0) = {A0 −◦ A0}
n = 1 : It(A0, A1) = {A0 −◦ A1}
n ≥ 2 : It(A0, . . . , An) = It(A0, . . . , An−1) ∪ {An−1 −◦ An}

Iterative types will serve to type the functions used in iterators. Note that
It(A0) = It(A0, A0) = It(A0, . . . , A0).

The typing rules specifying how to assign types to untyped terms are given in
Figure 1, where we use the following abbreviations: Γ
L t : It(A0, . . . , An) iff
Γ
L t : B for each B ∈ It(A0, . . . , An). It is a Curry-style type system (there
are no type decorations in terms). We do not have Weakening and Contraction
rules: we are in a linear system; the logical rules split the context between the
premises. For terms of the form iter t u v, we check that t is a term of type Nat
and that v and u are compatible. There are two cases: if t is Sn0 then we require
v to be a function that can be iterated n times on u. Otherwise, if t is not (yet)
a number, we require v to have a type that allows it to be iterated any number
of times (i.e. u has type A and v : A −◦ A, for some type A).

All the examples above can be typed in a straightforward way. More interest-
ingly, the term D = λz.iter (S20) (λxy.〈x, y〉) (λx.xz) which allows us to copy
arbitrary closed terms in System L (for any closed term t, D t −→∗ 〈t, t〉, see [3]
for more details), is typable. We show a type derivation for D, which illustrates
the use of iterative types. In the following type derivation N denotes Nat and B
denotes A ⊗ A.

�L 0 : N

�L S 0 : N

�L S20 : N

x : A �L x : A y : A �L y : A

x : A, y : A �L 〈x, y〉 : B

x : A �L λy.〈x, y〉 : A −◦ B

�L λxy.〈x, y〉 : A −◦ A −◦ B z : A �L (λx.xz) : It(A−◦ A −◦ B, A −◦ B, B)

z : A �L iter (S20) (λxy.〈x, y〉) (λx.xz) : B

�L λz.iter (S20) (λxy.〈x, y〉) (λx.xz) : A −◦ B

Note that

x : A −◦ A −◦ B �L x : A −◦ A −◦ B z : A �L z : A

x : A −◦ A −◦ B, z : A �L xz : A −◦ B

z : A �L (λx.xz) : (A −◦ A −◦ B) −◦ (A −◦ B)

and

x : A −◦ B �L x : A −◦ B z : A �L z : A

x : A −◦ B, z : A �L xz : B

z : A �L (λx.xz) : (A −◦ B) −◦ B

Iterator Types 21

Axiom and Structural Rule:

(Axiom)
x : A �L x : A

Γ, x : A, y : B, Δ �L t : C
(Exchange)

Γ, y : B, x : A,Δ �L t : C

Logical Rules:

Γ, x : A �L t : B
(−◦Intro)

Γ �L λx.t : A −◦ B

Γ �L t : A −◦ B Δ �L u : A
(−◦Elim)

Γ, Δ �L tu : B

Γ �L t : A Δ �L u : B
(⊗Intro)

Γ, Δ �L 〈t, u〉 : A ⊗ B

Γ �L t : A ⊗ B Δ, x : A, y : B �L u : C
(⊗Elim)

Γ, Δ �L let 〈x, y〉 = t in u : C

Numbers

(Zero)
�L 0 : Nat

Γ �L n : Nat
(Succ)

Γ �L S n : Nat

Γ �L t : Nat Θ �L u : A0 Δ �L v : It(A0, . . . , An) (�)
(Iter)

Γ, Θ, Δ �L iter t u v : An

(�) where if t ≡ Sm0 then n = m otherwise n = 0
Booleans

(True)
�L true : Bool

(False)
�L false : Bool

Δ �L t : Bool Γ �L u : A Γ �L v : A
(Cond)

Γ, Δ �L cond t u v : A

Fig. 1. Type System for System L

Therefore z : A
L (λx.xz) : It(A −◦ A −◦ B, A −◦ B, B)
We recall from [3] that System L is confluent, reductions preserve types, and

typable terms are strongly normalisable1.

3 Linear Type Reconstruction

This section develops a type reconstruction algorithm for System L. Our algo-
rithm is in a similar style to that of Damas-Milner [9]. We begin by giving a
presentation of the type assignment rules which will suggest a type reconstruc-
tion algorithm. We will prove it to be both sound and complete with respect to
these rules. We refer the reader to [22,9,8] for background to this work.

SystemL is a resource sensitive calculus, and we place a restriction on the use of
assumptions in a derivation: namely use them all exactly once. Its type system is
given inamultiplicative style,where each term is providedwith the exactnumber of
type assumptions for its free variables. Following [20], we will simulate a multiplica-
tive system using a hybrid (in between multiplicative and additive) presentation of
the rules. We will write typing judgements in the following way:
1 In [3] there are no type variables, but the same results hold here since we don’t have

instantiation rules.

22 S. Alves et al.

Γ | Θ
L t : A

where Γ and Θ are lists such that the elements in Θ are also in Γ , and Γ � Θ
contains precisely the assumptions necessary to type t; we call Γ the before-set
and Θ the after-set, indicating that the derivation uses the assumptions only in
Γ � Θ. The idea is best explained by an example. Consider the rule:

Γ | Δ
L t : A −◦ B Δ | Θ
L u : A
(−◦Elim)

Γ | Θ
L tu : B

This rule states that if we type tu using Γ then Θ will be left over. We give
t all of the assumptions, and the remaining Δ are given to u. The ones that
are not consumed here are exactly those which are left over in typing tu. The
rationale for choosing this notation will become more apparent when we present
the type reconstruction algorithm.

The full type assignment for System L using the “before-and-after” presen-
tation is given in Figure 2, where we write Γ, x : A to denote the list obtained
by adding to Γ the element x : A at the end (and in general we write Γ, Δ for
list concatenation), and x : A ∈ Γ holds if x : A is the last assumption for x in
the list Γ . The notation Γ � {x : A} represents the list Γ where we have deleted
the last assumption for x (and in general, Γ � Δ denotes the list Γ without the
elements in Δ).

To relate the two versions of the type system (see Figures 1 and 2) we need
some lemmas, where we use the following notation: if Γ | Δ is a type environment
in the hybrid system, then we write Γ | Δ to denote any permutation of Γ that
preserves the relative order of assumptions for the same variable (that is, all the
assumptions for x occur in the same order in Γ and Γ) and the corresponding
sub-list Δ.

Lemma 1 (Permutations). If Γ | Δ
L t: A, then Γ | Δ
L t: A.

Proof. By induction on the derivation. In the permutation, only the relative
order of the assumptions for x is relevant in the Axiom.

Lemma 2 (Monotonicity). Γ | Γ ′
L t: A if and only if Δ, Γ | Δ, Γ ′
L t: A.

Proof. By induction on the type derivation.

As a consequence of these lemmas, Γ | Γ ′
L t : A implies Γ � Γ ′ | ∅
L t : A
(since the elements in Γ ′ are also in Γ).

The relationship between the multiplicative and the hybrid versions of System
L is as follows:

Theorem 1. – If Γ
L t : A then Γ | ∅
L t : A for any permutation Γ .
– If Γ | ∅
L t : A for some permutation Γ then Γ
L t : A.

Proof. ⇒) By induction on the type derivation, using the previous lemmas. We
distinguish cases according to the last rule applied; some interesting cases are:

Iterator Types 23

Axiom:
x : A ∈ Γ

(Axiom)
Γ | Γ � {x : A} �L x : A

Logical Rules:

Γ, x : A | Δ �L t : B
(−◦Intro)

Γ | Δ �L λx.t : A −◦ B

Γ | Γ ′ �L t : A −◦ B Γ ′ | Δ �L u : A
(−◦Elim)

Γ | Δ �L tu : B

Γ | Γ ′ �L t : A Γ ′ | Δ �L u : B
(⊗Intro)

Γ | Δ �L 〈t, u〉 : A ⊗ B

Γ | Γ ′ �L t : A ⊗ B Γ ′, x : A, y : B | Δ �L u : C
(⊗Elim)

Γ | Δ �L let 〈x, y〉 = t in u : C

Numbers

(Zero)
Γ | Γ �L 0 : Nat

Γ | Γ ′ �L n : Nat
(Succ)

Γ | Γ ′ �L S n : Nat

Γ | Γ ′ �L t : Nat Γ ′ | Θ �L u : A0 Θ | Δ �L v : It(A0, . . . , An) (�)
(Iter)

Γ | Δ �L iter t u v : An

(�) where if t ≡ Sm 0 then n = m otherwise n = 0

Booleans

(True)
Γ | Γ �L true : Bool

(False)
Γ | Γ �L false : Bool

Γ | Δ �L t : Bool Δ | Θ �L u : A Δ | Θ �L v : A
(Cond)

Γ | Θ �L cond t u v : A

Fig. 2. Hybrid Type System for System L

– Exchange: Since the type environment contains the same elements in the
premise and conclusion, the result follows directly by induction.

– −◦Intro: By induction, Γ, x : A | ∅
L t : B, for any permutation of Γ, x : A.
In particular, Γ, x : A | ∅
L t : B, and the result follows using −◦Intro in
the hybrid system.

– Iter: By induction, Γ | ∅
L t : Nat, Θ | ∅
L u : A0, and Δ | ∅
L v :
It(A0, . . . , An). By Monotonicity, Δ, Θ, Γ | Δ, Θ
L t : Nat and Δ, Θ | Θ
L
u : A0. Then, using rule Iter in the hybrid system we obtain: Δ, Θ, Γ | ∅
L
iter t u v : It(A0, . . . , An). The result follows using the Permutation lemma.

24 S. Alves et al.

⇐) We assume Γ | ∅
L t : A for some permutation, and proceed by induction
on t, using the previous lemmas. Again, we distinguish cases according to the
last rule applied, and show only some interesting cases.

– −◦Elim: The premises are: Γ | Γ ′
L t : A −◦ B, and Γ ′ | ∅
L u : A,
then by Monotonicity we also have Γ � Γ ′ | ∅
L t : A −◦ B. By induction:
Γ � Γ ′
L t : A and Γ ′
L u : A, then Γ, Γ ′
L tu : B, using −◦Elim in the
multiplicative version.

– Iter: The premises are: Γ | Γ ′
L t : Nat, and Γ ′ | Θ
L u : A0, and Θ | ∅
L
v : It(A0, . . . , An). Then by Monotonicity we also have Γ �Γ ′ | ∅
L t : Nat,
and Γ ′

�Θ | ∅
L u : A0. By induction: Γ �Γ ′
L t : Nat, Γ ′
�Θ
L u : A0,

and Θ
L v : It(A0, . . . , An). Since Γ = Γ � Γ ′ ∪ Γ ′
� Θ ∪ Θ, the result

follows using Iter in the multiplicative version, and the Permutation lemma.

3.1 The Type Reconstruction Algorithm L
Our presentation of the algorithm L will assume that the terms are syntactically
linear. It is a trivial extension to the algorithm to perform this kind of checking—
we just need extra conditions to be satisfied.

We will need unification of types in this section, a simple extension to the
unification algorithm used in Damas-Milner’s system, based on a variant of
Robinson’s theorem [24]. The definition is standard (see for instance [21]). Sub-
stitutions are mappings from type variables to types. They are associative and
idempotent; composition is denoted by juxtaposition. We assume that mguAB
gives the most general unifier of A and B, that is, a substitution U such that:
UA = UB; if V also unifies A and B then V is a substitution instance of U ,
i.e. V = SU for some substitution S; and the final requirement is that U only in-
volves variables in A and B—no new variables are introduced during unification.
If A, B are not unifiable then mguAB fails. Our type reconstruction algorithm
will take as input a term and a list of type assumptions for variables. To re-
flect the linearity constraint that all assumptions must be used exactly once, we
treat type assumptions as resources—once an assumption is used, we remove it.
To this end our type reconstruction algorithm will return a triple (rather than
a pair as in the case of W), which consists of a substitution, a type, and the
assumptions not yet used.

We write R, S to range over substitutions, α, β to range over type variables,
Γ, Γ ′ to range over lists of assumptions. We write id for the identity substitution,
and substitution over lists is defined element-wise. For a substitution R, we
write R(Γ | Γ ′) for RΓ | RΓ ′, and define substitution on judgements by :
R(Γ | Γ ′
L t : A) = RΓ | RΓ ′
L t : RA. We assume that the function new
returns a fresh type variable each time it is called.

Definition 1 (Type Reconstruction Algorithm L). L(Γ, e) = (T, τ, Γ ′)
where:

Iterator Types 25

1. If e is the identifier x, and x : A ∈ Γ then T = id, τ = A, Γ ′ = Γ � {x : A}.
2. If e is of the form 〈t, u〉, let

(R, A, Γ1) = L(Γ, t)
(S, B, Γ2) = L(RΓ1, u)

then T = SR, τ = SA ⊗ B, Γ ′ = Γ2.
3. If e is of the form let 〈x, y〉 = t in u, let

(R, A, Γ1) = L(Γ, t)
U = mgu A α ⊗ β; α, β new
(S, B, Γ2) = L((URΓ1, x : Uα, y : Uβ), u)

then T = SUR, τ = B, Γ ′ = Γ2.
4. If e is of the form λx.t, let

(R, B, Γ1) = L((Γ, x : α), t); α new

then T = R, τ = Rα −◦ B, Γ ′ = Γ1.
5. If e is of the form tu, let

(R, C, Γ1) = L(Γ, t)
(S, A, Γ2) = L(RΓ1, u)
U = mgu (SC) (A −◦ β); β new

then T = USR, τ = Uβ, Γ ′ = Γ2.
6. If e is 0 then T = id, τ = Nat and Γ ′ = Γ .
7. If e is S t, and L(Γ, t) = (R, A, Γ1), and mgu A Nat = U , then T = UR,

τ = Nat and Γ ′ = Γ1.
8. If e is of the form iter t u v, where t �= Sm0, let

(R, C, Γ1) = L(Γ, t)
U = mgu C Nat
(S, A, Γ2) = L(URΓ1, u)
(T ′, B, Γ3) = L(SΓ2, v)
V = mgu B (T ′(A −◦ A))

then T = V T ′SUR, τ = V T ′A, Γ ′ = Γ3.
9. If e is of the form iter (Sm0) u v, let

(S, B, Γ0) = L(Γ, u)
(R, A, Γ1) = L(SΓ0, v)
B0 = RB
S0 = RS

for i = 1 · · ·m{ Ui = mgu A (Bi−1 −◦ βi); βi new
Bi = Uiβi

Si = UiS0

}
Condition : S1Γ0 = · · · = SmΓ0

then T = Sm, τ = Bm, Γ ′ = Γ1.

26 S. Alves et al.

10. If e is true or false then T = id, τ = Bool and Γ ′ = Γ .
11. If e is of the form cond t u v, let

(R, C, Γ1) = L(Γ, t)
U = mgu C Bool
(S, ρ, Γ2) = L(URΓ1, u)
(S′, σ, Γ3) = L(SURΓ1, v)
Condition : Γ3 = Γ2

V = mgu σ S′ρ

then T = V S′SUR, τ = V σ, Γ ′ = Γ2(= Γ3).

Note that L fails if it is not one of the above forms.

Cases 1-7, 10 and 11 are standard for a linear λ-calculus with numbers, booleans
and pairs (see [20]). Cases 8 and 9 deal with iterator terms. In case 8 we first
check that t can be given type Nat, then type u with the remaining assumptions,
and finally type v using only the assumptions not consumed in the typing of t
and u, checking that v has an arrow type of the correct form. The interesting
case is 9: here we deal with an iterator term in which the number of iterations
is known. We type u and v as in case 8, and then check that v can be given a
set of iterative types.

Soundness of L. If the algorithm L succeeds in typing a term e under some
assumptions, then we want to be sure that e actually is typable. This is called
Soundness and states that our algorithm is safe—it produces no wrong results.

Lemma 3 (Substitution). If there is a derivation Γ | Γ ′
L e : τ then, for
any substitution S, there is also a derivation for S(Γ | Γ ′)
L e : Sτ .

Proof. By induction over the length of the derivation.

Theorem 2 (Soundness of L). If L(Γ, e) succeeds with (S, τ, Γ ′) then there
is a derivation of S(Γ | Γ ′)
L e : τ .

Proof. By induction on the structure of terms e, using the Substitution Lemma
and the fact that substitutions are idempotent. We show two cases:

1. If e is of the form 〈t, u〉 then L(Γ, t) succeeds with (R, A, Γ1) and L(RΓ1, u)
succeeds with (S, B, Γ2). By induction twice, there are derivations R(Γ |
Γ1)
L t : A and S(RΓ1 | Γ2)
L u : B. Since Γ2 is included in RΓ1, and R
is idempotent, also SR(Γ1 | Γ2)
 u : B. By Lemma 3 we can write the first
derivation as SR(Γ | Γ1)
 t : SA. Now, by ⊗Intro SR(Γ | Γ2)
L e : SA⊗B.

2. If e is of the form iter t u v and t �= Sm0, then L(Γ, t) succeeds with (R, C, Γ1)
and mgu C Nat succeeds with a substitution U . L(URΓ1, u) succeeds with
(S, A, Γ2), L(SΓ2, v) succeeds with (T ′, B, Γ3), and mgu B (T ′A −◦ T ′A)
succeeds with a substitution V . Now by induction and Lemma 3 there are
derivations ending in V T ′SUR(Γ | Γ1)
L t : Nat, V T ′SUR(Γ1 | Γ2)
L u :
V T ′A, and V T ′SUR(Γ2 | Γ3)
L v : V T ′A −◦ V T ′A, and the result follows
by the Iter rule.

Iterator Types 27

Completeness of L. If a term can be typed using the inference rules, then we
would require our algorithm to also be able to compute the type of this term.
The proof follows closely the proof of the completeness of W in [8]. Note that a
notion of principal type follows as an immediate corollary of the completeness
theorem.

Theorem 3 (Completeness of L). If there is a derivation S(Γ | Γ1)
L e : τ
for some substitution S, then:

1. L(Γ, e) succeeds with (R, A, Γ1) for some R, A.
2. There exists a substitution T such that: TR(Γ | Γ1) = S(Γ | Γ1) and TA = τ .

Proof. By induction over the structure of e.

4 Iterative Types

In this section we present two intersection type systems closely related to System
L. The first one is based on Damas’s type system[8], a less known polymorphic
type system with the same power of the Hindley-Milner system. The second is
based on rank-2 intersection types [4,16].

Iterative types are a compact way of expressing several type derivations for
an iterated function. Consider the iterator function itself λx.iter t u x. When
this function is applied to a term v our type rules assume that v must be typed
with every type in It(A0, . . . , An). Another way to see it is to type iter t u x
with multiple assumptions for x, and then type v with all the elements of the set
of types declared for x. One standard way to extend a type system by allowing
multiple assumptions for free variables is by using intersection types.

4.1 Polymorphic Iteration

In the system presented here, which we call System LI , intersection types are
only used in the set of assumptions for free variables. This kind of restriction
to intersection type systems was first used in Damas’s PhD thesis [8] in the
definition of a system (later called Damas’s System T [15]) with the same set of
typable expressions as the widely known Hindley-Milner system, but that instead
of using ∀-quantified types, allows multiple types in the set of assumptions for
each free variable. We will use a similar method to type iterators.

We consider the set Types, of linear types defined in Section 2. Let S range
over the set of all finite non-empty subsets of Types. The set Inter of intersection
types is defined as follows: Ā ::= ∧S. The type environments (or bases in the
terminology of intersection systems) of the systems presented in this section
represent a total function from the set of variables of the term to Inter. Bases
that associate to term-variables elements of Types will be called monomorphic.

System LI is obtained from System L by replacing the rule for (Iter) by the
two rules given in Figure 3.

28 S. Alves et al.

Γ �LI t : Nat Δ �LI u : A0

(VarIter)
Γ, x : ∧It(A0, . . . , An), Δ �LI iter t u x : An

(�) where if t ≡ Sm0 then n = m otherwise n = 0

Γ, x : ∧S �LI iter t u x : A ∀Bi ∈ S.Δ �LI v : Bi

(Iter)
Γ, Δ �LI iter t u v : A

Fig. 3. System L with Intersection Types

System LI allows multiple types in the set of assumptions for each free vari-
able. This can be seen as using intersection types for free variables and System
LI can be seen as a restriction of a system of rank-2 intersection types.

We now show two results relating System L and System LI .

Theorem 4. If there is a derivation Γ
L e : τ , then Γ
LI e : τ

Proof. We only show the case for Iter, as the other cases are trivial by induction.
If e is of the form iter t u v, then Γ, Θ, Δ
L iter t u v : An if Γ
L t : Nat,

Θ
L u : A0 and Δ
L v : It(A0, . . . , An), where if t ≡ Sm0 then n = m
otherwise n = 0. By induction, Γ
LI t : Nat and Θ
LI u : A0. Therefore by
VarIter and Exchange, Γ, Θ, x : ∧It(A0, . . . , An)
LI iter t u x : An. Again by
induction, ∀Bi ∈ It(A0, . . . , An).Δ
LI v : Bi. Thus, by Iter

Γ, Θ, Δ
LI iter t u v : An.

This last result shows that any term typable in System L is also typable in
LI . The opposite does not hold, i.e, system LI allows more typings than System
L. In particular, when typing an open term of the form iter (Sm0) u x, it allows x
to have an iterative type It(A0, . . . , An). For example, we can have the following
derivation in System LI (consider for example, Γ = {x : ∧It(A −◦ Nat−◦ Nat⊗
Nat, . . . , Nat ⊗ Nat)}):

Γ
LI (λy.fst y)(iter (S20) (λx1x2.〈x1, x2〉) x) : Nat

but the term (λy.fst y)(iter (S20) (λx1x2.〈x1, x2〉) x) is not typable in System L,
because, for (iter (S20) (λx1x2.〈x1, x2〉) x), we can only have derivations of the
form (consider Γ = {x : (A −◦ A −◦ A ⊗ A) −◦ (A −◦ A −◦ A ⊗ A)}):

Γ
L iter (S20) (λx1x2.〈x1, x2〉) x : A −◦ A −◦ A ⊗ A.

Note however that, if the bases used in derivations in System LI are monomor-
phic, then those terms are also typable in System L.

Theorem 5. If there is a derivation Γ
LI e : τ , with Γ monomorphic, then
Γ
L e : τ .

Iterator Types 29

Proof. We only show the case for Iter, as the other cases are trivial by induction.
If e is of the form iter t u v, then Γ, Δ
LI iter t u v : An if

Γ, x : ∧It(A0, . . . , An)
LI : iter t u x : An Δ
LI v : It(A0, . . . , An)

Also, Γ, x : ∧It(A0, . . . , An)
LI : iter t u x : An if Γ ′
LI t : Nat and Γ ′′
LI u :
A0 where if t ≡ Sm0 then n = m otherwise n = 0, and Γ = Γ ′, Γ ′′. By induction
hypothesis: Γ ′
L t : Nat Γ ′′
L u : A0 Δ
L v : It(A0, . . . , An). Thus, by
Iter Γ, Δ
L iter t u v : An.

In particular for closed terms, the two systems are equivalent.

Corollary 1.
L e : τ iff
LI e : τ .

4.2 Rank 2 Intersection Types: System L2
I

Being able to type terms of the form iter (Sm0) u x using intersections like we
do in System LI , does not really give us more interesting terms, because we can
not abstract on x, therefore it will never be replaced by the function to iterate.
The system presented now extends System LI in that sense.

The rank 2 intersection type assignment for System L (which we call System
L2
I) is obtained from System LI , by replacing the rules −◦Intro and −◦Elim by

the two rules given in Figure 4. Note that we do not distinguish the types ∧{A}

Γ, x : ∧S �L2
I

t : B
(−◦Intro)

Γ �L2
I

λx.t : ∧S −◦ B

Γ �L2
I

t : ∧S −◦ B ∀Ai ∈ S.Δ �L2
I

u : Ai

(−◦Elim)
Γ, Δ �L2

I
tu : B

Fig. 4. Rank 2 Intersection Types version of System L

and A. This system corresponds to a linear version of a rank 2 intersection type
system with iterators, and it includes System L (and System LI).

Theorem 6. If there is a derivation Γ
L e : τ , then Γ
L2
I

e : τ

Proof. Similar to Theorem 4.

Note that terms typable in System LI are also typable in System L2
I , since the

rules −◦Intro and −◦Elim of System LI , are a subcase of the same rules in System
L2
I .
System L2

I is stronger than System LI (therefore, than System L), since it
allows abstractions on polymorphic variables. Note however, that polymorphic

30 S. Alves et al.

variables are only introduced through VarIter. For example, we can have the
following typing in System L2

I :

L2
I

(λy.(λx.fst x)(iter (S20) (λx1x2.x1x2) y))(λz.z(S30)) : Nat

but this term is not typable in System L. Note also that System L2
I allows us

to write more compact versions of admissible linear terms. Consider for example
F to be a closed function with types It(A −◦ Nat −◦ Nat ⊗ Nat, . . . , Nat ⊗ Nat),
then (λfp.cond p (iter (S20) 0 f) (iter (S20) (S0) f))F is typable in System L2

I .
Subject reduction for Systems LI and L2

I is proved in a similar way as for
System L. As for confluence, since we proved confluence for untyped terms in [3],
that result, together with subject reduction, implies confluence for terms typable
in Systems LI and L2

I .
Summarising, we have shown how iterative types are related with intersection

types, which in turn shows the expressiveness of System L. The relation between
the set of terms typable in the three systems is: L ⊂ LI ⊂ L2

I . Furthermore, for
closed terms (therefore programs): L = LI .

5 Conclusions

We have studied a new type construct, shown its relationship with intersection
types, and given a type reconstruction algorithm for it. Since it is known that the
calculus is strongly normalising, type reconstruction has the usual applications.
The results relating iterative types and intersection types, together with the
results in [3] which show that System L can simulate Gödel’s System T , indicate
that System L is even more expressive than System T , it actually corresponds
to a version of System T with a restricted form of intersection types.

References

1. S. Abramsky. Computational Interpretations of Linear Logic. Theoretical Com-
puter Science, 111:3–57, 1993.

2. S. Alves, M. Fernández, M. Florido, and I. Mackie. The power of closed-reduction
strategies. In Proceedings of WRS 2006, 6th International Workshop on Rewriting
Strategies, FLOC 2006, Seattle, 2006.

3. S. Alves, M. Fernández, M. Florido, and I. Mackie. The power of linear functions.
In Proceedings of Computer Science Logic, CSL 2006, LNCS. Springer Verlag, 2006.

4. S. Bakel. Intersection Type Disciplines in Lambda Calculus and Applicative Term
Rewriting Systems. PhD thesis, Department of Computer Science, University of
Nijmegen, 1993.

5. S. Bakel. Intersection type assignment systems. Theoretical Computer Science,
151(2):385–435, 1995.

6. H. P. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model
and the completeness of type-assignment. J. Symbolic Logic, 48:931–940, 1983.

7. M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality
theory for the λ-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693,
1980.

Iterator Types 31

8. L. M. M. Damas. Type Assignment in Programming Languages. PhD thesis,
University of Edinburgh, 1985.

9. L. M. M. Damas and R. Milner. Principal type schemes for functional programs.
In Conference Record of the Ninth Annual ACM Symposium on the Principles of
Programming Languages, pages 207–212, 1982.

10. F. Damiani. Rank-2 intersection and polymorphic recursion, 2005.
11. M. Fernández, I. Mackie, and F.-R. Sinot. Closed reduction: explicit substitu-

tions without alpha conversion. Mathematical Structures in Computer Science,
15(2):343–381, 2005.

12. J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50(1):1–102, 1987.
13. J.-Y. Girard. Geometry of interaction 1: Interpretation of System F. In R. Ferro,

C. Bonotto, S. Valentini, and A. Zanardo, editors, Logic Colloquium 88, volume
127 of Studies in Logic and the Foundations of Mathematics, pages 221–260. North
Holland Publishing Company, Amsterdam, 1989.

14. J.-Y. Girard. Towards a geometry of interaction. In J. W. Gray and A. Scedrov,
editors, Categories in Computer Science and Logic: Proc. of the Joint Summer
Research Conference, pages 69–108. American Mathematical Society, Providence,
RI, 1989.

15. C. Haack and J. B. Wells. Type error slicing in implicitly typed higher-order
languages. Sci. Comput. Program., 50(1-3):189–224, 2004.

16. T. Jim. Rank 2 type systems and recursive definitions. Technical report, Mas-
sachusetts Institute of Technology, 1995.

17. T. Jim. What are principal typings and what are they good for? In Proceedings of
the 23rd ACM Symposium on Principles of Programming Languages (POPL’96).
ACM Press, 1996.

18. A. J. Kfoury, H. G. Mairson, F. A. Turbak, and J. B. Wells. Relating typability
and expressibility in finite-rank intersection type systems. In Proceedings of the
1999 International Conference on Functional Programming, pages 90–101. ACM
Press, 1999.

19. Y. Lafont. Interaction nets. In Proceedings of the 17th ACM Symposium on Princi-
ples of Programming Languages (POPL’90), pages 95–108. ACM Press, Jan. 1990.

20. I. Mackie. Lilac: A functional programming language based on linear logic. Journal
of Functional Programming, 4(4):395–433, 1994.

21. A. Martelli and U. Montanari. An efficient unification algorithm. Transactions on
Programming Languages and Systems, 4(2):258–282, 1982.

22. R. Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17(3):348–375, 1978.

23. G. Pottinger. A type assignment for strongly normalizable λ-terms. In To H.B.
Curry, Essays in Combinatory Logic, Lambda-Calculus and Formalism, pages 535–
560. Academic Press, 1980.

24. J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23–41, 1965.

25. Y. Toyama. Confluent term rewriting systems with membership. In Proceedings of
the 1st International Workshop on Conditional Term Rewriting Systems, CTRS’87,
Orsay, France, volume 308 of LNCS, pages 228–241. Springer-Verlag, 1988.

26. J. Yamada. Confluence of terminating membership conditional trs. In Proceed-
ings of the 3rd International Workshop on Conditional Term Rewriting Systems,
CTRS’92, Pont--Mousson, France, volume 656 of LNCS, pages 378–392. Springer-
Verlag, 1993.

	Introduction
	Linear λ-Calculus with Iterator: \LLCI
	Linear Type Reconstruction
	The Type Reconstruction Algorithm \LLCL

	Iterative Types
	Polymorphic Iteration
	Rank 2 Intersection Types: System $\mathcal{L}_\mathcal{I}^2$

	Conclusions

